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ABSTRACT In foreground segmentation, it is challenging to construct an effective background model
to learn the spatial-temporal representation of the background. Recently, deep learning-based background
models (DBMs) with the capability of extracting high-level features have shown remarkable performance.
However, the existing state-of-the-art DBMs deal with video segmentation as single-image segmentation
and ignore temporal cues in video sequences. To exploit temporal data sufficiently, this paper proposes
a multi-input multi-output (MIMO) DBM framework for the first time, which is partially inspired by the
binocular summation effect in human eyes. Our framework is an X-shaped network which allows the DBM
to track temporal changes in a video sequence. Moreover, each output branch of our model could receive
visual signals from two similar input frames simultaneously like the binocular summation mechanism.
In addition, our model can be trained end-to-end using only a few training examples without any post-
processing. We evaluate our method on the largest dataset for change detection (CDnet 2014) and achieve
the state-of-the-art performance by an average overall F-Measure of 0.9920.

INDEX TERMS Foreground segmentation, background subtraction, deep learning, focal loss, binocular
summation.

I. INTRODUCTION
Foreground segmentation, also known as background
subtraction, is a crucial task for video processing. It is
fundamental for many advanced applications such as traf-
fic monitoring [1], anomaly detection [2] and behavior
recognition [3]. Given one scenario S, foreground segmen-
tation algorithms are generally achieved by building a rep-
resentation of S, called Background Model (BM), and then
detecting the changing regions (foreground) of each incoming
frame by this model [43]. Over the years, various methods
have been proposed to construct a proper BM.

Statistically modeling background is a popular strategy to
segment foreground objects for its efficiency. Some typical
algorithms such as GMM [37], KDE [38] and PBAS [39]
assume the independence among pixels and model the vari-
ation of each pixel over time. Another prevalent strategy
such as RPCA [33], [41] and RNMF [32] uses the idea of
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dimension reduction to achieve robustness. However, these
conventional approaches lack the ability to extract high-level
features to represent each pixel for semantic prediction [42].
They cannot address numerous challenges such as dynamic
background, illumination changes, heavy shadows, camou-
flage, and camera motion simultaneously.

Recently, Convolutional Neural Networks (CNNs) have
proved to be a powerful extractor in learning useful feature
representations from data [24], [25]. Particularly, Fully Con-
volutional Networks (FCNs) [19] based on transfer learning
have shown competitive performance in pixel-level classi-
fication tasks [16]–[18]. Deep learning based Background
Models (DBMs) have thus emerged in the spotlight and out-
performed conventional methods by large margins. In gen-
eral, existing DBMs can be classified into the following
two categories: patch-wise and image-wise. Patch-wise
approaches [7]–[10] feed the image patches to CNNs to
predict foreground probabilities of the center pixels of the
patches. These models are simple and small, but there are
considerable overlaps between neighboring pixels, whichwill
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lead to computational inefficiency and overfitting. Further-
more, fixed patch sizes may cause loss of higher contextual
information, especially when objects are significantly larger
than the patch. Image-wise methods address these prob-
lems by using whole resolution images to predict foreground
masks. Some image-wise methods [11]–[13] deal with video
sequence segmentation as single-image segmentation. These
works ignore temporal coherence in videos but produce
remarkable results. Other methods [14], [15] use one target
frame and its references (its previous frames) to produce one
foregroundmask at a time. Although these DBMs take advan-
tage of temporal data, their accuracy still fails to outperform
some single-image methods, such as FgSegNet_v2 [11].

Nevertheless, we reasonably believe that we can further
improve segmentation accuracy by effectively exploring tem-
poral data. The key is to utilize the correlation between con-
secutive frames. Therefore, we propose a novel DBM with
multi-input multi-output (MIMO) structure because of the
following consideration:

1. The multi-input (MI) structure provides references to
the target frame, allowing the model to see more details and
discriminative features due to information processing from
multiple sources at the same time.

2. Themulti-output (MO) structuremakes each input frame
act as both a target frame and a reference, enabling the model
to capture the similarities and differences among multiple
frames more straightforwardly.

3. Moreover, the MO structure naturally leads to
multi-output loss function and multi-task learning, which
usually brings improvement on performance in inter-related
tasks [13].

4. The MIMO structure might bring important prior
knowledge to foreground segmentation, since the similar
regions between multiple input frames generally belong
to background, while foreground objects are usually in
regions with differences. Therefore, the model can learn
the spatial-temporal representation of the background more
effectively.

However, the MIMO model suffers from several limita-
tions when dealing with multiple frames, e.g.M frame. First,
the inference of the first frame needs to wait until the M-th
frame appears, which will lead to latency. Second, the larger
theM, the more complex the model might be, which tends to
cause overfitting under few training examples. Thus, we con-
sider M = 2 as a compromise.

Furthermore, we notice the human binocular vision system
which has a fundamental X-shaped structure (Fig. 1) [20].
It allows each half of the brain to receive visual signals
from both eyes to generate binocular summation after fus-
ing and superimposing monocular visual signals. The binoc-
ular summation is not a simple summation of monocular
information [48]. It could lower visual thresholds (contrast
thresholds), enhance the visual sensitivity and improve the
function of object detection and recognition [21], [45], [47].
Moreover, these advantages are more obvious under low
luminance conditions [46].

FIGURE 1. The X-shaped optic nerve in the human binocular vision
system. At the chiasm, fibers from the nasal (medial, blue) half of each
retina cross over to the contralateral optic tract, while fibers from the
lateral (orange) halves remain ipsilateral. This X structure allows each
half of the brain to receive visual signals from both eyes to generate
binocular summation.

Motivated by this, we instantiate our MIMO structure
into an X-shaped network, named X-Net. More specifi-
cally, it combines two branches of encoder and decoder net-
works via a fusion network to form an X-shaped architecture
(Fig. 2). This architecture not only simulates the structure
but also the mechanism of binocular summation. It perceives
two similar images synchronically, extract features from them
and then fuse the information. Moreover, each branch of the
decoder network in the X-Net can receive visual information
from both input images like the human binocular vision
system.

The main contributions of this paper are as follows:
1. We propose an MIMO DBM framework for the first

time, which is partially inspired by the binocular summation
mechanism in human eyes. Our method effectively incorpo-
rates temporal data to learn the spatio-temporal representa-
tion of background across various scenarios.

2.We develop a novel loss function termed soft focal loss to
address class imbalance in foreground segmentation, which
is modified from the focus loss [30] but achieves a higher
performance.

3. Our method surpasses the accuracy of all existing state-
of-the-art methods on the CDnet2014 dataset.

The rest of this paper is organized as follows: Section II
introduces related works of DBMs in recent years.
In Section III, we describe the proposed X-Net and the soft
focal loss. Section IV talks about the details of the experiment
results. Section V further verifies the effectiveness of the MO
structure and the soft focal loss. Finally, the conclusion of this
paper is drawn in Section VI.

II. RELATED WORKS
In the last two decades, numerous BMs have been proposed,
and a thorough review is beyond the scope of this paper.
For an overview of non-deep-learning methods, readers can
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FIGURE 2. An instance of the X-Net Architecture: an encoder network (marked in green), a fusion network (marked in blue) and a decoder
network (marked in yellow). Conv and Tconv represent convolution and transposed convolution operation. Each rectangle represents a
feature map, with a number or an arithmetic expression to indicate the number of channels. H and W is the full resolution frame’s height
and width. The blue hollow arrows represent the concatenation of three-scale feature maps from two branches of the encoder after 1×,
2× and 4× up-sampling respectively. It generates the multi-scale feature maps represented by the grid rectangles in Figure.

refer to [40]. In this section, we mainly present recent DBMs
from three perspectives: network architecture, temporal data
usage, and loss function, which play decisive roles in model
performance.

A. DBM ARCHITECTURES
Early DBMs tend to adopt CNN architectures which typ-
ically use fully connected layers after a series of convo-
lutional layers. To avoid huge computation cost incurred
by fully connected layers, Braham and Droogenbroeck [7]
used image patches for training. Later on, multiple modi-
fications were made for its insufficiency described earlier.
An advanced method proposed by [9] extended basic CNN
to a multi-scale CNN and trained it with multi-scaled images
(including down-scaled images) to cover large objects. Latest

studies such as [8] improved computational efficiency by
matching the dimension of the last fully connected layers to
the number of patch pixels. As an alternative, some DBMs
are designed to be an encoder-decoder architecture based on
FCN and perform prediction at the whole image level [16].
For example, Zhao et al. [13] proposed a two-stage DBM
in which an encoder-decoder sub-network was employed to
generate a background. Then they fed this background and a
target frame to a multi-channel FCN sub-network to segment
foreground objects. Conversely, without reconstructing the
background, FgSegNet_M [12] proposed a triplet of encoders
to extract multi-scale features and then used transposed con-
volution in the decoder to learn a mapping from feature
space to image space. FgSegNet_S [12] adopted a single
encoder but achieved high performance by applying several
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parallel dilated convolutions [28] with different dilation rates
to extract multi-scale features. Recently, FgSegNet_v2 [11]
adapted from FgSegNet_S reached state-of-the-art results by
integrating attention mechanism to learn multi-scale features
without incorporating temporal data.

B. TEMPORAL DATA FOR DBMS
Proper use of temporal data might help increase segmentation
accuracy while reducing DBMs’ execution time. In fore-
ground segmentation tasks, temporal data can be incorporated
into DBMs by 3D or 2D convolution on multiple consecu-
tive frames. 3D convolution, as a spatio-temporal filter, can
capture motion information in video sequences [23]. Rele-
vant studies such as [15] applied 3D convolution to track
temporal changes in scenes. This model used 4 groups of
chronologically parallel convolutions to process 10 consec-
utive input frames, then slowly merged feature maps to
produce only one foreground mask for a target frame. Its
multi-input single-output structure brought heavy computa-
tion burden. A more lightweight method proposed by [14]
adapted VGG-16 Net [36] as the encoder and took a con-
catenation of 3 grayscale images (previous frame, target
frame, and generated background image) as input to detect
temporal changes. Although this model generated a lower
computational load, its performance could be affected by
information loss due to the compression of RGB images into
grayscale versions. Instead of resorting to the concatenation
strategy in [13] and [16], our X-Net pursues a thorough sep-
aration by feeding each branch of the encoder with one of
the consecutive frames to extract complete temporal features
via 2D convolution. Furthermore, multi-task learning led by
MO structure usually brings improvement on performance in
inter-related tasks [13]. In addition, we also notice various
methods that utilize temporal coherence in video sequences
to shorten inference time. For example, Shelhamer et al. [24]
used semantic changes to motivate the updating of feature
maps with different layer depths. Instead of reducing infer-
ence, our model could boost segmentation speed by paral-
lelizing multiple encoder and decoder branches on multiple
GPUs.

C. LOSS FUNCTIONS FOR DBMS
DBMs are prone to suffer from class imbalance, espe-
cially in complex scenarios in which the background pixels
exceed the foreground pixels extremely [12]. In this case,
the standard Cross Entropy (CE) loss function could easily
be influenced by the foreground-background class imbal-
ance. A series of variants based on the CE loss have been
developed to alleviate this problem. A common method
was to weight the CE loss by a class-balance factor which
was set by inverse class frequency or treated as a hyper-
parameter [12], [29]. These methods enforced the learning of
minority (foreground) and focused on the imbalanced quan-
tity (foreground/background). On the other hand, the Focal
loss (FL) proposed by [30] paid attention to the imbalanced
complexity (easy/hard). By adding a modulating factor to the

CE loss, it down-weighted the loss assigned to well-classified
(easy) examples to prevent the vast number of easy exam-
ples from overwhelming the detector. Recently, the weighted
focus loss proposed by [31] integrated the above two strate-
gies to make the model sensitive to both hard examples and
minority examples. In this paper, we extend the concept of
complexity to relative complexity by introducing a relative
modulating factor. Our work can provide more competitive
results compared with the focal loss, more details will be
studied in discussion Section.

To sum up, existing DBMs adopt single-input single-
output (SISO) structure [11]–[13], [16] or multi-input single-
output (MISO) structure [15], [18] to incorporate temporal
data, while the X-Net is an MIMO DBM partially inspired
by binocular summation. Its two branches of the decoder
network form theMO structure, which lets themodel straight-
forwardly capture the similarities and differences between
both input frames to learn the spatial-temporal property of
the background effectively. Note that our method extracts
multi-scale features by multi-scale input technique as FgSeg-
Net_M, but the use of temporal data makes it even outperform
FgSegNet_v2 and achieve top results on CDnet 2014 dataset
(Tab. 3).

III. METHOD
A. THE X-NET ARCHITECTURE
As a simulation of the human binocular summation, our
conceptual idea leads to flexible and effective designs for the
X-Net to incorporate temporal data. An instance of the X-Net
architecture is illustrated in Fig. 2. It includes an encoder net-
work with two branches (marked in green), a fusion network
(marked in blue), and a decoder network with two branches
(marked in yellow).We also describe the exact configurations
of the X-Net in blocks (Tab. 1). Such architecture allows the
model to produce two foreground masks at a time.

1) THE ENCODER NETWORK
Its two branches form MI structure and work like the binocu-
lar optic nerves in human eyes, performing feature extraction
from two similar frames. What’s more, this MI structure
provides references for the target frame and is thus favorable
for extracting discriminative features via comparison. They
gradually reduce the size of the feature maps and increase the
number of feature channels to learn advanced and non-local
features. In addition, the encoder network is designed to
be a siamese [27] because of the following consideration.
First, sharing the same weights means that they use the same
approach to extract features from two images [26]. As the two
input images are adjacent frames with similar characteristics
and temporal continuity, it is natural to extract features in the
same way. Second, weight sharing mechanism can reduce
network parameters by half to avoid overfitting due to few
training examples (usually 200 frames or less). Our encoder
network can be instantiated with different backbones, but
for a fair comparison with state-of-the-art models, we follow
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TABLE 1. The X-Net configurations. The block 1 refers to the encoder
modified from VGG-16 Net. The block 2 and 3 represent the configurations
of the fusion network. The block 4 to block 6 represent the configurations
of the decoder. F and S represent filter and stride respectively.

the practice in FgSegNet_v2 [11]. The first four blocks of
VGG-16 Net [36] are adapted as the backbone of our encoder
network (green path in Fig. 2).

In addition, we cannot use too many pooling layers to
increase the receptive field size for extracting high-level
information. This poses serious challenges to up-sample the
segmentation output back to full resolution [25]. We allevi-
ate this contradictory in a naive way, i.e., multi-scale input,
as FgSegNet_M [12]. More precisely, given a pair of input
images IL0/IR0 represented in RBG color space, they are
downscaled into two different scales IL1/IR1 and IL2/IR2.
In this paper, we use 0.5 and 0.25 for the two scales. These
three pairs of images are fed simultaneously to the encoder
network in parallel. This produces three pairs of outputs at
three different scales:OL0/OR0,OL1/OR1, andOL2/OR2. After
that,OL1/OR1 andOL2/OR2 are upscaled to match the scale of
OL0/OR0. Finally, they are concatenated and fed to the fusion
network.

In contrast to the encoder networks, the fusion network and
decoder network should gradually reduce the feature channels
and step-wise upscale the feature maps to the full resolution
to produce foreground masks. To avoid the information loss
caused by sharp decrease of the feature maps, the output
feature maps of each block are designed to be step-wise
reduced by half (block 2 to block 5 in Tab.1). Moreover,
for computational efficiency, each block first applies 1 × 1
transposed convolution to project the high dimensional fea-
ture maps into 64 feature maps, then operates with the bigger
kernel transposed convolution to increase the receptive field
size. Note that ReLU non-linearities are applied to every layer
of the X-Net, except the last layer where a sigmoid activation
is used.

2) THE FUSION NETWORK
The representations learned from two branches of the encoder
are merged by the fusion network (blue path in Fig. 2).
Hence, each branch of the decoder network can be aware
of the information from each input frame, similar to the
function of the human binocular summation. To be concrete,
the configurations of the fusion network is illustrated in block
2 and block 3 in Tab. 1. Due to the concatenation of features
across three different scales in both branches of the encoder,
the feature maps extracted by the encoder network have a
large depth, i.e. 3072 = 6×512 (block 0 in Tab. 1). Therefore,

the block 2 first projects this high dimensional feature maps
into H

4 ×
W
4 × 64 via 1 × 1 transposed convolution, then

use 3 × 3 transposed convolution for feature fusion. After
that, to increase the non-linear representation ability, 1 × 1
transposed convolution is used again to enlarge the number of
feature maps to 512. A similar process is operated in blocks 3,
except that we apply 5×5 transposed convolutionwith a stride
of 2 to upscale feature maps. In addition, the output channels
of the block 3 are reduced to 256.

3) THE DECODER NETWORK
This network is MO structure which includes two indepen-
dent branches (yellow path in Fig. 2) with the same configu-
rations (from block 4 to 6 in Tab. 1). It performs detection,
location, and classification at the same time. Meanwhile,
to compensate for the low resolution of high-level features
during up-sampling [16], feature maps from the middle and
early layers are exploited by skip-connections (blue hollow
arrows between the encoder and decoder in Fig. 2). More
specifically, the three-scale feature maps from two branches
of the encoder, after 1×, 2× and 4× up-sampling, are com-
bined to both branches of the decoder and generate the con-
catenated feature maps of H2 ×

W
2 × (64+ 6× 128) in block

4 and H ×W × (64+ 64) in block 5. In block 6, the feature
maps ofH×W×64 are projected intoH×W×2 using a 1×1
transposed convolution with a stride of 1. Finally, we reduce
the feature channels to 1 and apply a sigmoid function to
generate a pair of probability masks for each pixel.

Different from existing SISO and MISO DBMs, our
decoder network is an MO structure which could further
improve the foreground segmentation performance. Further-
more, the advantages of the MO structure are more obvious
in scenes with poor light conditions such as nightVideos and
lowFramerate in ablation experiment of MO structure (Tab.
5), which is similar to one of the benefits enabled by binocular
summation.

B. SOFT FOCAL LOSS
Foreground segmentation suffers from class imbalance in two
scenarios. First, foreground objects are too far away from the
camera, making them too small in the frame. Second, videos
contain a large number of training frames without any fore-
ground object. To prevent vast numbers of easy background
examples from misguiding the classifier, multiple modifi-
cations are made for the cross entropy (CE) loss function.
One of the most remarkable works in this regard is the focus
loss [30]. We apply the focal loss proposed for object detec-
tion (object-level task) to foreground segmentation (pixel-
level task) and redefine it as:

pt =

{
qt y = 1
1− qt otherwise

(1)

M (pt) = (1− pt)γ (2)

FL =
1
n

n∑
t=1

[M (pt) · CEt ] (3)
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FIGURE 3. A comparison of the modulating factor and the absolute
modulating factor, when γ = 2.

In the above equation, y ∈ {0, 1} specifies the ground-truth
class. qt ∈ [0, 1] is the model’s estimated probability for
example t with label y = 1. CEt represents the cross entropy
loss of example t . n is the number of valid pixels in both input
frames, excluding pixels in non-region-of-interest (NON-
ROI) and unknown region. According to [30], γ ∈ [0, 5] and
the ideal value of γ is 2.M (pt) is a modulating factor which
down-weights the loss assigned to well-classified examples
to prevent numerous easy examples from overwhelming the
classifier. Furthermore, it is obvious that (1− pt) determines
whether example t is a well-classified (easy) example or
a badly-classified (hard) one. In other words, (1− pt) rep-
resents the complexity of example t . However, we believe
the complexity of an example in foreground segmentation,
a pixel-level classification task, should be described from two
aspects, i.e. complexity (absolute complexity) and relative
complexity to other examples in the same frame (relative
complexity). Hence, we extend the modulating factor M (pt)
to an absolute modulating factor Ma (pt) and a relative mod-
ulating factor Mr (pt).

Ma (pt) = (1− pt)γ pt (4)

Ma (pt) can greatly down-weight the loss of easy examples,
playing the role of ‘‘rough modulation’’. We note two proper-
ties of it. First, when example t is well-classified and pt → 1,
Ma (pt) goes to 0 and the loss for this example is extremely
down-weighted. In this case,Ma (pt) is close toM (pt), espe-
cially when pt is bigger than 0.9 (Fig. 3). Second, as pt → 0,
Ma (pt) is near 1 and the loss is unaffected. Moreover,Ma (pt)
can better avoid down-weighting the loss of mis-classified
examples (pt less than 0.5 in Fig. 3) compared withM (pt).

Mr (pt) =
e1−pt
n∑
t=1

e1−pt
(5)

Mr (pt) works as an important complement to Ma (pt),
performing ‘‘slight modulating’’ according to relative com-
plexity. To avoid ‘‘over-modulating’’, Mr (pt) of different
examples should be limited in a small range. Hence,Mr (pt) is
defined as normalized exponential complexity (1− pt). Since
e1−pt is in the interval (1, e), the difference in the relative

complexity among examples is less than e times. Similar to the
Softmax function commonly used in neural networks [44],
Mr (pt) shares characteristics such as normalization, inter-
pretability and easy derivation.

To sum up, we term our novel loss function as the soft focal
loss (SFL) and define it as:

SFL =
n∑
t=1

[Ma (pt) ·Mr (pt) · CEt ] (6)

IV. EXPERIMENTS
A. DATASET AND PROTOCOL
We evaluated our method on the CDnet2014 dataset [34],
the largest video dataset with pixel accurate groundtruth
[9], [15]. The dataset consists of 53 scenes in 11 cate-
gories including badWeather (BW), baseline (BL), camer-
aJitter (CJ), dynamicBackground (DB), interactive Object
Motion (IOM), lowFramerate (LF), nightVideos (NV), PTZ,
shadow (SH), thermal (TH) and turbulence (TU). It contains
150,000 frames of annotation data, covering a wide range
of challenging scenarios. This makes it a rigorous and inte-
grated academic benchmark that allows a more comprehen-
sive assessment of our method.

As officially presented, there are seven evaluation
metrics [34], [35]: Recall (Re), Specificity (Sp), False Pos-
itive Rate (FPR), False Negative Rate (FNR), Percentage of
Wrong Classifications (PWC), Precision (Pr) and F-Measure
(FM). Among them, FM is widely accepted as a metric
that can comprehensively represent the overall performance
of a model, and it highly relates to the ranking in the
CDnet2014 website. Therefore, we primarily use FM to
compare the performance. Its value ranges from 0 to 1: the
larger the value goes, the better the effect is. It is expressed
as:

FM =
2× precision× recalll
precision+ recalll

(7)

where precision = TP
TP+FP , recall =

TP
TP+FN . TP and FP are

the true positive and false positive, FN and TN represent the
false negative and true negative.

B. IMPLEMENTATION DETAILS
We train our X-Net architecture end-to-end using the con-
figurations illustrated in Fig. 2. To incorporate high-level
semantic knowledge and improve training efficiency, our
encoder network is initialized with the weights of pre-trained
VGG-16 model. The experiments are implemented on Keras
framework with Tensorflow backend. Data loss is computed
using the soft focal loss with γ = 1 for its best perfor-
mance. Note that the model does not perform gradient back
propagation on the loss caused by NON-ROI regions and the
unknown regions during training. RMSProp optimizer is used
for updating parameters with an initial learning rate of 1e-
4, a batch size of 1 and 60 epochs for each scene’s training.
To alleviate overfitting, we apply L2 regularization to the
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TABLE 2. The test results are obtained by using the same 200 frames and 50 frames from CDnet2014 dataset. Each row shows the average results in each
category. Note that only the test frames are included.

weights of the fusion network and decoder network and set
the strength to 2e-4 during training.

Unlike single-image DBM, the X-Net, as a pair-wise input
network, needs to select pairs of frames to build the training
set. Such networks normally construct a training set after
traversing all pairs of given frames. When given m frames,
the maximum size of the training set can reach m2. To take
advantage of temporal data without training time explosion,
we propose a different strategy and the steps are listed as:

1. Re-arrange the m frames according to their time
sequence in the video and re-number them as 1, 2, · · · ,m.
2. Calculate the serial number difference between paired

frames, select those paired frames whose absolute value of
difference is less than k_close and greater than 0 to form a
training set. For example, when m = 200 and k_close = 2,
we can select 398 pairs of frames.

3. Randomly split 80% of all selected paired frames for
training and 20% for validation.

In the training phase, we set k_close to 6 for 50-training-
example case (m = 50) and k_close to 2 for 200-training-
example case (m = 200). Based on this strategy, we choose
470 and 398 pairs of frames respectively, then further split
80% for training and 20% for validation. In 50-frame exper-
iments, each epoch takes about 56 seconds for 320 × 240
resolution on a single NVIDIA GTX 1080TI GPU during
training. In the test phase, our model is fed with consecutive
frames pair by pair at the stride of two and can segment
around 22 fps for 320× 240 resolution on the same GPU.

C. RESULTS
Since the output of our network is two probability masks
that value between 0 and 1 for each pixel, we set threshold
as 0.5 to convert these probabilities to binary masks for a
better explanation.With 200 frames and 50 frames as training
examples, we perform experiments on two settings. To make
a fair comparison, we use the training examples provided by
FgSegNet_S [12], in which examples are selected by random
manual selection. Furthermore, we report test results by only
considering the frames containing the ground truth labels
in Tab. 2. Note that these values are computed using only

the test frames, i.e. the training frames are excluded in the
performance evaluation.

With the settings mentioned above, the X-Net generates
an overall FM of 0.9748 with 50-frame experiments and
0.9839 with 200-frame experiments (Tab. 2). As shown in
Tab. 2, our method provides high accuracy in foreground
segmentation using 200-frames in training. The BL category
generates the highest average FM compared to the other
categories. Though the LF category has the lowest average
FM , the value also reaches 0.9304. When the number of
training examples is downsized to 50 frames, FM inevitably
decreases by some margins. Especially, in the LF cate-
gory, FM decreases by 0.0464 compared to the model with
200 training examples. However, it still generates acceptable
results with an average overall FM of 0.9748 across 11 cate-
gories, which shows that our method works robustly in many
challenging scenarios.

D. COMPARING WITH STATE-OF-THE-ART
We compare our results with six methods mentioned in
Related Works and the best methods reported on the official
website (Tab. 3). FgSegNet_v2, FgSegNet_S and FgSeg-
Net_M (all single-image DBM) are by far the top three
DBMs in CDnet2014; in particular, the FgSegNet_M is our
baselinemethod, because theX-Net uses the samemulti-scale
feature extracting strategy (multi-scale input), backbone net-
work (the first block of VGG-16), and decoder component
(transposed convolution); 3D SegNet is a multi-stream fusion
DBM with encoder-decoder structure; Cascade CNN is an
advanced patch-wise DBM; IUTIS-5 is the best non-deep-
learning method. To compare our results with these methods,
we need to consider all the frames, i.e. training and test
frames, since these methods also include all frames. The FM
performances of different methods are provided in Tab. 3.
In general, DBMs can outperform conventional BMs by large
margins, especially in very challenging categories such as
nightVideos and PTZ. Furthermore, our model can achieve
the highest average accuracy of all. FgSegNet_v2 (currently
ranking 1st ) has raised the FM of FgSegNet_S (ranking
2nd ) by 0.0014 with 200-frame experiments (Tab. 4), but
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TABLE 3. A comparison of 7 methods considering all the frames in the ground-truths of CDnet2014 dataset. Each row shows the average FM of each
method. Each column shows the average FM of each category. The last row is NON-DBM, others are DBMs. Note that all the other DBMs only take
200 frames in their training sets, while 3D SegNet takes 70% frames for training.

FIGURE 4. Test results on CDnet2014 dataset. (a) input frames, (b) ground-truths, (c) X-Net, (d) FgSegNet_v2, (e) FgSegNet_S, (f) Cascade CNN,
(g) IUTIS-5. # (frame number).

TABLE 4. Comparisons between our method and the current top three
DBMs in CDnet 2014 benchmark. FM is obtained by the same training
frames, considering only test frames. The segmentation speed of all
methods is based on Keras framework and NVIDIA GTX 1080TI GPU.

our model can further raise this metric by 0.005, which is
3.5 times higher than the improvement achieved by FgSeg-
Net_v2. In the case of fewer training examples, the advan-
tages of our method are more obvious. As Tab. 4 shows,
our method improves overall FM by 0.0203 and 0.0115 with
50-frame experiments (Tab. 4) compared with FgSegNet_M
and FgSegNet_S respectively. In categories with poor light
conditions, such as nightVideos, the FM is even raised from
0.9216 [12] to 0.9587 compared with our baseline method
FgSegNet_M due to the usage of temporal data.

Due to space limitations, we provide some exemplary
results in Fig. 4 that demonstrates the segmentation results
of several methods in typical complex scenarios. As can be
seen from these figures, our method can accurately estimate
the boundaries of objects, both large-scale (Fig. 4 CJ) and
small objects (Fig. 4 TU). Meanwhile, our method produces
less false positive even when facing tiny foreground objects
(Fig. 4 LF) and poor illumination (Fig. 4 NV). In addition, for
some scenes with great similarities between the foreground
and background (Fig. 4 IOM), which causes ambiguity for
segmentation, our model can still make an accurate judgment.

However, taking down-scaled frames as input might aggra-
vate the misguiding to the model, which is caused by the
NON-ROI regions around the ROI regions, especially in
scenes with small ROI regions. On the contrary, the FgSeg-
Net_S and FgSegNet_v2, which are fed with full resolution
frames and apply multi-rate dilate convolution to aggregate
context. This shows advantages in several categories, such
as IOM in which most of its scenes are small ROI region.
In addition, multi-scale input strategy is computationally
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FIGURE 5. A comparison on CDnet2014 dataset. (a) input frames, (b) ground-truths, (c) X-Net with SFL, (d) X-Net with FL, (e) Y-Net with SFL.

TABLE 5. Comparisons between X-Net and its variant, i.e. Y-Net. Both of them are trained with the SFL with 200 frames. Each column shows the average
FM in each category. Compared with our X-Net, Y-Net only has one branch, but they share the same structures for other parts.

more expensive and tends to cause larger network parameters
and slower segmentation speed (Tab. 4). Relevant improve-
ment approaches will be studied in our future work.

V. DISCUSSION
To further evaluate the effectiveness of the MO structure and
the soft focal loss in our method, we perform two additional
experiments with 200 frames.

A. MO STRUCTURE EXPERIMENTS
Since existing DBMs are either SISO or MISO structures,
the ablation experiment of MO structure can only be con-
ducted on the X-Net. We remove one branch of the decoder
from the X-Net (Fig. 2) and refer to this multi-input single-
output (MISO) network as Y-Net. The comparative exper-
iment is performed by the Y-Net with the soft focal loss.
As a result, the X-Net with MIMO structure shows a higher
average FM than the Y-Net with MISO structure by 0.0025
(Tab. 5). The X-Net has a higher recall in scenes where
the environment is camouflaged (TH-(c) & (e) in Fig. 5) or
changes dynamically (LF-(c) & (e) in Fig. 5). Especially,
the X-Net improves the FM over Y-Net by 0.0127 in the LF
category. The results reveal that a multi-task learning mecha-
nism brought by theMO structure can straightforwardly facil-
itate the model to learn the spatio-temporal representation of
the background.

B. SOFT FOCAL LOSS EXPERIMENTS
In this study, we perform comparative experiments between
the FL and the SFL. Since the ideal value of γ is 2 according
to [30], we train the X-Net using SFL and FL with γ =
1, 2, 4 respectively. As can be seen in Tab. 6, our SFL can
further improve the average FM by 0.0011. By taking both

TABLE 6. A comparison of FM between the SFL and the FL when
γ = 1,2,4. The test results are obtained by the X-Net and 200 frames on
CDnet 2014 dataset.

the absolute complexity and relative complexity into con-
sideration, the SFL can better focus on hard regions/pixels,
such as tiny foreground objects (LF-(c) & (d) in Fig. 5).
In contrast, the effectiveness is less obvious in those scenes
with moderate-scale foreground objects, such as BL, TH
(TH-(c) & (d) in Fig. 5).

VI. CONCLUSION
In this work, we propose a novel DBM with MIMO structure
for foreground segmentation. To incorporate temporal data,
our DBM is designed to be an X-shaped network partially
inspired by the human binocular summationmechanism. This
model can learn the spatio-temporal representation of the
background even using a few training examples. Without
any post-processing, our method can achieve state-of-the-art
performance on CDnet 2014 dataset. Meanwhile, to over-
come class imbalance, we propose a novel soft focal loss
by adding the relative modulating factor and the absolute
modulating factor to the cross entropy loss. This strategy can
further improve the performance in complex scenes. How-
ever, since multi-scale input is computationally more expen-
sive, our future work is to explore an adaptive multi-scale
feature extraction network with attention mechanism to boost
segmentation speed.



J. Zhang et al.: X-Net: Binocular Summation Network for Foreground Segmentation

ACKNOWLEDGEMENT
The authors would like to thank Lim et al. for making their
FgSegNet code publicly available.

REFERENCES
[1] Z. Luo, P.-M. Jodoin, S.-Z. Li, and S.-Z. Su, ‘‘Traffic analysis without

motion features,’’ in Proc. IEEE Int. Conf. Image Process., Sep. 2015,
pp. 3290–3294.

[2] W. Li, V. Mahadevan, and N. Vasconcelos, ‘‘Anomaly detection and
localization in crowded scenes,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 1, pp. 18–32, Jan. 2014.

[3] S. Zhu and L. Xia, ‘‘Human action recognition based on fusion features
extraction of adaptive background subtraction and optical flow model,’’
Math. Probl. Eng., vol. 2015, Apr. 2015, Art. no. 387464.

[4] Q. Ling, J. Yan, F. Li, and Y. Zhang, ‘‘A background modeling and fore-
ground segmentation approach based on the feedback of moving objects in
traffic surveillance systems,’’Neurocomputing, vol. 133, no. 10, pp. 32–45,
Jun. 2014.

[5] S. Bianco, G. Ciocca, and R. Schettini, ‘‘Combination of video change
detection algorithms by genetic programming,’’ IEEE Trans. Evol. Com-
put., vol. 21, no. 6, pp. 914–928, Dec. 2017.

[6] X. Cao, F. Wang, B. Zhang, H. Fu, and C. Li, ‘‘Unsupervised pixel-
level video foreground object segmentation via shortest path algorithm,’’
Neurocomputing, vol. 172, no. 8, pp. 235–243, Jan. 2015.

[7] M. Braham and M. Van Droogenbroeck, ‘‘Deep background subtraction
with scene-specific convolutional neural networks,’’ in Proc. IEEE Int.
Conf. Syst. Signals Image Process., Jul. 2016, pp. 1–4.

[8] M. Babaee, D. T. Dinh, and G. Rigoll, ‘‘A deep convolutional neural
network for video sequence background subtraction,’’ Pattern Recognit.,
vol. 76, pp. 635–649, Apr. 2018.

[9] Y. Wang, Z. Luo, and P.-M. Jodoin, ‘‘Interactive deep learning method
for segmenting moving objects,’’ Pattern Recog. Lett., vol. 96, no. 1,
pp. 66–75, Sep. 2017.

[10] W. B. Zheng, K. F. Wang, and F. Y. Wang, ‘‘Background subtraction algo-
rithm based on Bayesian generative adversarial networks,’’ Acta Autom.
Sinica, vol. 44, no. 5, pp. 878–890, Apr. 2018.

[11] L. A. Lim and H. Y. Keles, ‘‘Learning multi-scale features for fore-
ground segmentation,’’ 2018, arXiv:1808.01477. [Online]. Available:
https://arxiv.org/abs/1808.01477

[12] L. A. Lim and H. Y. Keles, ‘‘Foreground segmentation using convolutional
neural networks for multiscale feature encoding,’’ Pattern Recognit. Lett.,
vol. 112, no. 1, pp. 256–262, Sep. 2018.

[13] X. Zhao, Y. Chen, M. Tang, and J. Wang, ‘‘Joint background recon-
struction and foreground segmentation via a two-stage convolutional neu-
ral network,’’ in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2017,
pp. 343–348.

[14] K. Lim, W.-D. Jang, and C.-S. Kim, ‘‘Background subtraction using
encoder-decoder structured convolutional neural network,’’ in Proc. IEEE
Int. Conf. Adv. Video Signal Based Surveill., Aug. 2017, pp. 1–6.

[15] D. Sakkos, H. Liu, J. G. Han, and L. Shao, ‘‘End-to-end video background
subtraction with 3d convolutional neural networks,’’ Multimedia Tools
Appl., vol. 77, no. 17, pp. 23023–23041, Sep. 2017.

[16] S. Lian, Z. Luo, Z. Zhong, X. Lin, S. Su, and S. Li, ‘‘Attention guided
U-Net for accurate iris segmentation,’’ J. Vis. Commun. Image Represent.,
vol. 56, pp. 296–304, Oct. 2018.

[17] A. C. Sparavigna, ‘‘Image segmentation applied to satellite imagery for
monitoring water in lakes and reservoirs,’’ PHILICA, vol. 1214, pp. 1–5,
Jan. 2018.

[18] Y. Hu, A. Soltoggio, R. Lock, and S. Carter, ‘‘A fully convolutional two-
stream fusion network for interactive image segmentation,’’ Neural Netw.,
vol. 109, pp. 31–42, Jan. 2019.

[19] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431–3440.

[20] D. Kidd, ‘‘The optic chiasm,’’ Clinican Anatomy, vol. 27, no. 8,
pp. 1149–1158, Nov. 2014.

[21] C. Blakemore, ‘‘Binocular depth perception and the optic chiasm,’’ Vis.
Res., vol. 10, no. 1, pp. 43–47, Jan. 1970.

[22] R. Blake and R. Fox, ‘‘The psychophysical inquiry into binocular summa-
tion,’’ Percept. Psychophys., vol. 14, no. 1, pp. 161–185, Feb. 1973.

[23] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘‘Learning
spatiotemporal features with 3D convolutional networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis., Dec. 2015, pp. 4489–4497.

[24] E. Shelhamer, K. Rakelly, J. Hoffman, and T. Darrell, ‘‘Clockwork con-
vnets for video semantic segmentation,’’ in Proc. IEEE Eur. Conf. Comput.
Vis., Nov. 2016, pp. 852–868.

[25] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, ‘‘DenseASPP for semantic
segmentation in street scenes,’’ in Proc. IEEE Int. Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 3684–3692.

[26] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, ‘‘Change
detection based on deep siamese convolutional network for optical aerial
images,’’ IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1845–1849,
Oct. 2017.

[27] H. Spitzer, K. Kiwitz, K. Amunts, S. Harmeling, and T. Dickscheid,
‘‘Improving cytoarchitectonic segmentation of human brain areas with
self-supervised siamese networks,’’ in Proc. Int. Conf. Med. Image Com-
put. Comput. Assist. Interv., Sep. 2018, pp. 663–671.

[28] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated con-
volutions,’’ 2015, arXiv:1511.07122. [Online]. Available: https://arxiv.
org/abs/1511.07122

[29] X.Wang, Y. Peng, L. Lu, Z. Lu,M. Bagheri, and R.M. Summers, ‘‘ChestX-
ray8: Hospital-scale chest X-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases,’’
in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2017,
pp. 2097–2106.

[30] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, ‘‘Focal loss for
dense object detection,’’ in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017,
pp. 2999–3007.

[31] R. Qin, K. Qiao, L. Y.Wang, L. Zeng, J. Chen, and B. Yan, ‘‘Weighted focal
loss: An effective loss function to overcome unbalance problem of chest X-
Ray14,’’ in Proc. IOP Conf. Ser., Mater. Sci. Eng., Aug. 2018, pp. 012–022.

[32] A. Kumar, V. Sindhwani, and P. Kambadur, ‘‘Fast conical hull algorithms
for near-separable non-negative matrix factorization,’’ in Proc. IEEE Int.
Conf. Machine Learn., Jun. 2013, pp. 231–239.

[33] E. J. Candès, X. D. Li, and Y.Ma, ‘‘Robust principal component analysis?’’
J. ACM, vol. 58, no. 3, May 2011, Art. no. 11.

[34] Y. Wang, P. M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. C. Ishwar,
‘‘An expanded change detection benchmark dataset,’’ in Proc. IEEE Int.
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 393–400.

[35] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, ‘‘Changede-
tection.net: A new change detection benchmark dataset,’’ in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 1–8.

[36] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. IEEE Int. Conf. Learn. Represent.,
May 2015, pp. 1–14.

[37] C. Stauffer and W. E. L. Grimson, ‘‘Adaptive background mixture models
for real-time tracking,’’ in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit., Jun. 1999, pp. 246–252.

[38] Y. Nonaka, A. Shimada, H. Nagahara, and R.-I. Taniguchi, ‘‘Evaluation
report of integrated background modeling based on spatio-temporal fea-
tures,’’ in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 9–14.

[39] M. Hofmann, P. Tiefenbacher, and G. Rigoll, ‘‘Background segmentation
with feedback: The pixel-based adaptive segmenter,’’ in Proc. IEEE Int.
Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 38–43.

[40] T. Bouwmans, ‘‘Traditional and recent approaches in background model-
ing for foreground detection: An overview,’’ Comput. sci. Rev., vol. 11,
pp. 31–66, May 2014.

[41] H. Li, Y. F. Zhang, J. B. Wang, Y. L. Xu, Y. Li, and Z. S. Pan, ‘‘Inequality-
constrained RPCA for shadow removal and foreground detection,’’ IEICE
TRANSACT. Inf. Syst., vol. E98-D, no. 6, pp. 1256–1259, Jun. 2015.

[42] M. Braham, S. Pierard, and M. Van Droogenbroeck, ‘‘Semantic back-
ground subtraction,’’ in Proc. IEEE Int. Conf. Image Process., Sep. 2017,
pp. 4552–4556.

[43] T. Bouwmans, F. Porikli, B. Hoferlin, and A. Vacavant, ‘‘Overview and
benchmarking of motion detection methods,’’ Background Modeling and
Foreground Detection for Video Surveillance, 1st ed. Boca Raton, FL,
USA: CRC Press, 2014, ch. 1, sec. 2, p. 2.

[44] Y. I. Bengio, J. Goodfellow, and A. Courville, ‘‘Deep feedforward net-
works,’’ Deep Learning, 1st ed. Cambridge, MA. USA, MIT Press, 2016,
ch. 6, sec. 2, pp. 180–183.

[45] R. Home, ‘‘Binocular summation: A study of contrast sensitivity, visual
acuity and recognition,’’ Vis. Res., vol. 18, no. 5, pp. 579–585, Oct. 1978.

VOLUME 7, 2019 71421



J. Zhang et al.: X-Net: Binocular Summation Network for Foreground Segmentation

[46] C. Schwarz, S. Manzanera, and P. Artal, ‘‘Binocular visual performance
with aberration correction as a function of light level,’’ J. Vis., vol. 14,
no. 14, p. 6, Dec. 2014.

[47] R. Blakeab and H. Wilson, ‘‘Binocular vision,’’ Vis. Res., vol. 51, no. 7,
pp. 754–770, Apr. 2011.

[48] A. T. Smith, ‘‘Binocular vision: Joining up the eyes,’’Current Biol., vol. 25,
no. 15, pp. R661–R663, Aug. 2015.

JIN ZHANG received the M.S. degree in nuclear
science and technology from the Naval University
of Engineering, PLA, Wuhan, in 2009. He is cur-
rently pursuing the Ph.D. degree in computer sci-
ence and technology with the Army Engineering
University of PLA, Nanjing, China. He is currently
a Senior Lecturer with the Army Military Trans-
portation University of PLA, Zhenjiang Campus,
Zhenjiang, China. His research interests include
computer vision and machine learning.

YANG LI received the B.S. degree from Beihang
University, Beijing, China, in 2007, the M.S.
degree from the PLA University of Science and
Technology, Nanjing, China, in 2010, and the
Ph.D. degree from the Army Engineering Univer-
sity of PLA, Nanjing, in 2018, where he is cur-
rently an Assistant Professor. His current research
interests include computer vision, deep learning,
and image processing.

FEIQIONG CHEN received the M.S. degree in
computer software and theory from the PLA
University of Science and Technology, Nanjing,
China, in 2006. She is currently an Assistant Pro-
fessor with the Army Engineering University of
PLA, Nanjing. Her research interests include arti-
ficial intelligence and information retrieval.

ZHISONG PAN received the Ph.D. degree in com-
puter science and technology from the Nanjing
University of Aeronautics and Astronautics, Nan-
jing, China, in 2003. He is currently a Professor
with the Army Engineering University of PLA,
Nanjing. His current research interests include
pattern recognition, machine learning, and neural
networks.

XINGYU ZHOU received the M.S. degree in
information and communication engineering from
the PLA University of Science and Technology,
Nanjing, China, in 2011. He is currently pursu-
ing the Ph.D. degree with the Army Engineering
University of PLA. His research interests include
computer vision and pattern recognition.

YUDONG LI received the B.S. andM.S. degrees in
ship power engineering from the Naval University
of Engineering, PLA, Wuhan, in 2008 and 2010,
respectively. His research interests include marine
auxiliary machinery, and automation and simula-
tion technology.

SHANSHAN JIAO received the B.S. and M.S.
degrees in safety engineering from the Univer-
sity of Science and Technology Beijing, Beijing,
in 2011 and 2013, respectively. She is currently
pursuing the Ph.D. degree in computer science and
technology with the Army Engineering University
of PLA, Nanjing, China. Her research interests
include computer vision and machine learning.

71422 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	DBM ARCHITECTURES
	TEMPORAL DATA FOR DBMS
	LOSS FUNCTIONS FOR DBMS

	METHOD
	THE X-NET ARCHITECTURE
	THE ENCODER NETWORK
	THE FUSION NETWORK
	THE DECODER NETWORK

	SOFT FOCAL LOSS

	EXPERIMENTS
	DATASET AND PROTOCOL
	IMPLEMENTATION DETAILS
	RESULTS
	COMPARING WITH STATE-OF-THE-ART

	DISCUSSION
	MO STRUCTURE EXPERIMENTS
	SOFT FOCAL LOSS EXPERIMENTS

	CONCLUSION
	REFERENCES
	Biographies
	JIN ZHANG
	YANG LI
	FEIQIONG CHEN
	ZHISONG PAN
	XINGYU ZHOU
	YUDONG LI
	SHANSHAN JIAO


