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ABSTRACT Anovel optimal energymanagement strategy (EMS) for plug-in hybrid electric vehicle (PHEV)
is proposed in this paper, which takes the battery health into consideration for prolonging its service life.
The integrated control framework combines batch-wise iterative learning control (ILC) and time-wise model
predictive control (MPC), referred to as 2D-MPILC. Themajor advantages of the proposedmethod are shown
with better performance as well as faster convergence speed by taking into account the time-wise feedback
control within the current batch. Then, the MPILC method is applied for the PHEV with the ability to make
continuous period-to-period improvements. Its performances will approach dynamic programming (DP)-
based method after a learning process with satisfying real-time processing capacity. The results in real-world
city bus routines verify the effectiveness of the proposed EMS for greatly improving the performance of the
PHEV.

INDEX TERMS Plug-in hybrid electric vehicle, model predictive iterative learning control, battery aging,
nonlinear optimization, 2-D Lyapunov stability theory.

I. INTRODUCTION
Recently, electric vehicles (EVs), hybrid electric vehi-
cles (HEVs) and plug-in hybrid electric vehicles (PHEVs)
have been widely studied and used due to their potential to
reduce fuel consumption (FC) and emissions [1], [2]. How-
ever, it is still a difficult issue to distribute the demand power
between the fuel-based and electricity-based power sources.
Moreover, the engine cannot always operate with high effi-
cient. Accordingly, further research of energy management
strategy (EMS)which enables the HEVs to operate efficiently
during complex driving cycles is challenging [3], [4]. Further-
more, as the driving conditions of city running vehicles (such
as bus, delivery vehicle) are repetitive, the historical traffic
and driving cycles information can be utilized to enhance the
energy efficiency [5]. Therefore, it is a meaningful research
work to seek an effective EMS for HEVs or PHEVs.

The associate editor coordinating the review of this manuscript and
approving it for publication was Md Asaduzzaman.

The methods related to EMS for HEVs and PHEVs can
be generally divided into ‘rule-based’ and ‘optimization-
based’ strategies. The rule-based EMS can be applied easily
in real vehicles [6], [7]. The optimization-based strate-
gies are performed for the optimal energy management
problem [8]–[10]. It is well known that the model predictive
control (MPC) method has been widely used due to it can
achieve an optimal performance for the power split [11]–[13].
For example, an MPC-based EMS was proposed for a PHEV
to improve the real-time implementation performance [14].
However, some factors are required to be fully considered to
improve the performance, for instance:
Driver Behavior: To optimize the performance of overall

system, the driver behavior must be considered [15], [16].
Because the PHEV usually runs in fixed route which has
repetitiveness of the city route and similar terrain of a cer-
tain region, the stochastic feature of driver behavior can be
obtained from the historical driving data [17]. Then, the driver
models were introduced to EMS [18], [19].
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Battery Aging: During driving operations, batteries
undergo several cycles of charging and discharging in a rel-
atively short time, which will contribute to accelerating the
battery aging process and decreasing the battery lifetime [20].
Accordingly, battery health is an important aspect and should
be paid enough attention to the EMS [21]–[23]. For example,
an optimal EMS including battery aging was proposed [24].
A new cost-optimal control framework was constructed to
minimize the daily operational expense of a PHEV [25].
Iterative Learning: When PHEV runs on a fixed route,

the same dynamic errors will show up over and over as the
same operations are repeated with the traditional MPC [26].
Learning from experience is important to improve perfor-
mance, so, monitoring the running states of PHEV in previous
days is useful to improve performances for the next time [27],
[28]. Inspired by this idea, the iterative learning technique can
be developed as an alternative approach, where the learning
is intuitively considered as a bridge between knowledge and
experience: that is to say the lack of knowledge is compen-
sated by experience.

It is well known that the iterative learning control (ILC)
theory is a powerful tool for dynamical systems with repeti-
tive operation due to its ability to adjust the control input from
batch to batch [29], [30]. Also, it has been applied in many
processes not strictly repetitive, such as the boiler-turbine sys-
tem [31] and the non-repetitive trajectory tracking of mobile
robots [32]. Additionally, the ILC technique can be combined
with a predictive control technique. For example, an MPC
utilizes the repetitive nature of batch operation and performs
batch-wise feedback together with real-time predictive con-
trol [33]. A combination of MPC and ILC was proposed
to not only speed up the response time but also effectively
reduce the speed ripples [34]. To reduce FC and alleviate
battery degradation simultaneously, an effective EMS should
be designed for PHEV by using more of the past control
information. It motivates us to make some attempts.

A novel model predictive iterative learning con-
trol (MPILC) is proposed to achieve an optimal performance
in the repetitive process with the key idea of ‘practice makes
perfect’ that is an extension of ILC and optimum control.
When the PHEV is operated repeatedly in the finite time
interval, the opportunity exists in the MPILC to improve
the control performance in the next iteration based on the
observation of the previous attempts. Therefore, the main
objective of this paper is to design an MPILC-based EMS
that takes the battery aging into consideration. Compared
to the existing literatures, the main contributions lie in the
followings:
Contribution 1: For the PHEV usually running on a fixed

route, the driver behavior is predictable based on a high-order
internal model (HOIM). Then, the optimal torque split prob-
lem is transformed into an MPILC design problem of a 2-D
Roesser model with non-zero boundary condition.
Contribution 2: The MPILC design criteria based on 2-D

Lyapunov stability theory is established to achieve perfect
tracking and guaranteed cost performances.

Contribution 3: A semi-empirical battery aging model is
established and introduced into the EMS. Then, the power
split strategy for the motor and engine of PHEV is abstracted
as a nonlinear dynamic optimization problemwith constraints
to balance the FC and battery aging.

The outline of this paper is as follows. Section II develops
the system models incorporating the PHEV model and bat-
tery aging model. Section III formulates the MPILC-based
EMS with considering battery aging. The main results of the
proposed EMS are discussed in section IV. Finally, the main
contributions and conclusions are summarized in section V.

Notations. Denote Rn the n-dimensional Euclidean space,
Rn×m the set of all n × m real matrices, ‖ · ‖ the usual
Euclidean norm, and ‖ · ‖2 the `2 norm along iterative axis,

i.e., ‖wwwk (t)‖2 =
√∑

∞

k=0 ‖wwwk (t)‖2, and In the n × n identity
matrix. For any symmetric matrix A, the inequalities A > 0 or
A < 0 denote that the matrix A is positive definite or negative
definite, respectively. In addition, the notation ∗ represents
the elements below the main diagonal of a symmetric matrix.

II. PHEV SYSTEM ARCHITECTURE AND MODELS
Single-shaft parallel hybrid powertrain with automated
mechanical transmission (AMT) is widely used in PHEV
due to its compact structure and high transmission efficiency
[35], [36]. The hybrid powertrain in this paper incorporates
an internal combustion engine (ICE), a lithium iron phos-
phate battery pack with battery management system (BMS),
an electric machine that can be used as both motor and gener-
ator, and anAMT,which is shown as Figure 1. The powertrain
system is controlled by controller area network (CAN). The
engine and motor can either drive the vehicle independently
or together. Thus the PHEV can be operated in five operating
modes which are EV mode, engine driving mode, hybrid
driving mode, regenerative braking mode and engine active
charging mode. The operating modes can be switched by
the engagement and disengagement of the automatic clutch
between the engine and motor, but the multi-power sources
are highly coupled in power-split process [37]. The efficiency
of the hybrid powertrain system can be improved by the
automatic gear shifting of the AMT. The main parameters are
listed in Table 1.

FIGURE 1. The structure of the PHEV powertrain system.
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TABLE 1. Main parameters of the bus.

A. BASIC DYNAMIC MODEL OF THE PHEV
The longitudinal vehicle dynamic characteristic can be
described as followings:

δm
dV
dt
=

Td
rw
−
1
2
cdρaAV 2

− mg(µr cosβ+sinβ) (1)

Td = ηT · ig · ifd (Te + Tm)+ Tb, (2)

wherem, δ, g, rw, µr , β, cd ,A, ρa,V and Td denote the vehi-
cle mass, conversion factor of the vehicle mass (δ > 1), grav-
ity acceleration, wheel radius, rolling resistance, road grade,
air drag coefficient, front area, air density, vehicle speed and
wheel torque, respectively. ηT , ig, ifd , Te, Tm and Tb denote
the transmission efficiency, gear ratio of the AMT, final drive
ratio, engine torque, motor torque and mechanic braking
torque on wheels, respectively. Note that mechanic braking
torque Tb is the torque from conventional friction brakes,
in case that regenerative braking is not sufficient to provide
the desired braking torque. If the engine and motor operate in
hybrid driving mode, the relationship between the rotational
angular velocity of the driving wheels and that of the two
power sources is:

ωwheel =
ωe

igifd
=
ωm

igifd
(3)

where ωwheel, ωe and ωm are rotational speed of driving
wheels, engine and electric motor, respectively.

B. INTERNAL COMBUSTION ENGINE MODEL
Since only FC of the engine is taken into consideration,
the complex dynamic characteristics are neglected. The
engine’s FC rate is written as:

ṁf =
Teωe · be(ωe,Te)

3600ρf
(4)

where ṁf and ρf are the FC rate and diesel density, respec-
tively. be(ωe,Te) is a MAP which denotes the brake specific
FC (BSFC) of engine.

C. ELECTRIC MOTOR MODEL
When the electric machine is acting as a motor, it will draw
energy from the battery and provide propulsion together with
the engine. Correspondingly, when it is acting as a generator,
it will charge the battery in engine active charging mode or
regenerative braking mode. The demand power of electric
motor can be given as:

Pm =
Tmωm

(ηm)sgn(Tm)
(5)

where sgn(∗) denotes the sign function. The efficiency of the
electric motor ηm(ωm,Tm) is a MAP which could be obtained
according to ωm and Tm.

D. EQUIVALENT CIRCUIT MODEL OF THE BATTERY
Battery modeling plays an important role and many
researches have been conducted, such as H∞ switched
observer for state of charge (SOC) estimation [38], state
of health (SOH) evaluation [39] and comparison study of
different battery models [40]. In fact, the critical state to the
power management is the slowly varying SOC of the battery
[41]. Therefore, a control-oriented batterymodel is simplified
as followings [17]{

SȮC = −Ibatt/Qbatt ,
Pbatt = UocIbatt − RI2batt ,

(6)

which can be rewritten as:

SȮC =
−Uoc +

√
U2
oc − 4PbattR

2QbattR
, (7)

whereQbatt ,Uoc, R and Pbatt denote the capacity, open circuit
voltage, internal resistance and output power of the battery,
respectively. Note thatUoc and R could be obtained according
to SOC and temperature.

E. BATTERY AGING MODEL
The real driving cycle could cause the battery operating in
serious conditions occasionally. So, it is important to take the
battery aging into consideration during the optimum control
process. A semi-empirical control-oriented aging model is
applied for the battery degradation [42], which is evaluated
by the normalized battery capacity loss Qloss as:

Qloss(Ic, θ,CAh) =
[
1−

σf (Ic, θ) · (CAh)z

Qbatt

]
· 100%, (8)

σf (Ic, θ) = α · exp
(
−Ea + ηIc

Rg(273.15+ θ)

)
, (9)

where θ,Qbatt and CAh denote the temperature, nominal
capacity, accumulated charge throughput, respectively. z is
power law exponent that represents Ah-throughput depen-
dence. σf (Ic, θ) is a nonlinear severity factor function.
Rg = 8.314[Jmol−1K−1] is universal gas constant. Ea =
31500[Jmol−1] is activation energy. The current rate Ic is
defined as Ic = |I | /Qbatt and its unit is 1/h (per hour).

The severity factor map σmap(Ic, θ) characterizes the rel-
ative aging of a battery under different operating conditions
as [24]:

σmap(Ic, θ) =
0(Ic,θ )
0c,nom

=

∫ EOL
0 |I (t)|dt∫ EOL

0 |Ic,nom(t)|dt
(10)

where EOL means the end-of-life. 0(Ic, θ) and 0c,nom denote
the total Ah-throughput of the battery in the given con-
dition and nominal operating condition with Ic,nom =

1[1/h], θnom = 25◦C, respectively, and it is assumed that the
battery has maximum cycle life under the nominal condition.
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FIGURE 2. The identified battery aging model.

Battery severity map is defined as the ratio of the total
accumulated Ah-throughput in nominal cycle to that of actual
operating conditions until the EOL. With the battery aging
model, the EOL is defined as 20% capacity loss under nomi-
nal operating condition,

σf (Ic,nom, θnom) · 0zc,nom = 0.8 ∗ Qbatt . (11)

Battery cycle test is conducted on a battery test bench under
the temperature θ = 25oC . Then, the parameters of battery
aging model can be identified, where the current rates of data
A and B are Ic,A = 1[1/h], Ic,B = 5[1/h], respectively. The
identified parameters are z = 0.4997, η = 32.648, α =
77982. The maximum battery life is 0c,nom = 30.3288kAh.
As shown in Figure 2, the identified results are match closely
with original test data. It is clear that the modeling error
will be increased along with the Ah-throughput increased,
however, the modeling accuracy is high enough for the bat-
tery application with a small Ah-throughput. According
to (10)-(11), the severity factor map as shown in Figure 3
can be established, which is calculated offline with temper-
ature and current rate as θ = [0, 10, 20, 30, 40]◦C, Ic =
[0, 5, 10, 15]1/h. Then, it can play a similar role of an engine
FC map when it is used in the optimization framework aimed
at minimizing FC and battery degradation.

III. OPTIMAL CONTROL PROBLEM FORMULATION
AND SOLUTION
Because the vehicles (including passenger cars and commer-
cial vehicles) usually run in fixed route which has iterative
repetitiveness of the route and similar terrain of a certain
region, the iteration-varying feature of driver behavior can
be obtained from the historical driving data. Inspired by the
method [43] and according to the iterative repetitiveness of
the city route, an important assumption should be given first
for the MPILC-based EMS.

FIGURE 3. Severity factor map.

FIGURE 4. Principle of the MPILC.

Assumption 1: There exists an intrinsical characteristics
of the iteration-varying features which can be defined by
HOIM and are not limited to the cases on the same city route
including: different vehicle, different driver, new vehicle or
new driver operated on the route first.

For the classicMPC, the control law is only updated during
time domain. On the contrary, for the proposed MPILC as
shown in Figure 4, it is an extension of classic MPC in itera-
tion domain, and it will be updated during time and iteration
domains. It is important to point out that the system input
is not only determined by batch-to-batch control but also the
adjustment based onMPC. Therefore, the FC is reduced grad-
ually along with iteration axis by iterative learning technique,
and it will approach to the extreme optimal FC.

During the different operational cycles, the control target is
accordant, that is to seek an optimal control law for minimiz-
ing the FC and battery fading, simultaneously. Different from
conventional HEVs, the PHEV has equipped larger battery
pack which can be charged from the power grid, therefore,
the electric power of battery can provide a larger part of the
demand energy to reduce the FC. In order to make full use
of the energy from charging stations, finding a reasonable
reference SOC curve is important. Clearly, one of the optimal
situations is that the battery energy is just used up at the end
of the driving cycle, then, the reference SOC values can be
obtained from the beginning to end [17].

A. HOIM-BASED DRIVER MODEL
The driver behavior can be described as the demand torque
Td . According to assumption 1, the iteration-varying feature
of driver behavior can be defined by the following definition
to use more information of the historical driving data [44].
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Definition 1: The driver behavior is modeled by the
demand torque as

Td,k (t) = T rd,k (t)+ T
s
d,k (t), (12)

and 
T rd,k+1(t) = G%(q−1)Td,k (t), k ≥ 0,
Td,k (t) = T 0

d,k (t), k ≤ 0,∑T
t=0 ‖T

s
d,k (t)‖2 <∞,

(13)

where t ∈ [0,Tf ] and k ≥ 0 represent discrete time and
iterative time along with time and iteration axes, respectively.
It means that Td,k (t) and T 0

d,k (t) are the real-time and initial
demand torques at the discrete time point t of k th repetitively
driving in the fixed route, respectively. T rd,k (t) and T sd,k (t)
are iterative repetitive and stochastic parts of driver behav-
ior, respectively. Moreover, T rd,k (t) represents the iterative
learning process according to the historical driving condition,
and T sd,k (t) represents the driver’s stochastic and uncertain
decision during the varying driving scene. q is a shift operator
in iteration domain with the property q−1Td,k (t) = Td,k−1(t).
And G%(q−1) is a stable HOIM with the order % as

G%(q−1) = β1 + β2q−1 + · · · + β%q−%+1. (14)

Then, the iterative repetitive part T rd,k (t) of driver behavior
can be rewritten as a linear regression form

T rd,k+1(t) = β1Td,k (t)+ β2Td,k−1(t)

+β3Td,k−2(t)+ · · · + β%Td,k−%+1(t),

which implies that it is a linear combination of the past %
iterations. Hence, the driver behavior can be described by the
historical driving cycles and a current stochastic varying part
and it is the key to make the learning law to adapt to the vary-
ing driving cycles. According to the iterative repetitiveness
and periodicity of city route within one week, i.e., 7 days,
the order of HOIM G%(q−1) can be selected as % = 7, and to
maintain the iterative consistency and predictability,G%(q−1)
satisfies

%∑
i=1

βi = 1. (15)

Remark 1: The definition 1 gives a description of the
driver behavior, which is modeled as a summation of the
working condition information in the past week and with
some norm-bounded disturbances. The incorporated con-
struction (12) is aimed to improve the varying dynamic
behaviors of drivers. Due to the consideration of the stochas-
tic driver behavior T sd,k (t), it is practical for the varying traffic
scenes.
As vehicles often run in a fixed-route, the HOIM that

reflects the driving behavior can be extracted from large
amount of historical driving data by minimizing the modeling
error as following

argmin
βi

J =
30∑
k=0

T∑
t=0

‖Td,k (t)− T rd,k (t)‖
2, (16)

which means that the parameters βi can be obtained by
the driving data of the past 30 iterations. In addition, via
updating historical driving cycle database with vehicle run-
ning, the HOIM of driver behavior would be identified more
route-specific and practical. It can not only be utilized in
predictive control of PHEV but also help to mitigate traffic
congestion and improve traffic flow efficiency.
Therefore, the HOIM of driver behavior plays a critical

role to achieve satisfactory control performance by using
the prosperities of PHEV according to the internal model
principle (IMP).

B. 2-D ROESSER MODEL FOR PHEV
It is assumed that the PHEV is operated repetitively over a
finite time duration [0,Tf ]. Select the state, control input and
output as: 

xxxk (t) = [SOCk (t),Vk (t)]T ,

uuuk (t) =
[
Te,k (t),Tm,k (t)

]T
,

yk (t) = SOCk (t).

(17)

The discretization is applied based on first-order Taylor
approximation. According to the PHEV system architecture,
a nonlinear model is expressed as:{

xxxk (t + 1) = xxxk (t)+ B̄1uuuk (t)+ fff (xxxk (t),uuuk (t)),
yk (t) = C0xxxk (t),

(18)

where the matrices and nonlinear function are

B̄1 =
ηT igifd
mrw

[
0 0
1 1

]
,C0 =

[
1 0

]
,

fff (xxxk (t),uuuk (t))

= Ts

 √
U2
oc,k (t)−4Rk (t)Pm,k (t)−Uoc,k (t)

2QbattRk (t)
Tb(t)
mrw
−

1
2mcdρaAV

2
k (t)− g(µr cosβ + sinβ)

 ,
where Ts = 0.1s is sample time. The nonlinear function
fff (xxxk (t),uuuk (t)) satisfies Lipschitz continuity condition. The
control task is to find an appropriate input uuuk (t) based on
available information with the constraints:

SOCmin ≤ SOCk (t) ≤ SOCmax,

Te,min(ωe) ≤ Te,k (t) ≤ Te_max(ωe),
Tm,min(ωm) ≤ Tm,k (t) ≤ Tm_max(ωm),
ωe,min ≤ ωe ≤ ωe,max,

ωm,min ≤ ωm ≤ ωm,max.

(19)

Assume that SOCr (t) is the iteration-invariant reference
SOC and define the tracking error of SOCk (t) as{

ek (t) = SOCk (t)− SOCr (t), k ≥ 0,
ek (t) = e0(t), k ≤ 0.

(20)

According to the iteration-varying feature of driver behav-
ior, an HOIM-based ILC is proposed:{

uuuk+1(t) = G%(q−1)uuuk (t)+ δuuuk (t + 1), k ≥ 0,
uuuk (t) = uuu0(t),xxxk (t) = xxx0(t), k ≤ 0,

(21)
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where uuu0(t) denotes the initial input, δuuuk (t) is the modifica-
tion of the input that will be designed later.

In order to transform the nonlinear PHEV system (18) and
the HOIM-based ILC (21) into a 2-D system, let

δχχχk (t) = χχχk+1(t − 1)− G%(q−1)χχχk (t − 1),
δfff k (t) = fff (xxxk+1(t − 1),uuuk+1(t − 1))
−G%(q−1)fff (xxxk (t − 1),uuuk (t − 1)),

(22)

where χχχ = xxx, y or uuu. Then, from (18) to (22), we can easily
obtain a 2-D Roesser model [45] as

[
δxxxk (t + 1)
êeek+1(t)

]
= A

[
δxxxk (t)
êeek (t)

]
+ B1δuuuk (t)+ B2δfff k (t),

zzzk (t) = êeek (t) = C

[
δxxxk (t)
êeek (t)

]
,

t ∈ [1,Tf ], k ≥ 0,

(23)

where zzzk (t) is the controlled output, and

êeek (t) =
[
ek (t), ek−1(t), · · · , ek−%+1(t)

]T
,

A =


I2 0 . . . 0 0
C0 β1 . . . β%−1 β%
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


1
=

[
I2 0
A21 A22

]
,

B1 =


B̄1
ine0
...

0

 1
=

[
B̄1
0

]
,B2 =


I2

ineC0
...

0


1
=

[
I2
A21

]
,

C =
[
0, I%

]
.

Assumption 2: The 2-D Roesser model (23) satisfies the
following boundary conditions

‖δxxxk (1)‖2 <∞, ‖êee0(t)‖2 <∞. (24)

Proposition 1: According to the condition (15) and (22),
the following Lipschitz continuity condition holds:

‖δfff k (t)‖ = ‖fff (xxxk+1(t − 1),uuuk+1(t − 1))

−G%(q−1)fff (xxxk (t − 1),uuuk (t − 1))‖

≤ l1‖xxxk+1(t − 1)− G%(q−1)xxxk (t − 1)‖

+l2‖uuuk+1(t − 1)− G%(q−1)uuuk (t − 1)‖

= l1‖δxxxk (t)‖ + l2‖δuuuk (t)‖, (25)

where l1 > 0, l2 > 0.
Therefore, the control task has been changed to find a

modification input δuuuk (t) for the 2-D Roesser model (23) in
order to guarantee that the 2-D closed-loop system is stable
and the FC converges to its extreme optimal value.

C. MPILC LAW
Normally for the tracking problem given above, a satisfying
MPILC rule can be obtained by:

δuuuk (t) = δūuuk (t − 1)+ L[ δxxxTk (t) êee
T
k (t) ]

T , (26)

where L is learning gainmatrix. δūuuk (t) is within-batch control
part which will be determined by MPC. When δūuuk (t) = 0
which implies that the MPILC (26) is reduced to an ILC law
from batch to batch, and it is reduced to an MPC law within
the batch when L = 0.

From (23) and (26), the PHEV system based on 2-D
Roesser model can be rewritten as

[
δxxxk (t + 1)
êeek+1(t)

]
= Ã

[
δxxxk (t)
êeek (t)

]
+ B1δūuuk (t − 1)

+B2δfff k (t),

zzzk (t) = C

[
δxxxk (t)
êeek (t)

]
, t ∈ [1,Tf ], k ≥ 0,

(27)

where the system matrix is Ã = A+ B1L. Next, we will give
the design criteria for learning gain matrix L.
Definition 2: The 2-D Roesser model (27) with boundary

conditions (24) is said to have a 2-D guaranteed cost perfor-
mance if it satisfies the following conditions:

lim
k→∞

[
δxxxk (t)
êeek (t)

]
= 0 (28)

for ∀t ∈ [1,Tf ] when δūuuk (t) = 0, and

‖zzzk (t)‖22 ≤ γ1‖δxxxk (1)‖
2
2 + γ2‖êee0(t)‖

2
2 + γ3‖δūuuk (t)‖

2
2 (29)

for any norm bounded δūuuk (t), where γ1, γ2, γ3 > 0.
Theorem 1: Given a positive scalar γ , the 2-D system (27)

with restrictions (24) has a guaranteed cost performance
γ if and only if there exist a symmetric positive definite
matrix X , Xh

⊕
Xv,Xh ∈ R2×2,Xv ∈ R%×% and a

matrix Y ∈ R2×(%+2) satisfying the following linear matrix
inequality (LMI):

−X
∏

0 B1 + l2B2 0
∗ −X 0 XCT

∗ ∗ −γ 2I2 0
∗ ∗ ∗ −I%

 < 0, (30)

where
∏

0 = AX + B1Y + B2L1X ,L1 = [l1I2, 0] and the
learning gain matrix is L = YX−1.
Proof. See Appendix A.
Remark 2: The HOIM-based MPILC law (21) and (26)

has fully utilized the historical driving information, tracking
error and the future state information during the prediction
horizon. Therefore, the MPILC law for PHEV can provide a
better performance than MPC or ILC.

Then, the control task is changed to find an optimal com-
pensation δūuuk (t) in the MPILC (26) such that the FC and
battery aging are balanced.
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D. NONLINEAR OPTIMIZATION
The nonlinear optimization for the torque split problem can
be defined as a weighted sum of FC, battery aging and
deviation of SOC within k iteration:

argmin
δūuuk (t)

Jk = (1− λ)
p+t0∑
t=t0

ṁf (uuuk (t),Td,k (t))

+λ

p+t0∑
t=t0

ca
0
{
∣∣Ic(uuuk (t),Td,k (t))∣∣ ·

σmap[Ic(uuuk (t),Td,k (t)), θk (t)]}

+λ0

p+t0∑
t=t0

|SOCk (t)− SOCr (t)|, (31)

where Jk is the cost function. λ ∈ [0, 1] is a parameter to bal-
ance the two objectives: minimization of FC and battery fad-
ing. ca is a transformation coefficient that makes the amount
of battery aging dimensionally compatible with FC, and it can
be defined as a ratio of battery replacement cost to that of 1kg
of fuel [24]. λ0 is equivalent coefficient of deviation of SOC.
p = 10 is predictive horizon. t0 is the current time, i.e., the
starting point of prediction horizon. It is worth mentioning
that the objective (31) with constraints (19) is very complex
and its analytical expressions is even unacquirable. To reduce
computational burden, it is solved by an improved dynamic
programming (IDP) method [8], [17], [46]. The core idea
includes twomain aspects. First, we take full advantage of the
relationship between SOC and power of electric machine (6)
and the dimension reduction technique is adopted. Then,
SOC is the unique free variable in IDP. Second, the feasible
region of SOC is small, and its boundary of each step can be
calculated with the maximum andminimum power of electric
machine. Therefore, the region of the state variable of IDP is
decreased which means a reduced computational burden.
Remark 3: It can be seen that there are three terms in the

cost function (31), of which the first is FC, the second is
equivalent battery cost and the third is a limit to the SOC
operating region. Therefore, the EMS based on nonlinear
optimization can improve the fuel economy and battery life
span simultaneously.

E. PROPERTY ANALYSIS
According to the theorem 1, the 2-D system (27) has a guaran-
teed cost performance γ for any norm bounded δūuuk (t). Design
a reasonable objective as

J(ζ ) =
∞∑
k=0

Tf∑
t=0

Jk (t)

where ζ ∈ {MPILC, ILC,MPC} represents the controller
type.

Firstly, due to δūuuk (t) is the optimal solution of the mini-
mization problem (31), and the MPILC (26) is reduced to an
ILC when δūuuk (t) = 0, then, we have

J(MPILC) ≤ J(ILC), (32)

which implies that the smaller FC, more moderate bat-
tery aging and more perfect asymptotically tracking can be
achieved easier by utilizing MPILC law than that by utilizing
ILC. Without the iterative learning, the same tracking errors
and defects will emerge repeatedly and not converge along
with the iterative axis as the sameworking condition of PHEV
are repeated, hence,

J(MPILC) ≤ J(MPC), (33)

which implies that the performance of PHEV by utilizing
MPILC is better than that by utilizing MPC.
Remark 4: According to (32) and (33), combined the

advantages ofMPC and ILC, theMPILC law (26) is very use-
ful to improve tracking performance, accelerate convergence
speed, overcome model error and measurement noise.

F. MPILC FOR PHEV
For the PHEV running in city route, driver behaviors in the
near future are stochastic but iterative repetitiveness and peri-
odicity. To fully use the historical information during the past
week, an MPILC is proposed, which could get the optimal
control sequence over a finite time region during every oper-
ational cycle of PHEV, and make a batch-to-batch improve-
ments during different cycles [47]. And the HOIM-based
MPILC is given as

uuuk+1(t) = G%(q−1)uuuk (t)+ δūuuk+1(t)
+L[δxxxTk (t + 1)êeeTk (t + 1)]T , k ≥ 0,
uuuk (t) = uuu0(t), k ≤ 0.

(34)

Remark 5: The historical working condition information
has been fully used to improve the performance of PHEV, not
only the HOIM-based driver model (12), but also the iterative
learning compensation of the historical tracking error. There-
fore, the proposedMPILC (34) can provide amore reasonable
control input to achieve a perfect performance for PHEV.

IV. SIMULATION AND RESULTS ANALYSIS
In this section, the MPILC, which considers the historical
driver information and battery aging, is adopted for the opti-
mal energy management of PHEV. The framework is shown
in Figure 5. It can be found that the framework can be divided
into three main parts. The first part is the demand torque
and reference SOC obtained from historical data. The second
part is the nonlinear optimization to balance FC and battery
aging. The last part is the proposed MPILC law for PHEV.
According to the PHEV parameters, we have l1 = 2.84 ×
10−4, l2 = 1.26×10−5. Selecting γ = 0.5, the learning gain
matrix calculated by (30) is

L = −
[
49.1688 0.5235 0.2480 0.2122
49.1751 0.5235 0.2481 0.2122

0.1766 0.1411 0.1057 0.0705 0.0353
0.1766 0.1411 0.1058 0.0705 0.0353

]
.

To verify the performance of the proposed MPILC, a real
driving cycle collected from a city bus line in Xiamen city
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FIGURE 5. Framework of the MPILC.

FIGURE 6. Pedal positions of a real driving cycle.

is adopted, where the original pedal positions are measured
from a real bus with travel length 23.324km and travel
time 5010s as shown in Figure 6. We add some driver
and transportation disturbances into the driving cycle and
the disturbances are different every day, we also repeat it
30 times, which imitates the real repeating transportation
scenarios during one month. In particular, there are more
than one traffic jam, twice emergent obstacles and triple red
lights disturbances during every day, respectively. For the
driving cycle of the 30th iteration as an example, the repre-
sentational transportation disturbances are traffic jam during
2400s-3000s, emergent obstacles during 1620s-1680s and
4080s-4140s, and red lights during 980s-1010s, 2240s-2300s
and 4420s-4480s.

For simplicity, we only give some results as representa-
tives. The results including vehicle speeds, engine torques,
motor torques and SOCs of the 30th iteration are shown
in Figure 7, respectively. It can be seen that the hybrid pow-
ertrain system can meet the torque demand of driver by the
optimal splits obtained by the MPILC. Moreover, the battery

FIGURE 7. Results of the 30th iteration.

FIGURE 8. Engine operating points of the first iteration.

energy is just exhausted during the entire bus line in order to
make full use of the energy from power grid.

As we known, the FC of PHEV is mainly determined by
the engine operating condition. From the results of the real
bus driving cycle, the engine operating conditions are shown
in Figures 8-11. It is obvious that there are more operating
points in low efficient zone in the beginning stages than that
in the later stages. And the numbers of operating points in
high efficient zone will be increased along with the iteration
processing, which is the essential reason why the FC will
be better after some trials with the key idea of ‘practice
makes perfect’. And it is manifested again in the iteration
results of FC and SOC average error shown in Figure 12.
Through the desirable torque split between engine and motor,
the proper operating modes and optimal fuel economy could
be achieved along the driving cycles. Then, the engine is
guaranteed to be working in high efficient zone. Therefore,
combined the iterative learning and optimization techniques,
the MPILC-based EMS will provide a better fuel economy
with a satisfying computation burden.

According to Figure 12, the FC will be reduced from
17.08L/100km to 14.89L/100km after 19 iterations with
12.82% improvement. To further express the effectiveness
of the proposed method, we perform the rule-based [6] and
DP-based [8] methods again with the same driving cycle
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FIGURE 9. Engine operating points of the 10th iteration.

FIGURE 10. Engine operating points of the 20th iteration.

FIGURE 11. Engine operating points of the 30th iteration.

which are without learning from the historical driving infor-
mation, and the corresponding minimal FCs without learning
are 20.51L/100km and 14.29L/100km, respectively. The FC
obtained by MPILC has a 27.4% improvement compared
to the FC obtained by rule-based method without learning
and a 4.2% deterioration compared to the DP-based method
without learning, respectively. And the improvement effects
on battery fading aremore obvious, especially after 30 driving
cycles, the battery fading obtained by MPILC has a 37.1%

FIGURE 12. Iteration results.

improvement compared to rule-based method without learn-
ing. The performances obtained by DP-basedmethod without
learning are the best one of these three methods, nevertheless,
the huge computation burden of DP is a significant drawback
for real-time application [9]. It is easy to recognize that the
performance of MPILC is better and better and it approaches
to that of DP after some iterations. Hence, the proposed
MPILC is verified with better performances in both FC,
battery health, robustness and real-time processing capacity.

To further validate the effectiveness and robustness of the
proposed method, we perform it again and apply on another
different routes during the 10th and 15th iterations, and also
some more disturbances are added in the driving cycles. The
transportation disturbances are listed in Table 2 and the learn-
ing process is shown as Figure 13. According to the results,
the FC is reduced from 17.08L/100km to 15.79L/100km
after 28 iterations with 7.56% improvement. It is obvious
that the performance with other different routes or drivers
will be worse provisionally. However, the advantages of the

TABLE 2. Traffic lights of the scenes.
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FIGURE 13. Iteration results with different routes.

proposed MPILC have been reflected. The most important
characteristic is that it can handle well the varying transporta-
tion scenes by iterative learning and model-based predicting.
As we can see that, after a red light disturbance or emergent
obstacle, the vehicle will stop or brake, and some energy
will be wasted. Nevertheless, the robustness performance has
been validated by the iterative convergence process. We can
infer that the performances of MPILC will approach to that
of DP after some more iterations. During these learning
process, FCs and SOC errors will express an imperceptible
and gradual downtrend although there are some disturbances
especially for a different route or driver. According to the
results discussed above, the proposed MPILC is practical
due to the consideration of the variation of cycle duration in
the HOIM-based driver model (12) and (13). Furthermore,
the effectiveness and robustness are verifiedmore reasonably.

V. CONCLUSION
Based on the 2-D Lyapunov stability theory, a uniform
scheme for the combination of ILC and MPC is presented in
this paper. A novel MPILC is proposed based on the iterative
learning and model predicting from the historical driving
data. By involving the within-batch MPC into a batch-to-
batch ILC byminimizing a nonlinear cost function, the PHEV
can illustrate a perfect performance in FC, battery health,
robustness and real-time processing capacity. The proposed
MPILC for the optimal torque split in PHEV is demonstrated
by a real driving cycle collected from a bus line in Xiamen
city. Above all, a new attempt for EMS is established to
minimize FC and battery degradation.

APPENDIX A
PROOF OF THE THEOREM 3.1
Let Rh = X−1h ,Rv = X−1v ,R , Rh

⊕
Rv, then, accord-

ing to Schur Complement theorem, the inequality (30) is

equivalent to

9 =

[∏
+CTC 912
∗ 922

]
< 0, (35)

where
∏
= ÃTRÃ+ÃTRB2L1+LT1 B

T
2 RÃ+L

T
1 B

T
2 RB2L1−R,

912 = ÃTRB1+ l2ÃTRB2+LT1 B
T
2 RB1+ l2L

T
1 B

T
2 RB2, 922 =

BT1 RB1 + l2BT2 RB1 + l2BT1 RB2 + l22B
T
2 RB2 − γ

2I2. Firstly,
a Lyapunov analysis method is employed to prove the asymp-
totic stability of the 2-D system (27) with δūuuk (t) = 0. For
convenience, let xxx1 = [δxxxTk (t), êee

T
k (t)]

T ,xxx2 = [δxxxTk (t + 1),
êeeTk+1(t)]

T
= Ãxxx1 + B1δūuuk (t) + B2δfff k (t), and V (xxx) = xxxTRxxx.

Then, the difference 1Vx = V (xxx2) − V (xxx1) with δūuuk (t) = 0
yields

1Vx ≤ xxxT1
∏

xxx1, (36)

where
∏
< 0 is implied in the inequality (35). It follows that

1Vx ≤ 0. Note that

1Vx = δxxxTk (t + 1)Rhδxxxk (t + 1)− δxxxTk (t)Rhδxxxk (t)

+êeeTk+1(t)Rvêeek+1(t)− êee
T
k (t)Rvêeek (t), (37)

then, we have
∑p

k=0
∑q

t=11Vx =
∑p

k=0[δxxx
T
k (q + 1)Rhδxxxk

(q+ 1)− δxxxTk (1)Rhδxxxk (1)]+
∑q

t=1[êee
T
p+1(t)Rvêeep+1(t)− êee

T
0 (t)

Rvêee0(t)] ≤ 0 for ∀p ≥ 0, q ∈ [1,Tf ], which follows that

p∑
k=0

δxxxTk (q+ 1)Rhδxxxk (q+ 1)

<

p∑
k=0

δxxxTk (1)Rhδxxxk (1)+
q∑
t=1

êeeT0 (t)Rvêee0(t).

According to the boundary condition (24), we can see∑
∞

k=0 δxxx
T
k (q+ 1)Rhδxxxk (q+ 1) < ∞ for ∀q ∈ [1,Tf ].

It implies that limk→∞ δxxxk (t) = 0 for ∀t ∈ [1,Tf ].
Next, we will prove limk→∞ êeek (t) = 0 for ∀t ∈

[1,Tf ]. Note that êeeTk (t)Rvêeek (t) ≤ λmax(Rv)‖êeek (t)‖22 <

[λmax(Rv) + λmin(−
∏
)]‖êeek (t)‖22 and 1Vx ≤ −λmin(−

∏
) ·

‖êeek (t)‖22, then, we can obtain

1Vx < −γ0êee
T
k (t)Rvêeek (t), (38)

where γ0 =
λmin(−

∏
)

λmax(Rv)+λmin(−
∏
) ∈ (0, 1). From (37)

and (38), we have êeeTk+1(t)Rvêeek+1(t) < δxxxTk (t)Rhδxxxk (t) −
δxxxTk (t + 1)Rhδxxxk (t + 1) + (1 − γ0)êee

T
k (t)Rvêeek (t), which

implies that
∑Tf

t=1 êee
T
k+1(t)Rvêeek+1(t) < δxxxTk (1)Rhδxxxk (1) +

(1 − γ0)
∑Tf

t=1 êee
T
k (t)Rvêeek (t) for ∀k ≥ 0. It follows that∑Tf

t=1 êee
T
k (t)Rvêeek (t) < (1 − γ0)k

∑Tf
t=1 êee

T
0 (t)Rvêee0(t) +∑k−1

j=0 [(1− γ0)
k−1−jδxxxTj (1)Rhδxxx j(1)] for ∀k ≥ 1. Then,

∞∑
k=0

Tf∑
t=1

êeeTk (t)Rvêeek (t) <
1
γ0

Tf∑
t=1

êeeT0 (t)Rvêee0(t)

+
1
γ0

∞∑
k=0

δxxxTk (1)Rhδxxxk (1),
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which implies
∑
∞

k=0
∑Tf

t=1 êee
T
k (t)Rvêeek (t) <∞. It follows that

limk→∞ êeek (t) = 0 for ∀t ∈ [1,Tf ].
Therefore, the asymptotic stability of the 2-D system (27)

with δūuuk (t) = 0 is proved. Next, we will further exhibit the 2-
D guaranteed cost performance when MPILC (26) is applied.
Construct a function J (k, t) = 1Vx + êee

T
k (t)êeek (t) − γ

2δūuuTk
(t − 1)δūuuk (t − 1). According to (25) and (26), we have

J (k, t) ≤ ξξξT (k, t)9ξξξ (k, t) ≤ 0, (39)

where ξξξ (k, t) = [xxxT1 , δūuu
T
k (t − 1)]T and 9 < 0 is

equivalent to the inequality (30). Moreover, we can get∑
∞

k=0
∑Tf

t=1 J (k, t) ≤ −λmin(−9)‖δūuuk (t)‖22, and
∑
∞

k=0∑Tf
t=11Vx ≥ −λmax(Rh)‖δxxxk (1)‖22 − λmax(Rv)‖êee0(t)‖22.

Hence, it follows

‖êeek (t)‖22 ≤ λmax(Rh)‖δxxxk (1)‖22 + λmax(Rv)‖êee0(t)‖22
+[γ 2

− λmin(−9)]‖δūuuk (t)‖22,

where δūuuk (t) is the within-batch part which is the globally
optimal solution of the cost function (31). Then, δūuuk (t) is
norm bounded. Therefore, the asymptotic stability along with
time and iteration axes is guaranteed by the inequality (30)
and the boundary condition (24). According to Definition 2,
the proof is completed. �
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