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ABSTRACT In this paper, for evaluating the 3-D roughness of the additive manufacturing surfaces,
we constructed a 3-D reconstruction system of structured light scanner. By calibrating the system, the center
line of structured light is extracted online to reconstruct the profile of additive manufacturing and realize
data registration. A dynamic texture coarseness algorithm is proposed, which combines 3-D data with 2-
D Gaussian filtering and texture coarseness characteristics to transform 3-D roughness into visual image
texture coarseness. The algorithm is applied to evaluate 3-D weld roughness with low delay. The validity
of the algorithm is verified by roughness comparison specimens and the actual material adding experiment.
The result of roughness is reliable and conforms to the evaluation standard of weld quality. At the same time,
the position of structured light is optimized in the process of on-line detection, which reduces the complexity
of extracting contour centerline and ensures the low delay characteristic of roughness calculation.

INDEX TERMS 3-D reconstruction, dynamic texture coarseness, 3-D roughness of additive manufacturing.

I. INTRODUCTION
Weld forming is an important index to measure welding
quality, and the surface roughness information of weld is the
first part to be concerned. The evaluation of surface roughness
of workpieces such as welding and material addition can
be divided into two categories: qualitative and quantitative.
The qualitative description is based on artificial vision and
tactile comparison of the workpiece surface and the rough-
ness comparison specimens to obtain a rough roughness
level [1]. Quantitative evaluation methods mainly include
light-cutting method (parts with low precision requirements
for light-cutting microscope measurement) [2], [3]; inter-
ferometry (interference microscope light wave interference
modulation produces bending to reflect the surface rough-
ness of the tested part) [4], [5]; stylus method (stylus
profiler) [6], [7].

In the traditional judgment method, the light cutting
method and the interference method cannot realize on-line
surface roughness determination due to the limitation of
equipment and principle. The most widely used method is
stylus, but in the measurement process, the stylus needs to
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contact the measured surface directly. None of these methods
can meet the technical requirements of non-contact, online
work and high precision in the field of welding quality mon-
itoring at the same time. In order to realize the automation,
intellectualization and accuracy of inspection, many studies
on welding quality monitoring are based on visual sensing
system. Machine vision can be used for real-time detection
and online control of product quality in automated welding
process [8]–[12]. However, most of the current studies on
weld quality analysis are to detect the specific welding defect,
such as undercut [13], overlap [14], slag [15], and lack of
automatic control of the overall quality of the weld area.

Laser vision system is one of the most efficient and adapt-
able seam sensor systems at present. In this paper, the real
3-D data information of weld surface is obtained by scanning
with the line structured light system following the welding
robot. Based on the roughness of mechanical field and the
coarseness of Tamura [16], a new dynamic texture coarseness
(DTC) algorithm was proposed. This algorithm is used to
quantitatively evaluate the surface roughness of welding seam
area. At the same time, we explored the optimal assembly
distance of structured light device relative to the welding
robot torch, so as to provides an important reference for the
intelligent detection of weld quality and online parameter
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FIGURE 1. Measuring scheme of surface roughness of additive Manufacturing.

correction. In this paper, the scanning device follows the
welding system, which can achieve non-destructive testing
without re-sampling the target.

II. 3-D ROUGHNESS MEASUREMENT SCHEME
To the best of our knowledge, there are no researchers focused
on the research of 3-D roughness based on visual texture.
In this part, we illustrate our research from the measurement
program and 3-D reconstruction system.

A. 3-D ROUGHNESS MEASUREMENT PROGRAM FOR
ADDITIVE MANUFACTURING
At present, the evaluation criteria for 2-D surface contours
have been completed. However, with the development of
processing technology and the diversification of materials,
the surface of the workpiece is affected by many factors
and its texture features are more and more complicated. The
evaluation method of 2-D surface contour can no longer meet
the demand, and the maturity of 3-D evaluation is urgently
needed. International standards for 3-D surface parameters
are being developed [17], [18], and no unified standard has
been formed. The surface roughness of the additive is the
change of the 3-D contour information of the surface of
the structural member, and the texture coarseness is mainly
used to evaluate the 2-D texture distribution of the object
in the image. The quality detection system of the roughness
of the additive surface proposed in this paper is affected by
the visual texture. Inspired, a dynamic texture coarseness
algorithm is proposed for online quality analysis of the 3-D
surface roughness.

As shown in Fig. 1, we need to calibrate the 3-D reconstruc-
tion system of structure light, including camera calibration,
plane calibration of structured light and hand-eye calibration
of robot. Using the calibration results, we can reconstruct and
stitch the 3-D information of the extracted central light strip
of structured light. Then, we can map the depth information
of the obtained contour data of the additive and obtain the
depth information after Gaussian filtering. At last, the DTC
algorithm is used to calculate the dynamic texture coarseness
of the data to detect the surface roughness information of the
target material.

B. 3-D RECONSTRUCTION BASED ON LINE
STRUCTURED LIGHT
Optical 3D measurement is widely used in many fields such
as industrial automatic inspection, product quality control,

cultural relics reproduction [19]. As additive manufacturing
is becoming an important carrier for the country to realize
the return of manufacturing, optical 3D measurement also
has developed as a fundamental capability for robots over
the past decades [20], therefore Simultaneous Localization
andMapping (SLAM) is a fundamental step for many robotic
applications. It concurrently estimates robot poses and recon-
structs traversed environment models. Many effective SLAM
algorithms using visual sensors, such as monocular or stereo
cameras [21], [22] and RGB-D cameras [23]–[25], have
been proposed over the past years. Many industries have
benefited from the development of the SLAM technology.
In addition, Structure from Motion (SfM) is also an impor-
tant means of 3D reconstruction, the goal of SfM is to
automatically recover camera motion and scene structure
using two scenes or multiple scenes. It is a self-calibrating
technology that automatically performs camera tracking and
motion matching. The incremental SfM method [26]–[28]
is currently the most widely used method. A basic SfM
pipeline can be described as: detecting feature points for
each picture, matching feature points in each pair of pictures,
retaining only matching that satisfies geometric constraints,
and finally performing an iterative, robust SfM method
restores the camera’s intrinsic parameters and extrinsic
parameters.

The 3-D reconstruction methods mentioned above are well
applied in many robot scenes, but in the field of welding
and additive manufacturing, there are various spatters, smoke
and dust, strong arc light interference in the working pro-
cess, the harshness and complexity of the environment make
ordinary 3-D reconstruction methods unable to meet the
needs of on-site operations. Also because of the measurement
requirement of sub-millimeter precision, we have chosen
the structured light reconstruction scheme, as the poor anti-
interference and real-time performance of the planar array
structured light, we use laser scanning method to project
line structured light to the measured object, then the shape
data of the measured object is calculated from the image
carrying the 3-D profile information of the object to be
measured. The physical device diagram of the laser scan-
ning sensor system used in this paper are shown in Fig. 2.
The device is mainly composed of a camera and a line
laser. Line laser projected onto the motherboard reflects the
profile information of the weld cross-section, and the cam-
era collects the image of line laser cutting profile for 3-D
reconstruction.
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FIGURE 2. The physical device diagram of the laser scanning sensor system.

TABLE 1. Measurement error of 3-D scanning.

FIGURE 3. The imaging model of line structured light.

In this paper, Zhang’s calibration [29] method based on
checkerboard is used to calibrate the camera to obtain camera
parameters, and the least squares method [30] is used to cal-
ibrate the light plane parameters. The light plane calibration
is based on the classical camera imaging model to determine
the spatial position of the center points of the light strip
coplanar with the target in the camera coordinate system.
The mathematical model of the line structured light is shown
in Fig. 3, The parameters of the light plane are calculated
by using the 3-D coordinates of the calibration points in the
figure, the position relationship of the plane in the camera

FIGURE 4. Standard concave surface workpiece.

coordinate system is described, and the parameters of the
plane equation are solved.

At present, there is no corresponding international standard
for line structured light measurement [31]. In this paper,
the accuracy of light plane calibration is evaluated by using
the standard ingots shown below.

The width of the sides of arc is 3, 5, 7, 9, 11, 13 and
15 mm in turn. The surface of the standard part is mea-
sured by the scanning device in this paper. The absolute
difference between the measured value and the true width
is obtained by multiple scanning calculations as shown
in Table 1.

From multiple sets and multiple measurements in this
table, it can be seen that the maximum error of the 3-D
reconstruction system is 0.0688mm, which does not exceed
0.1 mm, and meets the requirements for measurement accu-
racy within 0.20 mm in the Key Special Projects of Additive
Manufacturing and Laser Manufacturing.
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III. ADDITIVE SURFACE ROUGHNESS ALGORITHM BASED
ON GAUSSIAN FILTERING AND TEXTURE COARSENESS
A. GAUSSIAN FILTERING BASED 3-D DATUM EXTRACTION
In the characterization of 2-D surface topography, the midline
is the baseline of profile evaluation, which is the basis of
roughness parameter calculation. The international standard
ISO 11562 specifies the extraction of surface contour refer-
ence lines with a one-dimensional Gaussian filter. The one-
dimensional Gaussian weight function is formulated as:

h(t) =
1
αλc

exp(−π(
t
αλc

)2) (1)

where t is a spatial domain variable, and λc is the cutoff wave-
length. The Fourier transform is used to obtain the amplitude
transmission characteristics as shown in (2):

H (�) = exp(−π(
a�
�c

)2) (2)

when λ = λc, H (�) = 0.5, that is, the amplitude transmis-
sion characteristic of the Gaussian filter is 50%.at this time,

α =

√
log 2
π
= 0.4697 (3)

Then in the measurement of 3-D surface roughness, the first
thing to be determined is the datum plane. Extending the
one-dimensional Gaussian filter to two-dimensional, the
2-D Gaussian function can be used to extract the 3-D surface
contour datum. For the digital system, the actual measured
surface contour is discrete data. hi,j is defined as 3-D discrete
sampling data and w1i,j is a Gaussian datum plane, and the
Gaussian formula with discrete finite is as follows:

w1i,j=

M∑
k=−M

N∑
l=−N

hi−k,j−lgk,l1x1y i=M , . . . ,LX −M;

j = N , . . . ,LY − N (4)

where

gk,l =
1

α2λxcλyc
exp(−π((

k1x
αλxc

)2 + (
l1y
αλyc

)2))) (5)

λxc and λyc are the cutoff wavelengths in the x and y direc-
tions, respectively, which can be set according to the interna-
tional standard of 2-D roughness. In this paper, λxc = λyc =
0.8mm, α = 0.4697.x and y are the sampling intervals,LX
and LY are the data sampling points, hi,j is the 3-D discrete
sampling data, reflecting the fluctuation of the weld surface
profile.

B. DTC ALGORITHM
Based on the psychological research of visual perception of
texture, Tamura proposed the expression of texture features.
The six components of the Tamura texture feature correspond
to the six properties of the texture feature in the psychological
perspective, namely, coarseness, contrast, directionality, lin-
earity, regularity and roughness. Coarseness is the physical
quantity describing the size and distribution of grain size
in texture, and it is the most basic and important texture

FIGURE 5. Difference windows selection method. (a) The difference
windows of the DTC. (b) The difference windows of the Tamura.

feature. The larger the texture primitive size, the larger the
span between primitives and the coarser the texture.

As shown in Fig. 5(a), in Tamura coarseness algorithm,
adjacent windows which do not overlap each other are
selected to make difference, and the window size is the same.
It can be seen that Tamura algorithm is suitable for extracting
the texture roughness of the entire image or larger image
blocks, but cannot dynamically represent the local roughness
of the weld surface. This paper proposes a DTC algorithm
with better universality and better noise robustness. As shown
in Fig. 5(b), the DTC algorithm improves the difference win-
dow. The two windows are eccentric overlapping windows,
and the window size is deviated, so that the local texture
coarseness can be accurately measured.

The DTC algorithm is implemented as follows:
1) Calculate the average intensity values of pixels in the

active window of size 4k×4k in the image.

Ak (x, y) =
x+2k−1∑
i=x−2k

y+2k−1∑
j=y−2k

f (i, j)/(4k)2 (6)

where k=1,2,. . . ,Lmax, Lmax is the maximum window
scale;f (i, j) is the pixel intensity value at (i, j); when
k = 0, 3× 3 window is selected.

2) For each pixel, calculate its average intensity difference
between the windows in the horizontal and vertical
directions, respectively.

Ek,h(x, y) = |Ak ′ (x + ρ, y)− Ak (x, y)| (7)

Ek,v(x, y) = |Ak ′ (x, y+ ρ)− Ak (x, y)| (8)

where k’= max(k-L b ,0), Lb is the deviation ratio of
two windows; Lb = Lmax − α, Lb ≥1, α takes the
following values: α = 3, L max ≥5; α = min(2, L
max−1), Lmax <5; ρ is the eccentricity of twowindows,
ρ = 2k ′+1.

3) Calculate the optimal size of each pixel Sbest .

Sboxt = 4kmax (9)

Ek = max
(
Ek,h,Ek,v

)
(10)

Emax = max (Ek) , Emin = min (Ek) (11)

In (9), the k value is determined as follows: texture
boundary points, larger and smaller texture primitive
interior points.
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(i) When k = 0, if Ek > tM , terminates the judgment
and kmax = 0; tM takes the mean of the local non-zero
maxima of all the E0 pixel points, which corresponds to
the texture boundary point. Otherwise, it is transferred
into (ii);
(ii) Let DEk= |Ek−Ek−1|, if Numel(DEk < τ0) =
Lmax − 1 and Ek < tm, then kmax = Lmax ; this
case corresponds to the interior points of larger texture
primitives; τ0, tm are small positive values; experiments
on a large number of texture images show that their
values are all related to Ēmin, Ēminis the average value
of Emin, in practical applications, this paper takes τ0 =
Ēmin/1.5, tm =1.8×Emin, Otherwise, it is transferred
into (iii);
(iii) kmax=argmax(Ek ), this case corresponds to the
interior points of smaller size texture primitives.

4) Calculate the local coarseness of the pixel based on the
optimal size of each pixel in the image, and the mean
of all Sbest is used as the roughness of the whole image.

Fcrs =
1

M × N

M∑
x=1

N∑
y=1

Sbett (x, y)γ (12)

In order to increase the contrast, power conversion is per-
formed on Sbest , where γ >1. In this paper, γ takes reference
value 2.5 to improve the sensitivity to roughness.

In the process of image acquisition and propagation. The
roughness algorithm proposed in the paper is applied to
the actual welding and additive manufacturing. Therefore,
the noise robustness of the algorithm must be considered.
In fact, by (6), (7) and (8), a and b are the intensity difference
after the mean filtering of the original image. In theory,
the algorithm should have good anti-noise ability.

Considering specifically the influence of additive noise
n(i, j) the intensity value f (i, j) at image pixel (i, j) becomes:
g(i, j)= f (i, j)+n(i, j). From (7):

Ek,h = |
1
Nk′

∑
(i,j)∈Ak′

g(i, j)−
1
Nk

∑
(i,j)∈Ak

g(i, j)|

= |
1
Nk ′

∑
(i,j)∈Ak′

f (i, j)−
1
Nk

∑
(i,j)∈Ak

f (i, j)

+
1
Nk′

∑
(i,j)∈Ak′

n(i, j)−
1
Nk

∑
(i,j)∈Ak

n(i, j)| (13)

Nk is the total number of pixels in the window area Ak . When
the areas Ak and Ak ′ are all within the same texture primitive,
the formula above becomes:

Ek,h = |
1
Nk′

∑
(i,j)∈Ak′

n(i, j)−
1
Nk

∑
(i,j)∈Ak

n(i, j)| (14)

when the probability distribution radius r of n(i, j), is small,
the condition a:Nk ,Nk ′ � r is satisfied. By the Khinchine
law of large numbers [32]: In the practice of measuring
random physical quantities, the arithmetic mean of a large

number of measured values is stable, close to mathematical
expectation.

lim
N→∞

P

{∣∣∣∣∣ 1N
N∑
i=1

ai − µ

∣∣∣∣∣ < ε

}
= 1 (15)

we can see that:

1
Nk ′

∑
(i,j)∈Ak′

n(i, j) ≈ µn,
1
Nk

∑
(i,j)∈Ak

n(i, j) ≈ µn (16)

where µn is the mean of the noise n(i, j). Therefore (14)
becomes:

Ek,h ≈ 0 (17a)

from (10):

Ek ≈ 0, or Ek < tm (17b)

where tm is a small positive number. When the condition a: is
satisfied, the (13) can be written as:

Ek,h ≈ |
1
Nk′

∑
(i,j)∈Ak′

f (i, j)−
1
Nk

∑
(i,j)∈Ak

f (i, j)| (18a)

Ek,v ≈ |
1
Nk′

∑
(i,j)∈Ak′

f (i, j)−
1
Nk

∑
(i,j)∈Ak

f (i, j)| (18b)

obviously, the larger Nk is, the better the condition a is satis-
fied, and the better the effect of suppressing noise. However,
if the window is larger, a wider texture boundary will be
produced. Considering the acceptable width of the texture
boundary, when k = 0, the window is set to 3 × 3 size.
Experiments show that the 3× 3 window can better suppress
the noise.

The texture image can be regarded as composed of different
texture primitives arranged in a certain regularity. The pixels
in the image can be divided into texture boundary points and
texture primitive internal points.

For the inner points of the texture primitive, when the
current window size k is smaller than the size of texture
primitive, Ek satisfies (17b); when k crosses the size, by (10)
and (18), obviouslyEk ≥0, themaximumvalueEmax appears.
At this time, kmax = k; when the size of primitive is large,
Ek are very small and the value are similar; at this time,
kmax = Lmax , the constraint condition is Numel(DEk < τ0) =
Lmax − 1 and Ek < tm.
For the boundary point, Ek is larger, Ek >>0. This is

because for the boundary point, the two windows span dif-
ferent texture primitives, and the two items on the right side
of (18a) and (18b) cannot be eliminated. Set kmax =0 at the
boundary point.

Because E0 contains the original texture boundary infor-
mation, the boundary points are judged by conditionE0 > tM ,
tM , takes the mean of local non-zero maxima of all pixels in
E0, and k = 0, E0<tm << tM are obtained by formula (17c),
so the interior points of texture primitives affected by noise
can be effectively distinguished from the boundary points.
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FIGURE 6. Typical curves of Ek varying with scale k .

FIGURE 7. Scale k is discrete value, optimal size Sbest output.

The curve of the pixel data point Ek of the experimental
image varies with the scale k is shown in Fig. 6. The curve
types can be roughly divided into three categories, corre-
sponding to the boundary points, and the interior points of
larger and smaller texture primitives.

In practical application, considering the time complexity, k
is discrete, andLmax is not likely to be very large (usually 3-5).
The actual output of Sbest is shown in Fig. 7. Because of the
discreteness of the internal point size of the same primitive,
the Sbest of the internal pixels has the same value. This does
not contradict our coarseness measurement algorithm. On the
contrary, it is reasonable that the pixels belonging to the same
texture primitive have the same local coarseness.

Different primitives have different Sbest due to different
sizes. The larger size texture primitive Sbest is obviously
larger than the smaller texture. The Sbest of larger texture
primitives is obviously larger than that of smaller texture.
Since Lmax is small, for a smooth texture region of normal
size (referring to non-point or only a few pixels), the output
of texture region pixels is the largest Sbest . At this time,
we use the area with the largest pixel value in the coarseness
feature map to measure the coarseness of this kind of tex-
ture. Obviously, the larger the area, the larger the coarseness
of the corresponding texture. Therefore, we can distinguish
different textures through the coarseness feature map. The

FIGURE 8. Artificial image experiment results. (a) Original image. (b) DTC
coarseness feature map.

TABLE 2. Partial data of the ideal parabolic surface and datum.

experimental results of Fig. 8 artificial image prove it. Each
rectangular block in the original image (Fig. 8(a)) is equiva-
lent to a texture primitive. Compared with the original image
and its coarseness feature map (Fig. 8(b)), we can find that the
larger the rectangular block, the larger the pixel value of the
corresponding region in the coarseness feature map. When
the size of the rectangular block is increased to a certain value,
the pixel value of the corresponding area in the feature map
reaches the maximum value, and the maximum rectangular
block corresponding to the maximum pixel value area in the
feature map is significantly larger than the sub-maximum
rectangle.

C. ALGORITHM SIMULATION EXPERIMENT
In Fig. 9(a), the ideal parabolic surface is established accord-
ing to the contour of the weld, and noise is added to simulate
the actual weld surface. Then Gaussian filtering is performed
to obtain the datum surface, and finally the roughness surface
is separated, which is shown in Fig. 9(b).

At the same time, as we get the datum surface, we can use
the obtained data to verify the accuracy of Gaussian filtering
compared with the ideal parabolic surface generated. the
maximum error of the ideal parabolic surface and the datum
surface is 0.47%. The following table shows some data of the
ideal paraboloid and the reference face ratio. We can know
that the Gaussian filter in this paper is effective in extracting
the datum.

The traditional Tamura algorithm and DTC algorithm are
used to measure the roughness of the isolated roughness
surface. The following Fig. 10 shows the Sbest distribution
obtained by the two algorithms. Ignoring the image boundary,
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FIGURE 9. 3-D model of noisy surface and roughness surface. (a) Noise-carrying surface. (b) Roughness surface.

FIGURE 10. Separated roughness surface. (a) Sbest of Tamura algorithm.
(b) Sbest of DTC algorithm.

there is no change in the Sbest obtained by the Tamura algo-
rithm in Fig. 10(a). It can be seen that the Tamura algorithm
cannot recognize the local coarseness variation of the original
roughness surface, and cannot detect the fine difference of
the roughness surface texture sensitively. The DTC algo-
rithm detects the local texture changes of the original rough-
ness surface, which can accurately measure the local texture
coarseness, which is of great significance for evaluating the
roughness of the weld.

IV. EXPERIMENTAL RESULTS
A. ROUGHNESS COMPARISON SPECIMENS
VERIFICATION EXPERIMENT
In this paper, we first compare the separability of texture
coarseness of the algorithm on the roughness comparison
specimens of Fig. 11.

Four kinds of roughness grades (Ra= 6.3, 25, 100, 800) of
the above figure are scanned by structured light to obtain the
contour, then the contour is filtered to obtain the roughness
surface, and then the traditional mechanical industry 3-D
roughnessmeasurement value, texture feature parameters and
dynamic texture coarseness are obtained respectively. The
3-D roughness of the mechanical industry generally refers to

FIGURE 11. Roughness comparison specimens.

the contour arithmetic mean deviation Sa. Sa is the arithmetic
mean of the linear distance from all the pixels on themeasured
surface to the corresponding points on the evaluation refer-
ence surface, and let l(i, j) be any pixel point on the surface
contour to the straight line distance of the corresponding point
on the reference plane, there will be

Sa =

√√√√√ 1
MN

N∑
j=1

M∑
i=1

|l(i, j)| (19)

The six elements in the image texture feature are average
gray level, average contrast, smoothness, third moment, con-
sistency, and entropy. The third moment reflects the measure-
ment of histogram skewness. Entropy reflects the randomness
of the pixels. The larger the skew, the coarser it is.

When scanning the roughness comparison specimens of
a certain level, a large amount of contour data can be col-
lected at one time, and the data can be segmented and tested.
Multiple sets of roughness parameters can be obtained for
the same specimens in different regions, and the stability of
the algorithm can be verified by multiple measurements. The
results are shown in Fig. 12.

It can be seen that using the arithmetic mean deviation of
3-D contour in mechanical industry to evaluate the roughness
can distinguish the rougher surface better, but it cannot clas-
sify the smoother surface effectively, which is not conducive

186652 VOLUME 7, 2019



H. Yu et al.: Visual Texture-Based 3-D Roughness Measurement for Additive Manufacturing Surfaces

FIGURE 12. Comparison of roughness test results of specimens. (a) Industrial contour deviation Sa. (b) Third moment. (c) Entropy. (d) DTC texture
roughness.

to the effectivemeasurement of the 3-D roughness of the weld
material surface; As for the components of the image tex-
ture feature: third moment, entropy. These two components
have significant fluctuations when testing rougher surfaces,
and they are not well differentiated for relatively smooth
roughness; For the DTC algorithm, although the surface of
the comparison specimens itself is concave and convex. The
non-uniformity will cause the numerical fluctuation of tex-
ture roughness, but it still has stable separability for these
four kinds of roughness grades. It can be used to judge the
roughness of the weld.

B. OPTIMUM POSITION EXPERIMENT
OF STRUCTURED LIGHT
The device of structured light is fixed behind the welding
torch’s forward direction, and the light is projected on the
weld seam. The system continuously gives the roughness of
the known weld seam on-line during the process of following
the welder’s advance. As shown in Fig. 13, the weld pool
is near the bottom of the torch. The farther the structured
light is from the molten pool portion, the more lagged the
information of weld roughness is. However, the closer the
light is to the molten pool, the greater the interference of
arc light and high-brightness molten pool on the extraction
of line structured light, or even the inaccurate extraction of
the central line information of the weld contour. Therefore,
experiments are needed to determine the optimal distance
between the light and the center of the torch to ensure the
balance between the extraction of the central line and the
calculation of roughness.

The entire experimental setup includes intelligent welding
robot; FRONIUS CMT Advanced 4000Rnc welding power
source; protective air supply system; welding workbench;
high nitrogen steel welding wire; 304 stainless steel base
material; 3-D reconstruction system of structural light scan-
ning, etc. High nitrogen steel wire is used in welding. The
protective gas composition is 98.5% argon + 1.5% oxygen.
The welding current is 130A, the shielding gas flow rate is
25L/min, and the welding speed is 30cm/min. By changing
the position of the line structured light in the welding seam,
the best position of the light distance from the center of the
torch is determined by the quality of the light and the images

FIGURE 13. Weld state diagram for real-time acquisition.

FIGURE 14. Diagram of line at different weld positions.

of the welding seam collected by the camera and the data
analysis.

Firstly, the line laser is projected at a distance of 20 mm
from the center of the center of the welding torch. The state
of weld and line collected during welding are as shown
in Fig. 14(a). Then the distance between the line and the
wire is continuously shortened with the same welding param-
eters, and the other three weld states are obtained as shown
in Fig. 14(b), (c)and (d).

For the case of 14(a), projection in solidified zone of weld,
the obtained structured light image can extract the contour

VOLUME 7, 2019 186653



H. Yu et al.: Visual Texture-Based 3-D Roughness Measurement for Additive Manufacturing Surfaces

FIGURE 15. Welds of different roughness grades. (a) Smooth. (b) Rough 1.
(c) Rough 2. (d) Very rough 1. (e) Very rough 2.

section of weld well, and then obtain 3-D coordinates for
the evaluation of weld roughness. However, the projection is
20 mm away from the weld wire, it makes the time lag of
the obtained weld surface roughness relatively large, which
is not conducive to timely discovery of welding problems.
In view of Fig. 14(b), the line is pushed to the junction of
semi-solidified region and solidified region, and the shape
obtained is clear, which is conducive to extracting the center
line of the light strip. Moreover, the profile projected by line
laser at the junction is consistent with that of solidified weld
seam, which can provide accurate roughness information.
Then push the structured light forward to the semi-solidified
area as shown in Fig. 14(c). It can be seen that the line in the
semi-solidified area is no longer clear because of the overlap
with the background of the semi-solidified weld, which is
not conducive to the extraction of the light. For the state of
Fig. 14(d), the laser is projected on the molten pool. The
molten pool is a liquid metal part with a certain geometric
shape. Since the laser is applied to the liquid metal, most
of the light is emitted by the mirror surface, so it cannot be
collected by the camera. Secondly, the surface fluidity of the
molten pool makes the molten pool and solidified weld have
completely different appearance. Therefore, the position of
Fig. 14(d) is not suitable for on-line roughness calculation.

In summary, the optimal position of the line structured light
distance from the wire in the 3-D roughness system is at the
junction of the semi-solidified and solidified zone of theweld,
where the structured light is easy to handle, and the roughness
of the welded zone can also be given with low delay.

C. ON-LINE WELDING QUALITY TESTING
Different welding types, wire materials and welding param-
eters, the surface roughness obtained in the welding will
also be different. The following welds with different rough-
ness grades are produced by adjusting the welding con-
ditions, structured light is projected to the junction of
semi-solidification and solidification zone of the weld to
verify the algorithm online. Five groups of welds with dif-
ferent roughness levels are shown in Fig. 15. (a) smooth, (b),
(c) rough, (d) (e) very rough.

During the welding process, the roughness of these welds
under different welding conditions is judged by the rough-
ness measurement system in this paper. At the same time,
we choose the industrial roughness which is relatively good

FIGURE 16. Distribution of weld roughness. (a) Industrial contour
deviation Sa. (b) DTC texture roughness.

in the experiment of standard specimens to compare. The
experimental results are shown in Fig. 16.

The length of each weld is different, so the number of
weld segments is different. It can be seen from the result
graph that industrial parameters still cannot accurately clas-
sify weld roughness and our algorithm has obvious effect
on the classification of roughness, which can distinguish
the three grades of smooth, rough and very rough, and the
classification of different welds in the same grade and the
division of different areas of the same weld. The segment test
shows that the roughness classification results are stable and
have very effective classification characteristics.

V. CONCLUSION
1) In this paper, a 3-D reconstruction system based on struc-
tured light is established. The 3-D contour of the weld surface
is obtained for the calculation of roughness by using the
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characteristics of good light pattern, strong directivity and
high strength.

2) The optimum distance between the structured light and
the center of the torch is determined through the experiment
of continuously changing the distance between the line and
the welding wire, which ensures the balance between the
extraction of the contour centerline and the low delay of the
roughness calculation.

3) Combining 2-D Gaussian filtering and texture coarse-
ness, a dynamic texture coarseness algorithm is proposed.
The DTC algorithm is applied to the low-delay online evalu-
ation of the roughness of additive. The algorithm is validated
by roughness comparison specimens and actual welds. The
classification results are credible and meet the evaluation
criteria of weld quality.
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