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ABSTRACT Software testing is an important means to ensure software quality. Testers need to ensure
that every component of the software is tested correctly to achieve high coverage, such as path coverage,
decision coverage, and branch coverage. An infeasible path is a path that cannot be traversed by any test
cases. The existence of infeasible paths can waste test resources; therefore, detection of infeasible paths are
necessary before path testing. This paper presents a static method for the detecting infeasible paths that is
based on a satisfiability modulo theory (SMT) solver. First, the proposedmethod generates a sub-path set and
converts the feasibility issues into inequalities. Second, a constraint solver is used to solve the inequalities
and, then, the sub-paths are divided into two categories: infeasible sub-paths and undetermined sub-paths.
The paths that were expanded from the latter will be tested again to determine their feasibility. Finally,
the feasibility of all paths is detected. Most of the detection works are done on the sub-path set; therefore,
our method provides an effective solution to the path-explosion problem. The experimental results showed
that the proposed method can detect infeasible paths more accurately and effectively than most existing
methods.

INDEX TERMS Software testing, software quality, sub-path expansion, infeasible path detection, constraint
solving.

I. INTRODUCTION
The existence of infeasible paths has major impact to many
software engineering activities. The code can certainly be
optimized further if more infeasible paths can be detected
during the process of optimization. During the process of soft-
ware testing, if the test data is for those statements which are
in infeasible paths, then the data will not actually be tested,
which would cause much waste. Therefore, in software test-
ing, the structural test coverage can be much accurately com-
puted if infeasible paths can be detected more accurately.
During the process of test case generation, much time can
be saved if more infeasible paths can be detected, which can
reduce the waste of resources. In code protection, it can also
help to identify the inserted spurious paths in code deobfusca-
tion. In software verification, detecting and eliminating infea-
sible paths will help to enhance the verification precision and
speed [1]. Therefore, detection of these infeasible paths has a
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key impact on many software engineering activities including
code optimization, testing and even software security [1].

Infeasible path detection methods can be divided into three
categories, static methods, dynamic methods, and hybrid
methods of combining static methods with dynamic meth-
ods. For the static methods, they are based on the branch
correlation analysis method or on the satisfiability of the path
condition method. However, the branch correlation analysis
method has low accuracy and the satisfiability of the path con-
dition method cannot deal with the path-explosion problem
for large-scale programs. For the dynamicmethods, they use a
heuristic search algorithm to search for test cases to cover the
target path. If the test cases cannot be found at a certain search
depth, the path can be deduced to be infeasible. The search
depth of such methods needs to be modified according to the
size of the programs. Therefore, such methods have very poor
adaptability. For the hybrid methods, they use the information
from the static analysis such as branch correlation analysis
or path condition analysis to improve the dynamic heuris-
tic search process. Although a static analysis can assist the
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heuristic search process, there are still some shortcomings
such as a large overhead, path-explosion problems, etc.

To illustrate the research motivation, we use the example
program in Figure 1.

FIGURE 1. An example program and its CFG. (a) An example program.
(b) CFG.

Figure 1 (a) is the source code of the example program
and Figure 1 (b) is its CFG. This program has many infea-
sible paths, such as sp1:1,2,5,6,9,10,13,14,17,18; sp2:1,4,5,
6,9,12,13,14,15,18. For sp1, the feasibility requires that we
must satisfy the two conditions: (x > 3, y = 0) and (x < 2,
y <= 0). Obviously, the two condition is conflicting. For sp2,
the feasibility requires that we must satisfy the two condi-
tions: (y = −5) and (y = 0). Obviously, the two conditions
are also conflicting.

First, it would be amajor waste when generating test case if
not detected the infeasible paths. Second, it would cause path
explosion if there are a lot of branch nodes or cyclic nodes.

On the basis of the state-of–the-art research level and
the existing problems, this paper presents a static method
based on a satisfiability modulo theory (SMT) solver named
SMT-IPD (SMT solver based on Infeasible Path Detection)
to detect infeasible paths. First, we generate a sub-path set,
from which we obtain the path conditions. Second, we use
the constraints in the path condition to constitute a system
of inequalities. Then, an SMT solver is used to solve the
system of inequalities. According to the results solved by
the SMT solver, we divide the sub-paths into two groups.
The first group is the infeasible sub-path group, which can be
expanded into infeasible paths. The second group is the fea-
sible or unidentified sub-path group, which can be expanded
into the paths that need retesting. Finally, we can get all the
paths and their feasibility information.

The main detection work of SMT-IPD is on the sub-path
set. This method can solve the path-explosion problem partly
because the number of sub-paths is far less than the number
of paths for complex programs.

The contributions of this paper are as follows:
We provide an infeasible path detection method with

higher accuracy.
We determine the feasibility for each sub-path, and expand

the sub-paths into full paths and obtain the feasibility of the
full paths.

II. BACKGROUND
In this section, we introduce some concepts used in this paper.
Definition 1 (Path [2]): A path π through a control flow

graph CFG G = (V, E, s, x) is a sequence of nodes from the
start block to the exit block π = (s, v1, . . . , vn, x) with s,
v1 . . . vn, x ∈ V and (s, v1), (v1, v2), . . . , (vn, x) ∈ E.
Definition 2 (Post-Dominance [3]): Given a CFG G=

(V, E, s, x), . . . a node m is post-dominated by a node n
(m, n ∈ G) if every valid path from m to the end node x
contains n.
Definition 3 (Predominator Relationships [4]): For nodes

ni and nj in CFG, if all paths from entrance node s to nj
pass through ni, it is called ni predominate nj, denoted as

ni
pre
−→ nj. If ni

pre
−→ nj, and all other dominator of nj are nk’

dominator, it is called that nk directly dominate nj, denoted
as nk = idom(nj).
A node predominates itself but does not post-dominate

itself.
Definition 4 (Predominator Tree [4]): In a CFG, any

other node has a direct dominator except node s. According
to the dominator relationships, we can construct a Predomi-
nator Tree with s as the root node. Predominator Tree can be
expressed as a triple (N, E, s), where, E = {(idom(ni), ni)|ni ∈
N− {s}}.
Definition 5 (Control Dependence [3]): Let G be a con-

trol flow graph. Let X and Y be nodes in G. Y is control
dependent on X iff
(1) There exists a directed path P from X to Y with any Z

in P (excluding X and Y) post-dominated by Y and
(2) X is not post-dominated by Y.

If Y is control dependent on X then X must have two exits.
Definition 6 (Sub-Path (sp)): A sub-path is a segment of

a path. The difference between a path and a sub-path is the
starting point and the end point. In a path, the starting point is
the entry node of the control flow graph (CFG), whereas the
end point is the exit node of the CFG. In contrast, in a sub-
path, the starting point is the entry node or a branch node of
the CFG, whereas the end point is the exit node of the CFG.

There is an assumption that control flow is static. That is,
there are no indirect jumps and the CFG can be constructed
directly from program text.
Definition 7 (Correlation Variable (Correlation Con-

stants)): Generally, predicate P of a branch statement in a
program can be expressed with two forms, v1 op1 v2 and v3
op2 c. Where, v1, v2 and v3 are variables, c is a constant,
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op1 and op2 represent decision symbol (such as greater-than
sign,>), then v1, v2 and v3 are called correlation variables of
predicate P (c is the correlation constant of predicate P).
Definition 8 (Variable Definition Point): The assignment

statement that defines the value of variable v is a variable
definition point. If variable v is a correlation variable, it is
a correlation variable definition point, denoted by dp(v).
Definition 9 (Infeasible Sub-Path/Path): An infeasible

sub-path/path is a sub-path/path that cannot be traversed by
any program input.
Definition 10 (Basic Block): A basic block is the maxi-

mum sequence of statements with a single entry point and
a single exit point.

III. OUR APPROACH: SMT-IPD
This paper presents a static method (SMT-IPD) for detecting
infeasible paths based on an SMT solver. Figure 2 shows the
framework of SMT-IPD.

FIGURE 2. Framework of the SMT-IPD.

SMT-IPD consists of three steps.
In Step 1, it generates a sub-path set. Before obtained the

sub-path set, it needs to statically analyze the .java or .class
file of the Java programs. First, it obtains the CFG of the
tested program using the Java program analysis framework
Soot,1 and eliminates the cycle of the CFG to obtain the
directed acyclic CFG. Then it calculates the control depen-
dency of the tested program according to the control depen-
dency calculation method. Finally, it recursively traverses the
acyclic CFG obtained from the static analysis part to generate
a sub-path set according to the sub-path set construction
algorithm.

In Step 2, it determines the feasibility for each sub-path.
First, it analyses the path condition for each sub-path. Then,
it constructs the inequalities for each sub-path according to
the inequalities construction algorithm; finally, the inequal-
ities is solved by an SMT solver, and the results show the
feasibility of each sub-path. If there is a solution, it means that
the sub-path is feasible; otherwise, the sub-path is infeasible
or undetermined. For the undetermined paths, it need be
tested again to determine their feasibility.

In Step 3, SMT-IPD expands the sub-paths into paths and,
finally, obtains the feasibility of all the paths.

1https://sable.github.io/soot/

A. GENERATION OF A SUB-PATH SET
For CFGs with loops, we need to add or delete edges to break
the loops. A CFG can be treated as a directed acyclic graph
and can be traversed recursively to generate a sub-path set.

Breaking loops in a CFG means cutting off the loops in a
program. For the loops in a program, we treat them as follows:
1) The code in a loop executes only once. If the loop

contains branch statements, the true branch and the
false branch execute only once separately.

2) The code in a loop is not executed. In other words,
the code only executes the entry of the loop and then
jumps to the exit of the loop without executing the loop
body.

FIGURE 3. An example of breaking the loop in a CFG. (a) Before breaking
the loop. (b) After breaking the loop.

Figure 3 shows an example of breaking a loop in a CFG.
Figure 3 (a) shows the original CFG, in which 1-2-3-4-1 is a
loop.We deleted the dashed edge 4→ 1, which is a backward
edge of a loop. This is because the loop can be broken but
the other paths would not be changed if the backward edge
4 → 1 was deleted. After deleting edge 4 → 1, we can
obtain Figure 3 (b), which is the CFG after breaking the loop.

The CFG contains two paths after breaking the loop.
1) {1, 2, 3, 4, 5}: The code in the loop executes once.
2) {1, 5}: The code in the loop is not executed, which

jumps from the entry of the loop to the exit of the loop.
After breaking a loop, SMT-IPD generates sub-path sets

according to Algorithm 1.
SMT-IPD generates sub-path sets recursively. Once a loop

has been broken, the recursive algorithm could now reach an
end point. An end point denotes a certain node in a CFG
that has no successors, which means that the condition in
line 2 evaluates to false. The nodes with no successors are
the exit nodes in a CFG. When an end point is reached,
sp is a sub-path (sp will be modified in the recursive process,
and, therefore, it is not initialised in line 1). All the nodes
in sp will be deleted (line 8) after sp is added to subPathSet
(line 7). Then, according to the call stack of the recursive
algorithm, our method gets to the upper layer and explores
new sub-paths (line 4).
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Algorithm 1 Sub-Path Set Generation
input: startLine //The first line of the program
output: subPathSet
Function subPathGeneration(startLine) //Recursive
invocation
Begin
1. sp←sp ∪ startLine
2. if startLine has successors then
3. foreach line in startLine.successors
4. subPathGeneration(line) //Recursive invocation
5. endfor
6. else
7. subPathSet←subPathSet ∪ sp
8. sp←Ø
9. endif
End

FIGURE 4. An example of infeasible sub-paths.

B. DETERMINATION OF THE FEASIBILITY
FOR EACH SUB-PATH
First, we explain the principle of how to determine the fea-
sibility of sub-paths. Figure 4 shows an example, which has
two cases that cause the infeasibility of sub-paths.

1) The conditions of some statements from two branch
statements have conflicts. Suppose we have sub-path sp1 =
{1, 2, . . . 7, 8, . . .}, where 1→2 and 7→8 are two branch
statements. The branch 1→2 indicates x > 3, and the branch
7→8 indicates x < 2. Variable x is not defined again between
the two branch statements in sub-path sp1; hence, sub-path
sp1 is infeasible. We denote this case as a B-B (Branch-
Branch) conflict.

2) The condition of some statements from branch state-
ments has conflicts with a correlation variable definition
point. Suppose we have sub-path sp2 = {. . . 10, 15, 16, . . .},
where 15→16 is a branch and correlation variable y is defined
in line 10. The branch 15→16 indicates y > 0, but correlation
variable y is defined as−5 in line 10 and it is not defined again
between line 11 and line 14; thus, sub-path sp2 is infeasible.
We denote this case as an A-B (Assignment-Branch) conflict.

In this step, our method abstracts sub-paths and anal-
yses branch conditions and correlation variable definition
points. The path conditions are represented as a system of
inequalities. Then, an SMT solver is used to solve the system
of inequalities to check whether the two cases mentioned

above exist or not. If the system of inequalities is satisfied,
the sub-path is feasible; otherwise, it is infeasible. If the
result of the system of inequalities cannot be determined,
the feasibility of the sub-path cannot be identified either,
which needs to be checked again.

According to the CFG, our method can obtain the con-
trol dependence information between statements. The control
dependence information is represented as a predominator
tree. The successor nodes in a predominator tree are control
dependent on direct and indirect predecessor nodes. After
the control dependence information is calculated, SMT-IPD
constitutes a system of inequalities for each sub-path based
on Algorithm 2.

Algorithm 2 Inequality Set Generation
input: sp //Sub-path

PredominatorTree // predominator tree
output: inequalitySet
Begin
1. inequalitySet←n
2. sp←sp.reverse
3. foreach node in sp
4. if node is in PredominatorTree
5. && node has more than 1 successor then
6. inequalitySet←inequalitySet ∪

node.getBranchPredicate
7. variableSet←variableSet ∪ node.getVariable
8. else if node is a define statement
9. && node.getVariable ∈ variableSet
10. &&node n is first met
11. inequalitySet←inequalitySet ∪

node.getDefineExpression
12. endif
13. endfor
End

The inequality set generation algorithm traverses every
node in each sub-path and checks whether it is a branch node
or a correlation variable definition node (lines 2-3). If node
m is in a predominator tree and has more than 1 successor
(lines 4-7), the algorithm extracts predicate p from branch
nodem and then adds predicate pto the system of inequalities.
If predicate p contains correlation variable x, the algorithm
puts this variable into variableSet.

If node n is a variable definition node, in which the variable
is a correlation variable, and it is the first node met in the
reverse traversal (lines 8-10), the algorithm adds the defini-
tion of the correlation variable to inequalitySet (line 11).

C. EXPANSION OF SUB-PATHS
In this section, SMT-IPD expands the sub-path set and
improves the detection results of infeasible paths. First,
SMT-IPD expands each sub-path into a path according to
the sub-path set expansion algorithm; then, it determines the
feasibility of the expanded paths and completes the detection
results.
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Algorithm 3 Sub-Path Set Expansion
Declare: sp,sp’: sub-path
fp: full-path
input: subPathSet //Sub-path set

CFGHeadSet //Heads of the CFG
output: infeasiblePathSet

unknownPathSet
Begin
1. infeasiblePathSet←n
2. unknownPathSet←n
3. foreach sp in subPathSet
4. head←sp.head
5. foreach sp’ in subPathSet
6. if sp’contains head&& sp’ head∈CFGHeadSet

then
7. fp←sp’.subList(0, head) ∪ sp
8. if sp is infeasible || sp’ is infeasible then
9. infeasiblePathSet←infeasiblePathSet ∪ fp
10. else
11. unknownPathSet←unknownPathSet ∪ fp
12. endif
13. endif
14. endfor
15. endfor
End

The algorithm first selects a head node for each sub-path sp
(lines 3 and 4). Then, it focuses on the other sub-path sp′. If sp′

contains the head node and the first node of sp′ is an entry
node of the CFG, then sp′ and sp can be connected to a single
path fp (lines 6-7). The algorithm takes a partial sequence
from the first node to the head node in sp′ and combines
the partial sequence with sp to fp. In other words, fp is a
combination of sp and sp′, and the connection point is the
common node head of sp. Finally, according to the feasibility
of sub-path sp and sp′, path fp falls into the corresponding
result set. If sp or sp′ is infeasible, the expanded path fp is also
infeasible; if sp and sp′ cannot be determined, the algorithm
cannot determine the feasibility of fp directly; therefore,
it needs a secondary determination (lines 8-12).

D. AN EXAMPLE
In this section, we use the example program of Figure 1 to
illustrate how SMT-IPD works.
Step 1: SMT-IPD generates a sub-path set. subPathSet =

{sp1, sp2, sp3, sp4, sp5}.
sp1 = (14, 17, 18);
sp2 = (9, 12, 13, 14, 15, 18);
sp3 = (5, 6, 9, 10, 13, 14, 17, 18);
sp4 = (1, 2, 5, 8, 9, 12, 13, 14, 15, 18);
sp5 = (1, 4, 5, 6, 9, 10, 13, 14, 15, 18).
Step 2: SMT-IPD generates inequalities for each sub-path.

InequalitySet = {(1, x > 3), (4, x = flag), (5, y = 4),
(8, x = 1), (9, x < 2), (12, y = −5), (14, y > 0)}.

We can get the following several systems of inequalities:

sp1 : y ≤ 0→ solvable

sp2 :


x ≥ 2
y = −5
y > 0

→ unsolvable

sp3 :


y = 4
x < 2
y ≤ 0

→ unsolvable

sp4 :



x > 3
y 6= 4
x = 1
x ≥ 2
y = −5
y > 0

→ unsolvable

sp5 :



x ≤ 3
x = 0
y = 4
x < 2
y > 0

→ solvable

The paths expanded from sp2, sp3 and sp4 are infeasible.
The paths expanded from sp1 and sp5 need to be tested again.
Step 3: SMT-IPD expands each sub-path. Take sub-path

sp3 as an example. The head node of sub-path sp3 is node 5.
Sub-path sp4 contains node 5, and the head node of sp4 is one
of the entry nodes of the CFG (the head node of the CFG is
node 1). Therefore, sp3 and sp4 can be connected to a path fp1.
We take sequence {1, 2, 5} from sp4 and combine it with sp3,
and then we can get fp1 = {1, 2, 5, 6, 9, 10, 13, 14, 17, 18}.

All the sub-paths from sp1 to sp5 can be expanded into
16 paths that contain 10 infeasible paths, as shown at the top
of the next page. We use fpi to represent the expanded path.
Path fp1 is expanded from infeasible sub-path sp3. Paths

fp2 and fp3 are expanded from infeasible sub-path sp2. Paths
fp4, fp5, fp6 and fp7 are expanded from infeasible sub-
path sp4. These seven paths are infeasible, which can be
deduced from infeasible sub-paths sp2, sp3 and sp4. Sub-
path sp5 corresponds to path fp8, and the feasibility of
fp8 can be determined according to the feasibility of sub-
path sp5. Therefore, SMT-IPD only needs to detect 5 sub-
paths (sp1, sp2, . . . , sp5) and 8 expanded paths (fp9, fp10, . . . ,
fp16) to obtain the feasibility of all 16 paths. In this example,
the number of paths detected by our method was slightly less
than the number of all the paths. The complexity of sub-paths
is much lower than that of a full path; therefore, it is much
easier to detect the feasibility of a sub-path. Therefore, our
method is effective in terms of reducing the detection cost.

IV. EMPIRICAL STUDY OF OUR APPROACH
To evaluate our approach empirically, we implemented
an infeasible path-detection tool for Java programs and
conducted an empirical study using open-source projects.
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sp4 & sp3 ⇒ fp1 : 1, 2, 5, 6, 9, 10, 13, 14, 17, 18→

{
x > 3, y = 4
x < 2, y ≤ 0

infeasible path

sp5 & sp2 ⇒ fp2 : 1, 4, 5, 6, 9, 12, 13, 14, 15, 18
sp4 & sp3 & sp2 ⇒ fp3 : 1, 2, 5, 6, 9, 12, 13, 14, 15, 18

}
→

{
y = −5
y > 0

infeasible path

sp4 ⇒ fp4 : 1, 2, 5, 8, 9, 12, 13, 14, 15, 18
sp5 & sp4 ⇒ fp5 : 1, 4, 5, 8, 9, 12, 13, 14, 15, 18

}
→

{
x ≥ 2, y > 0
x = 1, y = −5

infeasible path

sp4 & sp1 ⇒ fp6 : 1, 2, 5, 8, 9, 12, 13, 14, 17, 18
sp5 & sp4 & sp1 ⇒ fp7 : 1, 4, 5, 8, 9, 12, 13, 14, 17, 18

}
→

{
x ≥ 2
x = 1

infeasible path

sp5 ⇒ fp8 : 1, 4, 5, 6, 9, 10, 13, 14, 15, 18→

{
x = 0, y = 4
x < 2, y > 0

feasible path

check again⇒ fp9 : 1, 2, 5, 6, 9, 10, 13, 14, 15, 18→

{
x > 3
x < 2

infeasible path

check again⇒ fp10 : 1, 4, 5, 6, 9, 10, 13, 14, 17, 18→

{
y = 4
y ≤ 0

infeasible path

check again⇒ fp11 : 1, 2, 5, 6, 9, 12, 13, 14, 17, 18→

{
y = −5, x > 3
y ≤ 0, x ≥ 2

feasible path

check again⇒ fp12 : 1, 2, 5, 8, 9, 10, 13, 14, 15, 18→

{
x = 1, y 6= 4
x < 2, y > 0

feasible path

check again⇒ fp13 : 1, 2, 5, 8, 9, 10, 13, 14, 17, 18→

{
x = 1, y 6= 4
x < 2, y ≤ 0

feasible path

check again⇒ fp14 : 1, 4, 5, 6, 9, 12, 13, 14, 17, 18→

{
x = 0, y = −5
x ≥ 2, y ≤ 0

infeasible path

check again⇒ fp15 : 1, 4, 5, 8, 9, 10, 13, 14, 15, 18→

{
x = 1, y 6= 4
x < 2, y > 0

feasible path

check again⇒ fp16 : 1, 4, 5, 8, 9, 10, 13, 14, 17, 18→

{
x = 1, y 6= 4
x < 2, y ≤ 0

feasible path

This section describes our experimental setup and presents
the empirical results.

A. EXPERIMENTAL SETUP
Wefirst obtained the CFG by using the Java program analysis
framework Soot.2 According to the sub-path set generation
algorithm, we generated a sub-path set. Then, we analyzed
the predicates of branch statements and the definition points
of the correlation variables to construct the system of inequal-
ities. We determined the feasibility of sub-paths by solv-
ing the system of inequalities, which was completed by
SMTInterpol.3 Finally, we expanded the sub-paths into full
paths to obtain the feasibility of all paths. The result was
stored in a Sqlite4 database so we could query the results by

2https://sable.github.io/soot/
3http://ultimate.informatik.uni-freiburg.de/smtinterpol/
4http://www.sqlite.org/

using SQL statements. All the experiments were carried out
on a Dell server with 32 GB of memory and two 3.07-GHz
XEON X5675 CPUs using JDK 1.7. We ran each analysis
with about 28 GB of heap memory for the JVM (java -
Xmx28000M).

B. SUBJECTS OF THE EXPERIMENTS
To verify the accuracy and the effectiveness of our method,
we designed three groups of experiments, where the subjects
in the first group of experiments were benchmark programs
and the subjects in the second group and the third group of
experiments were from the SIR5 website. The information is
shown in Table 1. The table shows, for each subject, the group
number, program name (columns 1 and 2), description, lines

5http://sir.unl.edu/php/previewfiles.php?lang%5B%5D=Java&name=&
min_ver_cnt=&max_ver_cnt=&min_src_size=&max_src_size=&min_
unit_cnt=&max_unit_cnt=&display=Display
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TABLE 1. Subjects of the experiments.

of code (columns 3 and 4), number of classes (column 5) and
number of methods (column 6). The sizes of the subjects in
terms of the lines of code varied from 27 for Bubble sort to
over 116,638 for Jboss.

For the first and the second groups, it was easier to analyses
the source codes of the programs manually to find out the
infeasible paths, and it was convenient to compare the results
with the results obtained by our SMT-IPD. We used precision
and recall rate to evaluate the experiment results.

To verify the effectiveness of our method, we designed a
second experiment, where we chose the large-scale programs.
We compared our method with the Java infeasible code
detection tool Joogie [5].

To further verify the validity of our method, we designed
a third experiment, where we chose four programs from the
above 19 programs. The sizes of the programs in terms of the
lines of code varied from 70 for the Triangle classifier to over
16,800 for XML-security. We compared our method with two
other infeasible path detection approaches used in [6] and [7],
respectively.

For the second and the third group of subjects, we chose the
original version of OrdSet, Elevator, Email-spl, Minepump-
spl and Replicatedworkers; the original version v0 of Ant,
Apollo, Jboss, Jmeter, Log4j3 and Xstream-spl; the original
version v3 of Jtopas; the original version v5 of Nanoxml;
the original version v0 of Xml-security; and the original
version v4 of Siena for the experiments.

For the third group, we chose the Ant program, which is
a Java-based build tool supplied by the open source Apache
project. It has complex functions, and most of the infeasible
paths detected came from the org.apache.tools.ant.taskdef
package. Jboss and Jmeter are applications based on a
network. Jboss is a web application server that contains
many business-related judgment branches. The main func-
tion of Jmeter is stress testing for a web server, and there
are many judgment branches of performance counters and

time statistics. Log4j3 and Xstream-spl contain a large num-
ber of stream processing methods in Java. The former gen-
erates logs through the output stream, and the latter deals
with the serialization and deserialization of objects. Jtopas,
Nanoxml and XML-security are text parsing-related appli-
cations. JTopas is a Java library used for parsing text data.
NanoXML is a small XML parser for Java. XML-security
is a component library that implements XML signature and
encryption standards; it is supplied by the XML subpro-
ject of the open source Apache project. Siena works as
a network event notification system. This program is an
Internet-scale event notification middleware for distributed
event-based applications deployed over wide-area networks
that is responsible for selecting notifications that are of
interest to clients (as expressed in client subscriptions) and
then delivering these notifications to the clients via access
points.

C. EXPERIMENTAL RESULTS FOR THE FIRST AND
THE SECOND GROUP OF PROGRAMS
Table 2 shows the results of the experiments for the small-
scale programs. The table shows, for each subject, the group
number, the program name (columns 1 and 2), the number of
infeasible paths that SMT-IPD detected (column 3), the num-
ber of infeasible paths that we manually analyzed (column 4),
the number of false-positive cases detected by SMT-IPD
(column 5), and the detection precision and the recall rate
of SMT-IPD (columns 6 and 7). Precision measures the per-
centage of the number of infeasible paths correctly detected
by SMT-IPD. Recall measures the percentage between the
number of infeasible paths correctly detected by our approach
and the actual number of infeasible paths checked manually.
Because precision can reflect the accuracy of the test results
and recall rate can reflect the comprehensiveness of the test
results, we use precision and recall as the indicators of results.
The precision and recall rate are calculated according to
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TABLE 2. Results for the first and the second group of programs.

TABLE 3. Experimental comparison results between SMT-IPD and Joogie for the third group of programs.

equations (1) and (2), respectively.

Pr ecision =
Idet ected − Ifalse

Idet ected
(1)

Re call =
Idet ected − Ifalse

Itrue
(2)

where Idetected denotes the number of infeasible paths detected
by SMT-IPD, Ifalse denotes the number of infeasible paths that
SMT-IPD is False Positives, and Itrue denotes the number of
infeasible paths that exist in the detected program.

As can be seen from the results in Table 2, the preci-
sion of the results generated by SMT-IPD was very high.
For the programs Bubble sort, Binary search, Triangle clas-
sifier, OrdSet, Minepump-spl and Replicatedworkers, they
contained pure numerical comparisons in the branch condi-
tions, which can be solved accurately by a constraint solver;
therefore, the precision and recall rates were relatively high.
However, for the programs Zip viewer, Square root, Elevator
and Email-spl, they had a lower recall rate, which means
that SMT-IPD detected part of the infeasible paths. After
analyzing, we found that Zip viewer contains a file iterator
judgment, Square root contains a judgment if a Java object is
NULL or not, Elevator uses a finite-state machine to simu-
late an elevator and Email-spl contains some network-related
judgments. These four types of constraints cannot be solved
by a constraint solver. During the infeasible path detection,
these constraints are difficult to solve [1].

D. EXPERIMENTAL COMPARISON RESULTS
BETWEEN SMT-IPD AND JOOGIE
To evaluate the effectiveness of our method, we selected some
programs for our experiments. Table 3 shows the results of the
comparison between our method (SMT-IPD) and Joogie [5].

The table shows, for each subject, the program name (col-
umn 1), the detection results by SMT-IPD (columns 2-6),
and the detection results by Joogie (columns 7-12). Column
Mchecked (checked methods) (column 2 and column 7) is
the number of detected methods that contained infeasible
paths. ColumnLOCchecked (checked lines of code) (column 3
and column 8) is the total number of source code lines of
Mchecked. Column TP (total paths) (column 4 and column 9)
is the total number of paths of Mchecked. Column Idetected
(infeasible paths detected) (column 5) in sub-table SMT-IPD
is the number of infeasible paths that SMT-IPD detected.
Column Bdetected (basic blocks detected) (column 10) in sub-
table Joogie is the number of infeasible basic blocks detected
by Joogie. Column Idetected (infeasible paths detected) (col-
umn 11) in sub-table Joogie is the number of infeasible paths
based on our statistics that were contained in the infeasible
basic blocks. Column Time (column 6 and column 12) is the
time needed by a subject to complete the detection separately
by SMT-IPD and Joogie.

Besides Siena program, the eight programs contained a
number of strings or pure numerical comparison branches,
which belong to data types that can be solved by a con-
straint solver. Therefore, it is possible to detect an impressive
number of infeasible paths by our SMT-IPD. For the Siena
program, although it contains a large number of branches
and loops, the proportion of the constraints that could be
solved was not high owing to the limitations of the constraint
solver. Therefore, SMT-IPD only detected three methods that
contained 21 infeasible paths.

Joogie [5] detected infeasible basic blocks in the programs.
Compared with SMT-IPD, the detection granularity of Joogie
was smaller. Joogie failed to test the subjects Siena and
Nanoxml, denoted with ‘‘-’’ in Table 3. The reason was that
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TABLE 4. Information about the sub-path set for the third group of programs.

Joogie first converts a Java code into a Boogie code, and there
were a number of Java statements (such as arrays) and data
types that could not be converted to Boogie codes; therefore,
the test failed. A null pointer exception occurred when Joogie
was detecting Jboss; therefore, the result was null, denoted
with ‘‘N’’ in Table 3.

Joogie detects infeasible basic blocks, whereas SMT-IPD
detects infeasible paths. We counted the number of infeasi-
ble paths Idetected that passed through the infeasible basic
blocks Bdetected, and we compared it with the number of
infeasible paths detected by SMT-IPD.What is more, we also
compared the number of methods that contained infeasible
paths detected by Joogie with that detected by SMT-IPD.
We can see that our method is much better than Joogie. For
example, our method can handle subjects such as Siena, Jboss
and Nanoxml that cannot be detected by Joogie. Therefore,
SMT-IPD is more effective.

For the data in Table 3, we randomly selected 500 infea-
sible paths from 1,420,883 infeasible paths (detected by
SMT-IPD) but did not analyses all of them and analyzed the
causes of the conflicts manually. The analysis showed that
SMT-IPD is quite accurate.

The column Time (column 6 and column 12) includes the
following parts. The first part is the time spent analyzing a
Java class. Soot took about 8s to analyses a class. The second
part is the time spent in the sub-path set generation. We used
a recursive algorithm to generate a sub-path set, which took
about 500 ms per thousand of lines of code. The constraint
solver took about 250ms to solve a system of inequalities that
contained five linear inequalities. Therefore, we can assume
that determining the feasibility of a sub-path took 250 ms.
The sub-path set expansion algorithm has a very high time
complexity, and the structure and size of the test procedures
also influence the time consumption. Therefore, it is difficult
to estimate the average time consumption. We adopted a
multi-thread technology to accelerate the expansion of a sub-
path set. To observe and search the test results conveniently,
we wrote the test results into a Sqlite database. Owing to the
write speed limitation of a Sqlite database, this stage is very
time consuming, which consumed about half of the total time
of the experiments.

The experimental results in Table 3 show that the infeasible
path was more than 50% (Idetected/TP) for the programs that
included infeasible paths. Suppose we generated test cases
for a method that included an infeasible path, it would lead

to at least 50% wastage of test resources because of the
infeasible path in the method. If we knew the feasibility of
the paths, we could only generate the test case for the feasible
path. Therefore, detection of an infeasible path exactly can
effectively save resources for testing.

In summary, our method ensures the comprehensiveness
of the test results at a reasonable time cost. To observe the
time difference between writing the results to plain text files
and that to a Sqlite database, we tried to write the results to
plain text files instead of to a Sqlite database for the Jboss
system. We can see from Table 3 that the time cost of Jboss
was much less than those of other subjects with a similar size.
This improvement saves a considerable amount of time.

Table 4 shows the information about the sub-paths
that were included in the methods that contained infea-
sible paths. The table shows, for each subject, the pro-
gram name (column 1), the number of sub-paths in the
methods that contained infeasible paths (TSP, column 2),
the number of feasible sub-paths (FSPdetected, column 3), the
number of infeasible sub-paths (ISPdetected, column 4),
the number of sub-paths whose feasibility was unidentified
(UNSPdetected, column 5) and the percentage of infeasible
paths that were detected for the second time in all infeasible
paths (DCR, column 6). From Table 4, we can see that only
29% (the average of column DCR) of the infeasible paths
were detected in the second detection. For the feasible paths,
although the second detection consumed a certain amount of
time, the results that were generated by SMT-IPD were test
cases, which completed the work of the test data generation to
a certain extent. To sum up, our method can detect infeasible
paths accurately and effectively, and can reduce the number
of paths that need to be tested.

E. EXPERIMENTAL COMPARISON RESULTS BETWEEN
SMT-IPD AND OTHER METHODS
For the groups used in the experiment, we separately chose
one program from the first and the second groups, and chose
two programs from the third group of experimental subjects
in Table 1. We compared our method with two infeasible path
detection approaches such as those of Suhendra et al. [7] and
Gong and Yao [6]. The comparative experimental results for
different scale programs are shown in Table 5.

Table 5 shows, for each subject, the program name (col-
umn 1), the total number of paths detected (column 2),
the percentage of the infeasible paths that were detected
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TABLE 5. Experimental comparison results for different scale programs.

by the method of Suhendra et al. to the total number of
paths (column 3), the percentage of the infeasible paths that
were detected by the method of Gong et al. to the total
number of paths (column 4) and the percentage of the infea-
sible paths that were detected by our method to the total
number of paths (column 5). Where, the results are the
percentages of the infeasible paths that were detected by
the different methods to the total number of paths (TP).
The method of Suhendra et al. [7] did not detect infeasible
paths spanning across loop iterations. Thus, it considered the
CFG to be a directed acyclic graph (DAG), representing the
body of a loop. Furthermore, it only kept track of pairwise
‘conflicts’ between branches/assignments, which were either
Assignment-Branch (A-B) conflicts or Branch-Branch (B-B)
conflicts.

The method of Gong and Yao [6] used the maximum
likelihood estimation to obtain the branch correlations and
then detected the infeasible paths. However, there are some
differences between ourmethod and that of Gong andYao [6]:
(1) the method of Gong and Yao [6] does not analyses the
A-B correlation information, and it can only detect part of the
infeasible paths that were caused by all of the A-B conflicts.
(2) When detecting the feasibility of paths for the open-
source projects, the method of Gong and Yao [6] limited the
maximum of the branch statements to those that had a B-B
correlation and it could not detect the feasibility of paths
that were caused by the branch statements that exceeded the
limitation. In contrast, our method does not set a limitation,
that is, it can detect the infeasible paths that were caused by
any branch statements that have a B-B correlation and, thus,
it has stronger applicability.

V. RELATED WORKS
There are many research studies in the area of detecting
infeasible paths that are related to our work. Gong andYao [6]
and Suhendra et al. [7] proposed several methods based on
branch correlation. These methods cannot detect complex
predicates accurately. Unlike their approach, our method uses
an SMT solver to solve predicates, and the test results are
more accurate for first-order predicates.

Delahaye et al. [8], Jaffar et al. [9] and Tomb and Flana-
gan [10] detected infeasible paths based on the satisfiability
of the path conditions. These studies used methods similar to
a symbolic execution to extract path conditions and determine
whether a path was infeasible or not. However, such a method
needs to analyses all target paths, which consumes consider-
able test resources. Junker et al. [11] approach was to view

static analysis as a model checking problem, to iteratively
compute infeasible sub-paths of infeasible paths using SMT
solvers. Our approach mainly detects the sub-path set and
reduces the cost of analysis.

Hermadi et al. [12], Ghiduk [13] and Tonella et al. [14]
proposed dynamic methods for infeasible path detection,
which try to generate test cases for paths using a limited-depth
search. If test cases could not be found to cover a specific
path, this path was marked as infeasible. In path testing, such
methods are very effective. However, if all the paths in a
program need detect, the cost will be extremely high owing
to the path-explosion problem. Unlike their approaches of
the references [12]–[14], the detection range of our method
is more comprehensive. Most of the detection works are on
the sub-path set. Our method can solve the path-explosion
problem effectively and determine the feasibility of all paths.

Ngo and Tan [15] proposed a hybrid method that combined
a static method based on branch correlation analysis and
a dynamic method that chose feasible paths positively by
searching for appropriate test cases. This method achieved
satisfactory detection results, but consumed considerable test
resources because the detection combined static analysis and
dynamic analysis. This method is not suitable for detecting
large programs. However, our method is a static analysis
method that does not execute any programs, which can avoid
the overhead work required for dynamic analysis.

Lipton et al. [16] and Hamlet [17] were the first to pro-
pose equivalent mutants. They obtained a mutated program
by using syntax mutation operators to modify the program
slightly. Then, they ran test cases on the mutated program and
the original program to compare the similarities and differ-
ences between the results. Gong et al. [18] pointed out that
for a mutated statement, if there was no variable reference in
the consequent code, or the effect could not be propagated,
its mutant branch was infeasible. Offutt and Pan [19], [20]
addressed the problem of infeasible path detection by detect-
ing equivalent mutants; however, the cost of this method was
expensive because plenty of mutated programs should be run.
In contrast, our method is static and, therefore, the cost is
relatively small. In addition, DeMillo and Offutt [21] pointed
out that whether the mutated program was equivalent to the
source program could not be determined in the mutation
testing. Therefore, an infeasible path detection method based
on equivalent mutants is relatively inaccurate.

Zhang et al. [22] presented a novel method to generate
test data covering many paths of a complicated program.
Their generation of test data covering many paths is for-
mulated as several sub-optimization problems by grouping.
Gong et al. [23] focused on the problem of reducing schedul-
ing sequences for statement coverage of message-passing
parallel programs. Tian and Gong [24] focused on generating
test data covering paths rather than investigating coverage
criteria. Instead of seeking for paths, they set a path as the
target in advance. They studied effective methods of generat-
ing test data by using the co-evolutionary genetic algorithm
and the features of parallel programs. However, our method
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is a static analysis method that does not need to execute
programs, which can avoid the overhead work required for
execute programs.

VI. THREATS TO VALIDITY
We have noticed that there are two threats to the validity of
our approach.

The first threat is the accuracy of our approach, which
is affected mainly by two factors: the accuracy of the path
condition analysis and the accuracy of the SMT solver.

Aiming at the path condition analysis factor, we extract
path conditions by analyzing the code written in the Jimple
intermediate language, which is transformed from Java byte-
codes by Soot. The Jimple code is a static single-assignment
form; therefore, the complicated path conditions can be
split into several static single-assignment sub-conditions. Our
approach analyses each sub-condition and summarizes them
to obtain the complete path conditions; therefore, the process
of path condition analysis is accurate.

As for the accuracy of the SMT solver factor, the SMT
solver has higher accuracy6 for first-order equations.
We manually verified 500 infeasible paths and found no
errors. Some SMT solvers provide support for multi-order
equations, such as Choco.7 Choco solves a problem by
alternating the constraint filtering algorithms with a search
mechanism. We chose SMT Interpol for our experimenta-
tion because it is one of the fastest SMT solvers written in
Java.8 However, owing to the limitations of the SMT solver,
we can only deal with numerical comparison branches. Most
programming languages are object oriented (like Java); there-
fore, most of the function calls contain object references,
which are not supported by an SMT solver. In this case,
we treat the feasibility as unidentified. Therefore, our method
cannot detect inter-procedural infeasible paths.

The second threat is the path-explosion problem.
In Section III.D, we can see that a certain infeasible sub-path
(like sp4) can be expanded into several infeasible paths. In a
program, a conflict point may cause many infeasible paths.
If a certain infeasible sub-path contains a conflict point, then
this sub-path can be expanded into a number of infeasible
paths. To address this problem, we adopted the sub-path
expansion mechanism, which can solve the path-explosion
problem partly.

VII. CONCLUSIONS
This paper proposes a static method (SMT-IPD) based on
an SMT solver for detecting infeasible paths. This method
first generates a sub-path set, analyses branch predicates and
correlation variable definition points to construct a system
of inequalities, and then uses a constraint solver to solve
the inequalities. According to the results solved by the SMT

6http://smtcomp.sourceforge.net/2015/results-
QF_LRA.shtml?v=1446209369

7http://choco-solver.org/
8http://smtcomp.sourceforge.net/2015/results-

summary.shtml?v=1446209369

solver, SMT-IPD determines whether a sub-path is infeasible.
If the sub-paths are infeasible, then the expanded paths from
them are infeasible too. The paths that were expanded from
the undetermined part of the sub-paths need to be tested again
to determine their feasibility. Finally, the results contain the
feasibility of all the paths. Our experimental results showed
that this method has a higher accuracy, which can detect
infeasible paths effectively.

This study, like any other empirical study, has some limi-
tations. The first limitation is that our method cannot detect
inter-procedural infeasible paths. The second limitation is
that we don’t consider polymorphism, which may influent
the accuracy. The third limitation is the way of dealing
with the cycles, which are some assumptions we made in
Section III. A. This method indeed may affect the accuracy
of the approach. That is because our method is static analysis,
and static analysis methods generally deal with loops like
this. It’s really not as accurate as that of obtained by actually
running the program. In future work, we plan to apply some
intelligent judgment strategy to the sub-path set construction
algorithm, to obtain as many infeasible paths as possible.
We also plan to extend the optimal algorithm for generating
the sub path set, etc. Moreover, we will plan to consider
polymorphism in order to improve the accuracy.
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