
Received May 14, 2019, accepted May 26, 2019, date of publication May 29, 2019, date of current version June 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919680

Collaborative Framework for Early Detection
of RAT-Bots Attacks
AHMED A. AWAD 1, SAMIR G. SAYED 1,2,3, AND SAMEH A. SALEM 1,3
1Department of Electronics, Communications, and Computer Engineering, Faculty of Engineering, Helwan University, Cairo 11792, Egypt
2Department of Electronic and Electrical Engineering, University College London (UCL), London WC1E 6BT, U.K.
3Egyptian Computer Emergency Readiness Team (EG-CERT), National Telecom Regulatory Authority (NTRA), Cairo 12577, Egypt

Corresponding author: Sameh A. Salem (sameh_salem@h-eng.helwan.edu.eg)

This work was supported by the Egyptian Computer Emergency Readiness Team (EG-CERT) at the National Telecommunications
Regulatory Authority (NTRA), Egypt.

ABSTRACT Attackers tend to use Remote Access Trojans (RATs) to compromise and control a targeted
computer, which makes the RAT detection as an active research field. This paper introduces a machine
learning-based framework for detecting compromised hosts and networks that are infected by the RAT-Bots.
The proposed framework consists of two agents that are integrated to achieve reliable early detection of
the RAT-bots. The first agent, the host agent, is responsible for monitoring the system behavior of the
running host and raising an alarm for any anomalies. The second agent, the network agent, monitors the
network traffic to extract any malicious patterns. The integrated approach improves both the detection ratio
and accuracy. However, each approach cannot separately achieve the same performance as the proposed
RAT-Bots detection framework. The performance of the introduced framework is evaluated by using
real-world benchmark datasets. The experimental results show that the proposed approach can achieve an
accuracy of 98.83% with 1.45% false positive rate.

INDEX TERMS Bots, botnets, host-based detection, network-based detection, machine learning algorithms,
rootkit behavior.

I. INTRODUCTION
The advances in technology made it possible to do whatever
activities from home such as online transactions with banks,
shopping from online sites and online video games. This
kind of advance aims to comfort the internet users. However,
these technological improvements are encountered with a
real threat appeared from criminals in the cyber world, who
exploit vulnerabilities for their malicious intents. Malwares
and Malicious programs are a kind of application that is
designed and deployed for the aim of helping the intruder in
his/her malicious objectives. Worms, Trojans, viruses, back-
doors, keyloggers, botnets and ransomwares are examples
of malwares. Attackers use botnets to infect machines then
control it. Such approach for controlling an infected machine
is achieved by a communication scheme named Command &
Control (C&C) channels. The famous protocols used in the
C&C communication are IRC andHTTP protocols [1]–[3] to
launch synchronized attacks such as spam attacks, distributed

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

denial of service malicious behavior [4], phishing [5] and
scanning attacks [6].

Remote Access Trojans (RATs) are anAdvanced Persistent
software Threat (APT) version of botnet malwares. These are
designed for attacks with specific aim such as compromising
personal data, deleting important information, damaging a
specificmachine and controlling the victimmachine for mali-
cious intentions such as using the camera or the microphone
to capture the personal life of the victims. RAT’s primary
role is to provide control over a victim machine, which can
be achieved by injecting itself into legitimate programs for
hiding their malicious activities [7], [8].

RAT software is designed into two parts one installed on
the victim host and called RAT server, while the intruder
executes the second part (named RAT client). Intruders use
social engineering methods such as Drive-by-download to
download RAT server on the victim machine. In this con-
text, the gained root privileges at the setup process are pre-
served by RAT server for launching the required attacks
and disabling any functions intimidate its functionality [8].
The communication between RAT master (client) and its

71780
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-4119-9525
https://orcid.org/0000-0001-7259-3296
https://orcid.org/0000-0002-7553-4002


A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

slave (server) is either direct which initiated by RAT client
or reverse which started by RAT server. Most RATs are
conventionally using reverse connections as network security
policies prevent external connections [9]. Nevertheless, RAT
bots can cause severe damages to infected machines without
being detected [10]–[12]. In addition, intruders can control
more than one machine independently from the host’s loca-
tion.

The rest of the paper is organized as follows. Section II
presents the related work, while the proposed collaborative
framework is demonstrated in section III. Sections IV and V
provide the experimental results and discussions respectively.
Finally, Conclusions are given in section VI.

II. RELATED WORK
Researches have focused on the detection of botnets using
network analysis techniques. BotHunder is a passive network
monitoring tool developed byGu et al. [13]; for detecting bots
through capturing a communication sequence that occurred
during the infection cycle. Such approach fails to detect bots
with different sequence.

In [14], an anomaly detection technique called botminer
has been presented. This technique is used for botnet detec-
tion without any dependency on the structure or the commu-
nication protocol. It detects botnets by clustering machines
that have similar network activity patterns in the monitored
network. In this method, more than one infected machine is
needed in order to cluster their traffic. Jiang and Omote [9]
monitored network activities using machine learning algo-
rithms for early stage RAT detection.

Yamada et al. [15] presented an approach for raising alarms
for hosts with reconnaissance in their network pattern activ-
ities, which compromise other hosts using administrative
network protocols. Wu et al. [16] introduced a framework for
detecting RAT bots at the network gateway. This framework
detects the remotely controlled machines through human
operators who raise an alarm on these machines that have a
high infection probability. This is achieved by determining
the packet directions of IP flows of the monitored machines.
The captured IP flows are sliced according to packet arrival
time. After that, Naive Bayes classifier is used to decide the
infection of a given machine according to the packet direction
sequence in its flow fragments. Farinholt et al. [17] provided
a case study of the behavior of the darkcomets operators.
A statistical analysis of the operator’s actions is introduced
after the execution of several darkcomet bots in a given
honeypot.

Other researches focused on the detection of botnets using
host-based detection techniques. Stinson and Mitchell [18]
showed how to detect botnets by keep track of outsider
parameters such as parameters coming from the network.
Such approach can be easily defeated by applying any hid-
ing policy like the injection policy, where this policy hides
the existence of botnets. Brumley et al. [19] developed
a Minesweeper which is a RAT detection mechanism. This
mechanism captures triggered-based malicious software by

finding hidden behaviors and activating it to decide whether
its behavior is malicious or not. Nonetheless, automat-
ing such mechanism is a difficult task. Cui et al. [20]
detected malwares by observing internet connected processes
autonomously. Nonetheless, malwares can easily hide from
such monitoring by running their code inside the body of
other benign processes. Law et al. [21] decides whether a
machine is compromised or not after correlating and analyz-
ing its collected network and memory events.

Liang et al. [11] presented an approach for detecting if the
host is infected or not, such approach checks the running pro-
cess and based on the network properties it can differentiate
between a RAT and a benign process. Mimura et al. [22]
developed an extraction mechanism to extract executable
codes that are embedded inside document files without run-
ning the investigated files. Evasion techniques could be used
to evade this mechanism such as obfuscating the executable
code using encoding mechanisms; consequently, decryption
operations are required before running the extraction algo-
rithms. This method cannot be evaluated against the newRAT
bots.

Muthumanickam, and Ilavarasan [23] presented a method
for detecting peer-to-peer (P2P) botnets using host-based
analysis by monitoring the host and network behavior of
a machine. For host analysis, system file, registry, and
blacklisted IPs connected to the host machine are moni-
tored. Network analysis is implemented by clustering similar
machines using the number of connections of each node with
other nodes in the same network, intra/inter-communication
degree, and with other nodes in other networks. Next, the sus-
picious clusters are detected by determining similar behaviors
among hosts. The correlator stage decides whether a host is a
part of a botnet or not. Then, the host analyzer raises an alarm
for the hosts in the suspicious cluster. The performance of this
method could be improved by using advanced data mining
techniques that could lead to better results.

Zeng et al. [24] used a combined method for botnet detec-
tion, by monitoring host machine behavior such as mon-
itoring changes in the file system, registry, port numbers
and IP connections especially the applications that use uti-
lize simple mail transfer protocol (SMTP). After that, each
host will have a feature vector which will be classified by
supervised machine learning technique to detect if the host
is compromised or not. In the network analysis phase, the
researchers use a technique similar to botminer technique
with a different feature vector and datamining techniques for
detecting similar flows. After that, the correlator combines
alarms coming from host analyzers with hosts in suspicious
clusters to decide whether a given host is compromised or not.
Several issues face this framework. Firstly, the probability of
a host analyzer is being infected and deceived the correla-
tor by sending false alarms. Secondly, the network analyzer
could not group suspicious bots in the same cluster due to
their connection with different C&C servers. The third is the
scalability issue. Abdullah et al. [25] presented a combined
method for detecting P2P botnets. At the host level, the file

VOLUME 7, 2019 71781



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

FIGURE 1. The collaborative framework lifecycle: Red-colored host is the infected host. Upon an infection, the host
detector sends an alarm to the network agent for a deep investigation.

system, registry, and system logs are monitored at the same
time the network analyzer performing full packet payload
inspection to identify any suspicious activities from the traffic
generated by the host. After that, filtering is performed to the
flows according to the used protocol. Finally, in the correlator
stage, the feature vectors that are constructed from the host
and network data are clustered and then classified according
to P2P botnet behavior dataset. This method encounters diffi-
culties in identifying normal and abnormal P2P behavior for
classification purposes.

This paper presents a collaborative framework for RAT-
bot detection. This framework has two phases that represent
the host phase and the network phase. The first phase is
the host phase, where the host detector monitors the system
behavior and raises an alarm if, and only if, any anomaly
behavior is detected. The anomaly detection policy is based
on a sequence of activities considered as an indication for
suspicious behaviors. Any process exhibits this sequence is
considered as a suspicious process.

Regarding the network phase, the network detector starts
an investigation upon receiving an alarm from the host detec-
tor. An investigation is defined bymapping the infected host’s
network logs to a set of predefined features. Afterward, a final
decision is made based on this investigation.

The introduced framework is designed for RAT botnet
detection without considering the used C&C communica-
tion architecture or protocol. In addition, combining the host
and network techniques enhance the performance and give a
robust detection. The heuristic procedure has been selected
for its efficiency and low response time to be used in the
detection process on the host side. On the other hand, the use

of machine learning techniques in the network detection
phase is for avoiding the problems that float on the surface
when using the signature detection techniques such as the
failure in detection of zero-day botnets. Moreover, the usage
of statistical attributes in the presented framework enables
us to avoid problems that could be appeared if the C&C
communication data is encrypted or the concerns that could
be raised from saving the confidentiality and privacy of data
of the users.

III. THE COLLABORATIVE FRAMEWORK
A. OVERVIEW
The proposed framework has a two-phase decision-making
process; the first decision is about detecting unfamiliar behav-
ior on the host machine. In case of any suspicious behavior,
it decides to raise an alarm. Then such an alarm is passed to
the second decision maker which pulls the suspected host’s
network flow for further analysis. Based on the analysis of
results, a decision is made whether to report this host as an
infected host or not.

For the sake of clarity, Figure 1 shows the lifecycle of
an infected machine. Firstly, the host detected an anomaly
in the host’s behavior (message 1); therefore it reported this
anomaly through an alarm (message 2). Upon receiving such
an alarm, the network agent pulls this host’s network flow
then starts a deeper investigation. Based on the investigation
results, it decides that this host is infected (message 3); then
it broadcasts the investigation results.

As noticed from Figure1, the two-phase decision-making
process is achieved through two agents. The Host Agent
Detector (HAD) which is responsible for capturing any

71782 VOLUME 7, 2019



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

TABLE 1. Host features.

suspicious behavior while Network Agent Detector (NAD)
hunts down any infected machines by analyzing their net-
work’s flow logs. NAD performs its task whenever it receives
an alarm raised by HAD or on a predefined time period.
Procedure.1 describes the HAD while Procedure 2 defines
how the NAD is implemented.

B. HOST AGENT DETECTOR (HAD)
The main functionality of the Host Agent Detector (HAD) is
to track the evidence of successful RAT infections through
collecting memory, file system, registry, and network traces
along with the sequence of API calls for a given host. These
system activities are archived by the monitoring module.
The tracking module tracks the infection evidence for each
process and raises an alarm for any suspicious process. The
correlation of intrusion measurements allows the analyst to
acquire higher-level investigation of the alarms produced by
the host. Consequently, it is necessary to refine the noise-level
problems when using network Intrusion Detection System
(IDS) only. The monitoring module is the module that is
responsible for capturing the system behavior during the run
time of the machine.

This module consists of three components to track the full
functionality of the host to be monitored. The three compo-
nents are responsible for monitoring activities such as process
spawning, number of opened ports, number of connected IPs
for each process, and gained root accesses for controlling the
host as examples of RAT behaviors. The real-time behavior
of each process is monitored by hooking the Windows API
calls to intercept the sent arguments. It should be noted
that the proposed framework uses the modules of Microsoft
Operating System (MS-OS) service provider interface (SPI)
to perform the hooking process. Table 1 shows the events that
are tracked for each process.

The behavior analysis of many recent bots shows that
most of them share the same suspicious behaviors when
compromising a machine. Accordingly, a set of heuristic
features have been selected to be used in the decision process
as shown in Table 1. Number of opened connections (F0)
and the distinct connected IPs (F1) capture RAT’s network
behaviors. A RAT process opens fewer connections and con-
nects to a smaller number of distinct IPs compared with
benign processes. F2 feature identifies Rootkits behavior.
Any malicious behavior detected for any given process is
reported as feature F3. Many suspicious behaviors could be
monitored such as the execution of processes from paths
dissimilar from their original ones; the spawning of pro-
cesses from parents dissimilar from their original parents;
the connection of some processes to the internet while in

FIGURE 2. The host agent detector (HAD).

ordinary cases this connection should not exist. The Track-
ing module is the component that is responsible for cap-
turing the infection evidence for each host as illustrated in
Procedure 1.

Procedure 1: Host Agent Detector

1. While TRUE
2. Let F0 = CALL OPEN-CONNECTIONS-COUNT()
3. Let F1 = CALL CONNECTED-IPS()
4. Let F2 = CALL ROOTKITS()
5. Let F3 = CALL SUSPICIOUS()
6. If (F0 ∧ F1) ∧ (F2 ∨ F3) is TRUE
7. then
8. CALL RAISE-ALARM()
9. CALL SEND-HOST-INFORMATION()

As depicted in Procedure 1, since the HAD has to monitor
the host all the time; therefore, it should not have any termi-
nation condition.

At the beginning of each monitor cycle, the HAD captures
opened connections ports, current connected IPs, Rootkit’s
behavior and any other suspicious activities such as the exe-
cution of processes from different paths; the spawning of pro-
cesses from different parents; abnormal internet connections
for some processes as depicted in lines 2-5 for Procedure 1.
Then, the HAD raises an alarmwhen both an open connection
with distinct IPs occurs with either a rootkit or any suspicious
activity (lines 6-9).

C. NETWORK AGENT DETECTOR (NAD)
Regarding the Network Agent Detector (NAD), the well-
known Random Forest classifier is used to decide whether
the suspected host is infected or not through investigating
its network flow logs and the received information from
HAD. The NAD module consists of three components as
shown in Figure 3. The first component is the compo-
nent responsible for collecting the flows of the suspected
host. The other component is the one, which is respon-
sible for deciding on the host under investigation using
the random forest machine learning technique on a given

VOLUME 7, 2019 71783



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

FIGURE 3. The network agent detector (NAD).

extracted set of features. The NAD algorithm is depicted in
Procedure 2.

Procedure 2 Network Agent Detector

1. If CHECK-ON-ALARMS() ∨ TIME-OUT() is TRUE
2. then
3. Let FEATURES = CALL QUEUE()
4. If CHECK-ON-ALARMS() is TRUE
5. then
6. CALL PUSH(FEATURES, CALL GET-RAISED-

INFO())
7. If TIME-OUT() is TRUE
8. then
9. For Each HOST-INFO in CALL GET-HOSTS()
10. CALL PUSH(FEATURES, HOST-INFO)
11. While FEATURES is not EMPTY
12. Let HOST-FEATURE= CALL POP(FEATURES)
13. If CALL RANDOM-FOREST(HOST-FEATURE)

is INFECTED
14. then
15. CALL REPORT-INFECTED-HOST()

According to procedure 2, the NAD executes its decision-
process flow upon receiving an alarm from the HAD or at
predefined time-intervals (lines 1-2). Based on the activation
condition, the NAD decides whether to investigate a single
host or the whole network hosts (lines 3-10) by collecting
the features values and storing them in a queue. Each entry
in the queue is checked through the trained classifier and in
case of an infection detection; it reports such infection to an
administrator.

In the following subsections, a detailed overview on how
the NAD machine learning model was developed and trained
starting from the feature extraction phase towards the applied
training algorithm will be demonstrated.

TABLE 2. Selected network features.

1) FEATURE EXTRACTION PROCESS
In the first phase, the statistical features of each host are
extracted from the network logs of the host. To avoid any
privacy disclosure as well as dealing with the encoded traf-
fic [26], the extracted features mapped several observations
of the network behavior of several analyzed RATs. These
features show the distinct properties that can be used to
differentiate between RAT and benign traffics.

Commonly, features such as packet size, payload length,
and rate of input to output and interarrival time (IAT) between
packets can be used for differentiating RAT traffics. Those
features are selected based on several observations such as
the input traffic to RAT servers. In RAT-bots, the input traffic
is lower than the output traffic from RAT server, which repre-
sents RAT client queries. On the contrary, benign applications
such as internet browsing are commonly having input traffic
larger than the output traffic. Commonly, RAT server traffic
tries to hide their communication patterns with their RAT
clients as an evasion technique to make their traffic less
dense than benign applications [27]. As a result, the attributes

71784 VOLUME 7, 2019



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

FIGURE 4. Information gain values.

TABLE 3. Reduced network features.

F0 to F27 are selected to achieve this purpose as illustrated
in Table 2.

2) FEATURE SELECTION PROCESS
The feature selection phase aims to reduce the time com-
plexity of the classification process without deteriorating the
performance level; therefore a subset of features are selected
amongst thewhole feature set with taking care of not affecting
the classification performance. The best features are the ones
having the least redundant information and the most relevant
to the class selection process [28]. The features are selected
according to their information gain values that are computed
using Eq. (1).

IG (Class, Feature) = H (Class)− H (Class|Feature) (1)

As illustrated in Figure 4, the information gain of a twenty-
eight statistical network feature is computed to get the best set
of features. According to these values, the features with high
gain values are selected to be used for classification purpose
as shown in Table 3. Eight features are selected for each
host in the monitored network to be used in the classification
process for the hosts. Several ML algorithms [29] are used
for the classification stage to select the classifier with the best
performance to be the one which will be used in the detection
framework.

3) THE MACHINE LEARNING MODEL
In the classification phase, the feature vectors that are con-
structed by the feature extraction stage are classified into
either benign or malicious which represents RAT actions. For
reliable classification purposes, four machine learning algo-
rithms [7] are selected namely K-Nearest Neighbour (KNN)
classifier, Random Forest (RF) classifier, Support Vector

Machine (SVM) classifier, and Naïve Bayes (NB) classifier.
Random Forest (RF) is selected due to its efficiency and
accuracy [30]. The SVM algorithm has high scalability with
good performance [33]. Naive Bayes classifier and Nearest
Neighbour classifier are chosen for their simple implemen-
tations and popularity amongst the machine learning appli-
cations [31]–[34]. The models have been acquired during
the training phase for these classifiers using training data
obtained from various benign applications and several mali-
cious samples of RAT botnets.

a: SUPPORT VECTOR MACHINE (SVM)
It is a classification technique that is used in binary clas-
sification to separate two classes using a hyperplane. The
hyperplane has n-1 dimensionality to classify data points of
n dimensions. The margin of the SVM classifier is the maxi-
mum distance between the separating plane and the nearest
data points. The two classes are best separated when the
margin is maximum for both sides. The SVM algorithm has
high scalability with good performance in solving difficult
classification problems [33]. SVM model is generated using
a group of m training points {(x1, y1), (x2, y2), (xk, yk),. . . ,
(xm, ym)}, where yk ε {− 1,1}demonstrating the category
of k-th sample point. After a classification model is obtained,
point x could be categorized according to Eq. (2).

f (x) = sign (w.x + c) = sign(
∑m

i=1
aiyi (xi.x)+ c) (2)

where w and c are used to define the separation hyper plane,
ai denotes the data point’s Lagrangemultiplier value It is used
as a representation of the closeness of the point to the hyper
plane where ai > 0 for the close points and zero otherwise.
To handle nonlinear problems, kernel functions should be

used for mapping the problem to another feature space to
enable the separation. Linear, radial and polynomial basis
kernel functions are the most popular kernel functions used
in the SVM classifier. In this paper, the Radial Basis Func-
tion (RBF) is elected as in Eq. (3). RBF is selected because
of its ability to handle classification problems with high
complexity as it has a small number of parameters and a lower
complexity value than other kernel functions.

K
(
xi, xj

)
= exp(γ

∥∥xi − xj∥∥2) (3)

The parameters (C and γ ) should be tuned when dealing
with the RBF kernel function to adjust the performance of
the classifier as to reduce the complexity with acquiring
low error rate in the same time [31]. The Kernel function
and its parameters are selected and tuned according to the
classification problem and its domain.

b: NAIVE BAYES (NB)
It is a probabilistic classification technique that is based on
Bayes hypothesis that assumes that independence relation-
ship exists between the features of a given data sample.
Accordingly, the posterior probability of class C for a given

VOLUME 7, 2019 71785



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

TABLE 4. Cross-Validation results for the introduced framework using the reduced feature set.

sample with k features is shown in Eq. (4).

P (C |X) = P (Cn)
∏k

i−1
P (xi |C) (4)

where the data sample X is classified into the category with
the highest probability. The simple hypothesis of features
independence reduces the size of the training data which lead
to decreasing the time needed for creating the classification
model [31], [34].

c: KNN (lAZY CLASSIFIERS)
K-Nearest Neighbor is a classification technique in which the
classification decision for a given sample is taken based upon
the major class of the K-nearest data points to this sample.
There is no training phase needed as no classification model
is required to perform the classification process. In fact, the
computations and decisions are taken during the classification
process for the test samples. The decision is taken by com-
paring the test sample by all the stored samples to determine
which K-samples are the closest to the test sample. The
dissimilarity measures can be computed using various meth-
ods such as Manhattan, Minkowski, and Euclidean distances.
Although overfitting issues are resolved using this technique,
the classifier performance is degraded when a small training
data set is used [24].

d: RANDOM FOREST (RF)
In this algorithm, a bagging technique is used for generating
numerous sub-decision trees with a final decision computed
by averaging the outputs of these trees. This methodology is
used for enhancing the stability as well as the accuracy of the
traditional decision tree (DT) algorithm [30].

4) THE MODEL TRAINING ALGORITHM
For reliable evaluations, real-world benign and malicious
traffic are used to construct the dataset. The benign traffic
is extracted from a benchmark dataset, which is DARPA
intrusion detection evaluation dataset [35], and the normal
traffic of Egyptian Computer Emergency Readiness Team
(EG-CERT) premises [36]. Nine bots are considered the main
source of the malicious dataset which are Storm botnet, Cer-
berus botnet, PandorRAT botnet, Turkojan botnet, Cybergate
botnet, GremmRAT botnet,Waledac botnet, XtremeRAT bot-
net, and NovaliteRAT botnet. The nine RATs are acquired
from the EG-CERT. The performance of NAD using var-
ious classifiers is illustrated in Table 4. In the training
phase, a 10-fold cross-validation (CV) mechanism is used
for choosing the training subset, where the captured dataset
is divided into training and testing subsets for the purpose

FIGURE 5. Various classifiers ROC curves.

of classification. In the training phase, the classifiers are
trained to generate a classification model which is used in
the testing phase to evaluate the performance of the classi-
fier. The experiments are conducted using Matlab platform.
It should be noted that the parameters for each of the usedML
techniques are adjusted to achieve satisfactory performance
on the acquired dataset.

As shown in Table 4, the Random Forest (RF) technique
affords accuracy above 99% with 0.62% FPR, Followed
by the SVM and KNN algorithms. The high results that
are obtained from RF could be interpreted to the bagging
methodology that is used by the RF algorithm. This technique
treats the overfitting problems that are encountered with the
decision tree (DT). The NB technique provides the worst per-
formance with an accuracy of 88% and high false positive and
false negative rates. Naïve Bayesian (NB) classifier provides
low detection accuracy with a high false positive rate. The
result of NB could be interpreted as an assumption on network
features independence, which is not the case in this research.

Figure 5 represents the ROC curve that depicts the perfor-
mance of the aforementioned classifiers used in the 10-fold
cross validation training and evaluation process. As shown,
the classifier with the best performance is the RF classifier
with a curve that has an area under curve (AUC) value
approaches to one.

For further investigations, several experiments with a dif-
ferent number of trees are carried out to select the best fit
number of trees that achieve the best performance as shown
in Table 5. However, and it should be noted that the RF
classifier suffers from high time complexity.

Concerning the KNN technique, the best performance has
been acquired at K = 1 with 98.63% accuracy and low FPR,

71786 VOLUME 7, 2019



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

TABLE 5. 10-fold Cross-Validation results for the RF classifier for different tree numbers using reduced feature set.

TABLE 6. 10-fold cross validation results for KNN classifier for different K values using reduced feature set.

TABLE 7. SVM with different kernel functions’ 10-Fold CV Results.

where various K values are tested, and their results are shown
in Table 6. As depicted in the results, the performance of the
KNN classifier is impacted by the size of the training data
which is considered one of its drawbacks.

The usage of the sequential minimal optimization (SMO)
algorithm with the radial basis function (RBF) for the SVM
classifier gives an accuracy of 96.15%. The penalty (C) and
kernel parameters (γ ) are tuned to values which produce the
best accuracy. Accordingly, several values are evaluated as
shown in Table 7.

According to the aforementioned results, the high accuracy
in detection combined with low false positive rates are the
main reasons for selecting the RF classifier.

IV. EXPERIMENTAL RESULTS
A. TESTBED ARCHITECTURE
To evaluate the introduced framework, a virtual network with
five connected hosts, one RAT client and a host network agent
as shown in Figure 6.

B. BENCHMARKING METRICS
To evaluate the presented framework, the overall accu-
racy (ACC), false positive rate (FPR), and false negative
rate (FNR) are used as key performance indicators (KPI) as
in Eqs. (5):

ACC =
TP + TN

TP + TN + FP + FN

FPR =
FP

FP + TN

FNR =
FN

FN + TP
(5)

where TP denotes the number of malicious samples that are
detected as malicious. TN represents the number of benign

FIGURE 6. Experimental testbed for evaluating the framework.

samples that are detected as benign. FP indicates the number
of benign samples detected as malicious FN is the number of
malicious samples detected as benign.

C. DATASETS
Several experiments are carried out on seven unknown RAT
bots for evaluating the performance of the proposed frame-
work. DarkComet botnet, SolitudeRAT botnet, Zeus botnet,
SchwarzesonneRAT botnet, SpyNet botnet, ProRAT botnet,
and NJRAT botnet are the seven malicious samples that are
used in the testing phase. Benign samples, To evaluate the
framework against benign applications that have similar RAT
behaviors such as browsing applications, desktop applica-
tions, and real world DARPA dataset [35].

VOLUME 7, 2019 71787



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

TABLE 8. Performance evaluation of the proposed framework in testing phase.

TABLE 9. Performance evaluation of the proposed framework in testing phase.

FIGURE 7. ROC curve for the proposed collaborative framework.

V. RESULTS AND DISCUSSION
Experimental results are explored in Figure 7 which depicts
the Receiver operating characteristic (ROC) curve for the
introduced framework. As depicted, the performance of our
framework is illustrated by a ROC curve that has an AUC that
is approximated to 1 in the test phase.

As shown in Table 8, the proposed framework provides
the best detection accuracy with low false positive and neg-
ative rates. The purposed framework succeeded in detecting
the malicious RAT samples and reporting their status to the
administrator. After deep investigation, it has been found that
the 1.45% FPR resulted from running irc program instances
on the machines. As this program has the characteristics that
are similar to the RAT botnets, the collaborative framework
raised an alarm on the machines that have irc client instances
ran on it.

A. COMPARISON WITH COMPETITIVE ADVERSARIAL
FRAMEWORKS
According to the presented results in Table 9, it could be con-
cluded that the introduced framework provides good detec-
tion accuracy with a low false positive rate in the detection of
the RAT families which have been tested. Moreover, the col-
laborative framework presents a better accuracy and FPR
than the detection framework that was introduced in [7]. For
the host-based framework that was introduced in [8], the

collaborative framework has a better FNR and detection accu-
racy. Combining the host and network approaches enhance
the accuracy and lowering the FPR and FNR rates.

The dialog approach that is used by the bothunter [13]
framework could results in a detection failure for botnets
with infection cycle that is different from the infection cycle
that is assumed by the bothunter. This is not the case in
the proposed collaborative framework that uses the machine
learning techniques in the NAD part for detecting botnet
samples with different cycles of infection.

On the other hand, successful detection of infection
resulted from the botminer framework [14] needs a large
number of infected machines in the same network while the
proposed collaborative framework gets over this requirement
by using heuristic and machine learning techniques to detect
even one infected machine in the monitored network. For
the competitive framework in [15], a RAT botnet is detected
by analyzing the network traffic to get specific manage-
ment protocol commands for botnet detection. This could
limit the detection capabilities specifically for RAT bots that
do not use such types of commands. While the proposed
detection framework is a hybrid framework depending on
machine learning techniques the detection algorithm on the
host machine. Rishi framework [39] and Botsniffer frame-
work [40] both depend on the C&C communication protocol
commands for bot detection. The comparison between the
frameworks is summarized in Table 9.

It should be noted that the comparison process of botnet
detection methodologies that are used in the literature is
difficult to achieve due to several factors such as the existence
of various RAT botnets versions without appropriate docu-
mentation, that help in accurate realizations for each of these
techniques. Besides, obtaining datasets of malicious botnets
to act as a common ground in the performance evaluation
phase is a difficult task as reported in [37], [38], which lead
to the infeasibility of comparing different frameworks using
different botnet sets which will have different feature sets.
The absence of standard methods for comparison as well as
common error metrics introduces another challenge in the
comparison process. Subsequently, it is concluded that the
results of the proposed framework could not be compared
with other techniques due to the lack of common botnet

71788 VOLUME 7, 2019



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

datasets, the unavailable description of the introduced tech-
niques, the lack of common comparison methods and perfor-
mance metrics [41].

B. COMPLEXITY ANALYSIS
For computational analysis purposes, the time complexity is
used to evaluate the proposed framework. In this context,
the time complexity of each module of the introduced collab-
orative framework is computed. According to Procedure 1,
the time complexity of the HAD module is O(p), where the p
is the number of running processes in the host machine, while
the running time for the NADmodule isO(nk), where n is the
number of hosts in themonitored network and k is the number
of features. Therefore, the overall time of complexity for the
proposed framework is O (p)+ O(nk).

VI. CONCLUSIONS
This paper has introduced a collaborative framework
for RAT-bots detection. Through describing a two-phase
decision-making process for detecting infected RAT hosts
using machine learning approaches. The first phase is the
host agent detector (HAD) which resides on each host on the
monitored network, and the network agent detector (NAD)
which is installed on the network gateway. The HAD is
responsible formonitoring the system behavior of the running
machine raising an alarm for any anomalous behavior from
any process. This alarm triggers the NAD to start investi-
gating the suspicious host. The investigation is carried out
through capturing the network logs of the suspicious host and
mapping its network behavior into a structured feature vec-
tor for classification purposes. These approaches proved to
outperform various available RAT-bots detection frameworks
with 98.83% accuracy with 1.45% false positive rate in the
experimental results. In the future, further investigation will
be carried out along with more effective features are to be
selected and computed for enhancing the robustness of the
proposed framework. In addition, more RAT botnet samples
will be acquired and tested using the detection framework.

ACKNOWLEDGMENT
The authors would like to thank the Malware Analysis and
Reverse Engineering team in the EG-CERT for providing
helpful ideas and the malicious database used in this research.

REFERENCES
[1] A. Karim, R. Salleh, M. K. Khan, A. Siddiqa, and K.-K. R. Choo, ‘‘On

the Analysis and Detection of Mobile Botnet Applications,’’ J. Universal
Comput. Sci., vol. 22, no. 4, pp. 567–588, 2016.

[2] K. Simon, C. Moucha, and J. Keller, ‘‘Contactless vulnerability analysis
using Google and shodan,’’ J. Universal Comput. Sci., vol. 23, no. 4,
pp. 404–430, 2017.

[3] A. Karim, R. B. Salleh, M. Shiraz, S. A. A. Shah, I. Awan, and
N. B. Anuar, ‘‘Botnet detection techniques: Review, future trends, and
issues,’’ J. Zhejiang Univ. Sci. C, vol. 15, no. 11, pp. 943–983, Nov. 2014.

[4] M. Zahid, A. Belmekki, andA.Mezrioui, ‘‘A new architecture for detecting
DDoS/brute forcing attack and destroying the botnet behind,’’ in Proc. Int.
Conf. Multimedia Comput. Syst., May 2012, pp. 899–903.

[5] A. R. Rodrìguez-Gómez, G. Maciá-Fernández, and P. García-Teodoro,
‘‘Survey and taxonomy of botnet research through life-cycle,’’ ACM Com-
put. Surv., vol. 45, no. 4, Aug. 2013, Art. no. 45.

[6] I. Ghafir, V. Prenosil, M. Hammoudeh, T. Baker, S. Jabbar, S. Khalid, and
S. Jaf, ‘‘Botdet: A system for real time botnet command and control traffic
detection,’’ IEEE Access, vol. 6, pp. 38947–38958, 2018.

[7] A. A. Awad, S. G. Sayed, and S. A. Salem, ‘‘A network-based framework
for RAT-bots detection,’’ in Proc. 8th IEEE Annu. Inf. Technol., Electron.
Mobile Commun. Conf. (IEMCON), Oct. 2017, pp. 128–133.

[8] A. A. Awad, S. G. Sayed, and S. A. Salem, ‘‘A host-based framework for
RAT bots detection,’’ in Proc. Int. Conf. Comput. Appl. (ICCA), Sep. 2017,
pp. 336–342.

[9] D. Jiang and K. Omote, ‘‘An approach to detect remote access trojan in
the early stage of communication,’’ in Proc. IEEE 29th Int. Conf. Adv. Inf.
Netw. Appl., Mar. 2015, pp. 706–713,

[10] M.Mimura, Y. Otsubo, H. Tanaka, and H. Tanaka, ‘‘A practical experiment
of the HTTP-based RAT detection method in proxy server logs,’’ in Proc.
12th Asia Joint Conf. Inf. Secur. (AsiaJCIS), Aug. 2017, pp. 31–37.

[11] Y. Liang, G. Peng, H. Zhang, and Y. Wang, ‘‘An unknown trojan detection
method based on software network behavior,’’Wuhan Univ. J. Natural Sci.,
vol. 18, no. 5, pp. 369–376, Oct. 2013.

[12] S. C. Pallaprolu, J. M. Namayanja, V. P. Janeja, and C. T. S. Adithya,
‘‘Label propagation in big data to detect remote access trojans,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2016, pp. 3539–3547.

[13] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, Bothunter:
Detecting Malware Infection Through IDS-Driven Dialog Correlation.
Berkeley, CA, USA: USENIX Association, 2007.

[14] G. Gu, R. Perdisci, J. Zhang, and W. Lee, ‘‘BotMiner: Clustering analysis
of network traffic for protocol- and structure-independent botnet detec-
tion,’’ inProc. 17th Conf. Security Symp., Berkeley, CA, USA, vol. 8, 2008,
pp. 139–154.

[15] M. Yamada, M. Morinaga, Y. Unno, S. Torii, and M. Takenaka, ‘‘RAT-
based malicious activities detection on enterprise internal networks,’’ in
Proc. 10th Int. Conf. Internet Technol. Secured Trans. (ICITST), Dec. 2015,
pp. 321–325.

[16] S. Wu, S. Liu, W. Lin, X. Zhao, and S. Chen, ‘‘Detecting remote access
Trojans through external control at area network borders,’’ in Proc.
ACM/IEEE Symp. Architectures Netw. Commun. Syst. (ANCS), May 2017,
pp. 131–141.

[17] B. Farinholt,M. Rezaeirad, P. Pearce, H. Dharmdasani, H. Yin, S. L. Blond,
D. McCoy, and K. Levchenko, ‘‘To catch a ratter: Monitoring the behavior
of amateur darkcomet rat operators in the wild,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2017, pp. 770–787.

[18] E. Stinson and J. C. Mitchell, ‘‘Characterizing bots’ remote control behav-
ior,’’ In Proc. 4th Int. Conf. Detection Intrusions Malware, Vulnerability
Assessment, (DIMVA), vol. 7. Berlin, Germany: Springer-Verlag, 2007,
pp. 89–108.

[19] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,
‘‘Automatically identifying trigger-based behavior in malware,’’ in Botnet
Detection. Advances in Information Security, vol. 36, W. Lee, C. Wang,
and D. Dagon, Eds. Boston, MA, USA: Springer, 2008, pp. 65–88.

[20] W. Cui, R. Katz, and W.-T. Tan, ‘‘BINDER: An extrusion-based break-
in detector for personal computers,’’ in Proc. USENIX Annu. Tech. Conf.
(ATEC), Berkeley, CA, USA, vol. 5, Apr. 2005. pp. 363–366.

[21] F. Y. W. Law, K. P. Chow, P. K. Y. Lai, and H. K. S. Tse, A Host-
Based Approach to BotNet Investigation. Berlin, Germany: Springer, 2010,
pp. 161–170.

[22] M. Mimura, Y. Otsubo, and H. Tanaka, ‘‘Evaluation of a brute forcing tool
that extracts the RAT from a malicious document file,’’ in Proc. 11th Asia
Joint Conf. Inf. Secur. (AsiaJCIS), Aug. 2016, pp. 147–154.

[23] K. Muthumanickam and E. Ilavarasan, ‘‘P2P Botnet detection: Combined
host- and network-level analysis,’’ in 3rd IEEE Int. Conf. Comput., Com-
mun. Netw. Technol. (ICCCNT), Jul. 2012, pp. 26–28.

[24] Y. Zeng, X. Hu, and K. G. Shin, ‘‘Detection of botnets using combined
host- and network-level informati,’’ in Proc. IEEE/IFIP Int. Conf. Depend-
able Syst. Networks (DSN), Jun. 2010, pp. 291–300.

[25] R. S. Abdullah, M. F. Abdollah, Z. A. M. Noh, M. Z. Mas’ud, S. Sahib,
and R. Yusof, ‘‘Preliminary study of host and network-based analysis on
p2p botnet detection,’’ in Proc. Int. Conf. Technol., Inform., Manage., Eng.
Environ. (TIME-E), Bandung, Indonesia, Jun. 2013, pp. 105–109.

[26] R. Bapat, A. Mandya, X. Liu, B. Abraham, D. E. Brown, H. Kang, and
M. Veeraraghavan, ‘‘Identifying malicious botnet traffic using logistic
regression,’’ in Proc. Syst. Inf. Eng. Design Symp. (SIEDS), Apr. 2018,
pp. 266–271.

VOLUME 7, 2019 71789



A. A. Awad et al.: Collaborative Framework for Early Detection of RAT-Bots Attacks

[27] S. Khanchi, N. Zincir-Heywood, and M. Heywood, ‘‘Streaming botnet
traffic analysis using bio-inspired active learning,’’ in Proc. IEEE/IFIP
Network Oper. Manage. Symp. (NOMS), Apr. 2018, pp. 1–6.

[28] M. Oulehla and Z. K. Oplatková, and D. Malanik, ‘‘Detection of mobile
botnets using neural networks,’’ in Proc. Future Technol. Conf. (FTC),
Dec. 2016, pp. 1324–1326.

[29] D. Gavriluţ, M. Cimpoeşu, D. Anton, and L. Ciortuz, ‘‘Malware detection
using machine learning,’’ in Proc. Int. Multiconf. Comput. Sci. Inf. Tech-
nol., Oct. 2009, pp. 735–741.

[30] K. Singh, S. C. Guntuku, A. Thakur, and C. Hota, ‘‘Big data analytics
framework for peer-to-peer botnet detection using random forests,’’ Inf.
Sci., vol. 278, pp. 488–497, Sep. 2014.

[31] P. SangitaB and S. R. Deshmukh, ‘‘Use of Support Vector Machine, deci-
sion tree and Naive Bayesian techniques for wind speed classification,’’ in
Proc. Int. Conf. Power Energy Syst., Dec. 2011, pp. 1–8.

[32] S. Garg, A. K. Singh, A. K. Sarje, and S. K. Peddoju, ‘‘Behaviour analysis
of machine learning algorithms for detecting P2P botnets,’’ in Proc. 15th
Int. Conf. Adv. Comput. Technol. (ICACT), Sep. 2013, pp. 1–4.

[33] P. Barthakur, M. Dahal, and M. K. Ghose, ‘‘A framework for P2P botnet
detection using SVM,’’ in Proc. Int. Conf. Cyber-Enabled Distrib. Comput.
Knowl. Discovery, Oct. 2012, pp. 195–200.

[34] D. Xhemali, J. C. Hinde, and G. R. Stone, ‘‘Naïve Bayes vs. Decision Trees
vs. neural networks in the classification of training Web pages,’’ Int. J.
Comput. Sci. Issues, vol. 4, no. 1, pp. 16–23, 2009.

[35] Last Visited. (2018). [Online]. Available: https://www.ll.mit.edu/ideval/
data/1999data.html

[36] last visited. (Jan. 2019). [Online]. Available: http://www.egcert.eg/
[37] A. J. Aviv and A. Haeberlen, ‘‘Challenges in experimenting with botnet

detection systems,’’in Proc. 4th Conf. Cyber Secur. Experimentation Test,
(CSET), Berkeley, CA, USA, 2011, p. 6.

[38] P. E. Berg, K. Franke, and H. T. Nguyen, ‘‘Generic feature selection
measure for botnet malware detection,’’ in Proc. 12th Int. Conf. Intell. Syst.
Design Appl. (ISDA), Nov. 2012, pp. 711–717.

[39] J. Goebel and T. Holz, ‘‘Rishi: Identify bot contaminated hosts by irc
nickname evaluation,’’ inProc. USENIXWorkshopHot Topics Understand.
Botnets (HotBots), Apr. 2007, p. 8

[40] G. Gu, J. Zhang, and W. Lee, ‘‘BotSniffer: Detecting botnet command and
control channels in network traffic,’’ in proc. 16th Annu. Network Distrib.
Syst. Secur. Symp., 2008, pp. 1–12.

[41] S. García, M. Grill, J. Stiborek, and A. Zunino, ‘‘An empirical compari-
son of botnet detection methods,’’ Comput. Secur., vol. 45, pp. 100–123,
Sep. 2014.

AHMED A. AWAD received the B.Sc. and
M.Sc. degrees in electronics, communications, and
computer engineering from the Faculty of Engi-
neering, Helwan University, in 2011 and 2018,
respectively. He is currently pursuing the Ph.D.
degree with Tennesse Tech University, USA. He is
currently a Teaching Assistant with Helwan Uni-
versity, involved in many of its research projects.
His research interests include malware analysis,
data mining, algorithms and data structure, and
botnets.

SAMIR G. SAYED received the B.S. and M.Sc.
degrees from the Department of Electronics
and Engineering, Helwan University, Egypt,
in 1996 and 2003, respectively, the Ph.D. degree
in electronic and electrical engineering from the
University College London (UCL), U.K., in 2010.
Since 2014, he has been anHonorary Lecturer with
UCL. Since 2011, he has been the Director of the
Malware and Reverse Engineering Department,
Egyptian Computer Emergency and Readiness

Team (EG-CERT). His research interests include cyber security, malware
analysis, and wireless networks. In 2019, he will be promoted as anAssociate
Professor with the Electronics, Communications, and Computer Engineering
Department, Helwan University, Cairo, Egypt.

SAMEH A. SALEM received the B.Sc. degree
and the M.Sc. degree in communications and
electronics engineering from Helwan University,
Cairo, Egypt, in 1998 and 2003, respectively, the
Ph.D. degree in engineering from the Department
of Electrical Engineering and Electronics, The
University of Liverpool, U.K., in 2008. In 2008,
he was appointed as an Assistant Professor with
the Department of Electronics, Communication,
and Computer Engineering, Faculty of Engineer-

ing, Helwan University, Egypt. He is also selected to be a Coordinator and an
Academic Advisor with the Department of Communication and Information
Technology, Uninettuno University, Italy, incorporation with the Faculty of
Engineering, Helwan University, Egypt. He is reviewing several proposals
and research projects at the National Telecommunication Regulatory Author-
ity (NTRA), Egypt. He is the Postgraduate Coordinator between the Faculty
of Engineering-Helwan University and the Faculty of Engineering Sciences
at Sinai University. In 2014, he was promoted to be an Associate Professor,
and an Honorary Research Fellow with the Department of Electrical Engi-
neering & Electronics, The University of Liverpool. He is currently a Con-
sultant with the Egyptian Computer Emergency Response Team (EG-CERT)
and the Head of Electronics, Communications, and Computer Engineering
Department, Helwan University, Cairo, Egypt. His research interests include
cyber security, malware analysis, clustering algorithms, machine learning,
data mining, parallel computing, and cloud computing.

71790 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	THE COLLABORATIVE FRAMEWORK
	OVERVIEW
	HOST AGENT DETECTOR (HAD)
	NETWORK AGENT DETECTOR (NAD)
	FEATURE EXTRACTION PROCESS
	FEATURE SELECTION PROCESS
	THE MACHINE LEARNING MODEL
	THE MODEL TRAINING ALGORITHM


	EXPERIMENTAL RESULTS
	TESTBED ARCHITECTURE
	BENCHMARKING METRICS
	DATASETS

	RESULTS AND DISCUSSION
	COMPARISON WITH COMPETITIVE ADVERSARIAL FRAMEWORKS
	COMPLEXITY ANALYSIS

	CONCLUSIONS
	REFERENCES
	Biographies
	AHMED A. AWAD
	SAMIR G. SAYED
	SAMEH A. SALEM


