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ABSTRACT Fuzzy rule-based models form a commonly encountered category of fuzzy models. As such
they have enjoyed a great deal of conceptual and algorithmic developments followed by numerous case
studies. This paper contributes to this area by bringing forward a two-phase design of fuzzy rules completed
on the basis of experimental data. This design directly reflects upon the nature of the rules vis-à-vis the
data used in their construction. First, information granules (fuzzy sets) standing in condition and conclusion
parts of the individual rules are formed following a commonly used clustering technique of Fuzzy C-Means
(FCM). The results of fuzzy clustering are directly used to build a collection of fuzzy sets of conditions
and conclusions forming the individual rules. Some optimization aspects are raised in this context by
expressing the performance of the condition and conclusion fuzzy sets in terms of the reconstruction abilities
of the data captured by the rules. Second, fuzzy sets present in the rules (which are typically described by
membership functions having infinite support) are transformed into interval-valued information granules
of finite support that capture the essential (core) relationships between the regions in the input and output
spaces strongly supported by the experimental data. In this way, the proposed rule-based model exhibits a
two-tier architecture built in two successive phases. Subsequently, the proposed architecture invokes two
fundamentally different modes of reasoning: 1) a recall mode in case when a new datum is positioned within
the interval-valued information granules and 2) approximation mode where we invoke an aggregation of the
individual rules given their activation levels in case a new datum does not belong to the core structure of the
rules. These two modes produce granular results (represented as intervals). A way of assessing the quality
of the obtained results is provided. Along with these two modes, we offer a characterization of the quality
of results as well as the quality of the rules (expressed in terms of coverage, specificity of condition space
and specificity of conclusion space). Experimental results are reported to illustrate the design process and
the performance of the constructed model.

INDEX TERMS Fuzzy sets, information granules, the principle of justifiable granularity, fuzzy rule-based
model.

I. INTRODUCTION
In fuzzy system modeling, rule-based architectures are
commonly encountered in the literature and come with
a great deal of concepts, algorithms, and applications,
cf. [3], [8], [10], [11], [34]. The generic topology of an
n-dimensional input-single output structure of a rule-based
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approving it for publication was Ananya Sen Gupta.

model (a so-called Mamdani type of model [13], [15]) com-
prises c rules coming in the following form

−if x is Ai, then y is Bi (1)

where Ai and Bi are fuzzy sets [1], [2], [9], [26], [33], [39],
[40], [43] defined in the input space and output space,
respectively; x ∈Rn and y ∈ R. Once the model has been
constructed, for any given input x, the output is determined
by aggregating the levels of activation of the rules A1(x),
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A2(x), . . . ,Ac(x) along with the fuzzy sets forming the con-
clusion parts of the rules. In the sequel, the result of aggrega-
tion is decoded to form a single numeric output. In this way,
the output does not distinguish between a situation when the
input matches quite well one of the rules (and in this sense the
obtained output is strongly supported by the corresponding
fuzzy set located in the output space) and a diametrically
different situation where the input is localized in the region
where membership grades of Ai are quite low (and hence the
confidence associated with the output produced by the fuzzy
model becomes quite low as well).

To address this issue, the objective of this study is to
develop a granular rule-based model [5]–[7], [19], [21],
[22], [29] coming in the form of intervals exhibiting a finite
support. In this way, we establish a two-tier (layered) model
to quantify relevance (confidence) of the results. This makes
a clear distinction between the two fundamentally different
situations encountered when using the rule-based model:

- core – data driven model: when a new datum is contained
within information granules [4], [12], [14], [18], [25], [30],
[32], [41] built upon a basis of the original fuzzy set of
condition. The location of information granule is associated
with the region of the input space where there was a high
density of data.

- data – invoked approximation: a new datum is located
outside the regions strongly supported by experimental data.
We anticipate that the confidence in the result is naturally
weaker than that in the first scenario.

From the design perspective to reflect these two categories
of situations, based on the original rules we form the rules
with interval-valued information granules of finite support,
say Ãi and B̃i, where they are built on a basis of the fuzzy sets
Ai and Bi but they capture the essence (core) of these fuzzy
sets. The i-th rule reads as follows

−if x is Ãi then y is B̃i (2)

The two categories of situations are invoked with reference
to the location of x with respect to the constructed informa-
tion granules. In contrast to the ‘‘standard’’ fuzzy models
which produce numeric outputs, the outcome of the granular
fuzzy model is an interval information granule. This implies
that the performance of the model is quantified by analyz-
ing the behavior of granular output vis-à-vis numeric data.
To address this problem, we consider performance evaluation
in terms of indices that are pertinent to information granules,
namely a coverage and specificity measures.

In this study, we propose an original two-phase approach
to the design and ensuing characterization of fuzzy rule-based
models in which by starting with fuzzy sets constructed with
the aid of the FCM algorithm [20], [36], [37], the rules are
refined in the form given by (2). In contrast to the existing
fuzzy models, we delineate between the results that come
from the core of the model (being supported by the col-
lection of information granules) and those being results of
approximation in case the input data are located outside the
regions densely populated by the experimental data and thus

quantified by information granules of a usually lower level of
specificity.

This study is structured as follows. We start with some
prerequisites (section 2) which concerns with reconstruction
of fuzzy sets of condition and conclusion. Based on the
reconstruction results, we form a collection of interval-valued
information granules with the use of the principle of justifi-
able granularity. In section 3, we concentrate in three items –
specificity of condition, specificity of conclusion and a joint
coverage, which are considered as a characterization of the
quality of the rules. The processing in the granular rule-based
model and its evaluation of performance are presented in
section 4. In section 5, we present a series of experimen-
tal studies in which we present the formation of the fuzzy
rule-based model and their analysis. Conclusions parts are
provided in section 6.

II. PREREQUISITES
In this section, we elaborate on the formation of fuzzy sets
standing in the rules by engaging the clustering mechanism
of Fuzzy C-Means (FCM). In parallel, we offer a certain way
of evaluating the quality of fuzzy sets with respect to their
reconstruction abilities [17], [28], [31]. Some auxiliary opti-
mization aspects are also presented. In the sequel, we discuss
a principle of justifiable granularity [23], [24], [44], which
offers an ability to construct a single information granule on
a basis of available experimental evidence.

A. FORMATION OF FUZZY SETS OF CONDITIONS AND
CONCLUSIONS AND THEIR OPTIMIZATION
In what follows, we mainly focus on the construction of
fuzzy sets standing in the condition and conclusion parts of
the rules. Let us consider pairs of data (xk , targetk ), k =
1, 2, . . . ,N , where xk ∈ Rn, targetk ∈ R. A standard way
of building information granules (fuzzy sets of condition and
conclusion space) is to invoke fuzzy clustering [42] such as
Fuzzy C-Means (FCM), which is one of the most commonly
encountered alternatives. The clustering is carried out in the
joint input-output spaceRn+1. Denote by tk — the concatena-
tion of xk and targetk , namely tk = [xk targetk ]

T. Clustering
these (n + 1)-dimensional data into c clusters returns a col-
lection of prototypes g1, g2, ..., gc. The distance between the
data and the prototypes is expressed as a weighted Euclidean
distance [16]

||tk − gi|| =
n+1∑
j=1

(tkj − gij)2

σ 2
j

(3)

where σ 2
j is the variance of the j-th variable. The FCMmethod

returns a collection of prototypes and a partition matrix. With
regard to the prototypes, we distinguish between their part
positioned in the input and output spaces; essentially we have
them expressed as a concatenation of vi and wi, namely gi =
[vi wi]T. For the prototypes positioned in the input space, we
have a collection of fuzzy sets forming fuzzy sets of condition
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Ai with the following membership functions

Ai (x) =
1

c1∑
l1=1

( ||x−vi||
||x−vl1||

)
2/(m−1)

(4)

where x∈Rn. Here c1 is the number of clusters of the condi-
tion space.

For conclusion space, we can obtain fuzzy sets Bi with the
corresponding membership functions

Bi (target) =
1

c2∑
l2=1

( ||target−wi||
||target−wl2 ||

)
2/(m−1)

(5)

where target ∈ R, c2 is the number of clusters of the conclu-
sion space. In this study, we assume c1 = c2 = c;m stands for
a fuzzification coefficient [27], [35]; this coefficient is usually
set equal to 2.0.

It is imperative to assess the quality of fuzzy sets con-
structed through fuzzy clustering. A suitable performance
index comes in the form of a reconstruction index. Using
this index, the quality of fuzzy sets is assessed by quanti-
fying their reconstruction abilities. For any given input xk ,
the reconstruction (degranulation) of this input, we consider
the prototypes and the membership grades forming the fol-
lowing weighted sum

x̂k =

c1∑
i=1

Ai(xk )mvi

c1∑
i=1

Ai(xk )m
(6)

The reconstruction criterion is then expressed by the sum
of error being taken over all the data (N -dimension)

E =
1
N

N∑
k=1

‖xk − x̂k )‖2 (7)

where, as before, the weighted Euclidean distance is
involved. Intuitively, the lower the values of the sum error E ,
the better the reconstruction abilities are delivered by fuzzy
sets A1,A2, . . . ,Ac.
In a similar way, given an output targetk , we determine its

reconstruction in the following form

ˆtargetk =
Bi(targetk )

mwi
c2∑
i=1

(Bi(targetk ))m
(8)

In this case, the reconstruction criterion reads as

F = (targetk − ˆtargetk )
2 (9)

A certain stopping criterion ε is proposed by analyzing
the decrease of the values of the reconstruction criterion with
respect to the increasing values of the number of clusters c1
and c2, while selecting such value of this parameter where
there is no substantial drop in the values of E and F . In other
words, by repeating the reconstruction process, the error val-
ues E and F decrease with increasing the number of clusters

c1 and c2, the repeating process will not stop until it meets a
stopping condition, for example, E = ε and ε < 0.05.
It is worth noting that the FCM algorithm is realized in the

Rn+1 space whereas input and output spaces in the algorithm
are not distinguished. Therefore, a modified version of the
distance by introducing an auxiliary weight λ to tell apart the
two spaces in FCM algorithm. More specifically, we have∣∣∣∣tk − gi∣∣∣∣ = n∑

j=1

(xkj − vij)2

σ 2
j

+ λ
(targetk − wi)

2

σ 2
n+1

(10)

where λ > 0. The parameter λ can be optimized by running
FCM algorithm for its values and choosing λopt for which the
performance indexes E and F attain their minimal values.

To compensate for the difference between the dimension-
ality of the input (n-dimension) and output (1-dimension)
space, we vary the values of λ in the range (0, 2n).
If λ ∈ (0, n), the input space has a stronger impact than the
output space while if λ ∈ (n, 2n); the output space has more
impact.

B. THE PRINCIPLE OF JUSTIFIABLE GRANULARITY
The principle of justifiable granularity [23], [24] provides a
general idea on how to construct a single information granule
by achieving a sound compromise between two essential
requirements characterizing it, namely coverage and speci-
ficity [38]. The level of coverage is related to the number of
elements which are embraced (covered) by the information
granule, whereas specificity is about how detailed the infor-
mation granule is in standing for the experimental data and
it associates with the semantics of the granule. In light of the
essence of these criteria, it is intuitively apparent that the two
requirements are in conflict. Thus, the increase in coverage
associates with the decrease in specificity.

As an illustrative experiment, we consider a simple exam-
ple for determining the interval information granules with
the use of the principle of justifiable granularity. Given a
one-dimensional normal distribution data set D = {yk},
yk∼ N (0,52), k = 1, 2, . . . ,N . N = 500 The histogram of
the data set presents in Figure 1.

FIGURE 1. Histogram of data set D.

Let us start with determining a numeric representative
mean(D) — viz. mean value of the data set (in this case study,
mean(D) = 0). Once the mean value has been determined,
the interval information granule

∑
= [a, b] is constructed
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around mean(D). The upper bound b and lower bound a are
constructed in a similar way, here we are interested in the
formation of upper bound b based on the experimental data
which is located on the right hand side of mean(D), coverage
and specificity are expressed as follows,

Coverage is determined by the cardinality which concerns
about the number of experimental evidence included in the
region between the mean value mean(D) and upper bound b.

cov =
1
N
card {yk |yk ∈ [mean (D) , b]} (11)

It should be noted that the expressions cov and sp are not
unique and they depends on the practical problems which is
anticipated to be solved.

Specificity reflects the semantics (meaning) of the interval,
where a smaller interval information granule implies a higher
level of specificity. We introduce parameter α(α > 0) to
the expression of specificity which quantifies an impact of
specificity in the formation of information granules.

sp = e−α
|b−mean(D)|
|ymax−mean(D)| (12)

The optimization process is realized bymaximizing a prod-
uct of cov and sp, namely,

v (b)= cov∗sp (13)

Finally, the optimal upper bound ‘‘bopt ’’ is calculated,

bopt = argmaxyk∈[mean(D),b]V (b) (14)

In Figure 2, we present the plots of cov, sp and V (b) with
b for different parameters α(= 0.1, 0.3, 0.5 and 1.0).
cov, sp and their product V (b) as function of b are pre-

sented in Figure 2. The numeric represents mean(D) = 0,
considering the experimental evidence positioned in the area
of [mean(D), b], the cov increase while sp decrease with
an increasing b, which forms a unimodal results of V (b).
Therefore, the upper bound of the information granule is
determined with the optimal b which is in correspondence to
the maximal value of V (b).

To proceed with the construction of the information gran-
ules in the context of the problem discussed, two approaches
are considered: (i) the standard one encountered in the exist-
ing literature and (ii) an augmented version where in the
construction of the granules in the input space, we consider
an impact implied by the output variable.

(i) generic version of the principle of justifiable granularity
For the i-th cluster, and the j-th variable, j = 1, 2, . . . , n,

the corresponding prototype is vij which is regarded as the
modal value of the information granules to be constructed.
Considering the data positioned to the right from this modal
value, the upper bound bij can be determined. The coverage
is thus expressed as,

covij =
∑

xki∈[Vij,bij]

max{0, [Ai
(
xkj
)

−max l = 1, 2, . . . , c
l 6= i

Ai(xkj)]} (15)

FIGURE 2. Plots of cov, sp and V (b) treated as functions of b: (a) α = 0.1.
(b) α = 0.3. (c) α = 0.5. (d) α = 1.0.

where Ai
(
xkj
)
=

1
c1∑
l1=1

(
(xkj−Vij)
(xkj−Vl1j

) )
2/(m−1) is the membership

grades of the input space associated with the i-th cluster.
Note that we incorporate inhibitory information about

other information granules (Al1 , l1 = 1, 2, . . . , c1, l1 6= i)
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so that we penalize the data belonging to other clusters. The
specificity is expressed in the following form

spij = 1−
|bij − vij|
rangeij

(16)

where rangeij = |xj,max − vij| and xj,max is the maximal value
of the j-th input variable.
The optimized performance index is calculated as the prod-

uct of these two measures

V
(
bij
)
= covij∗spij (17)

The optimal value of bij is found by maximizing V (bij),
namely bij = argmaxbijV (bij).

Similarly, we can determine an optimal lower bound.
Obviously, there are some differences in the detailed com-

puting related with the data considered in the construction.
Now the coverage is taken as the following sum

covij =
∑

k:xkj∈[aij,vij]

Ai(xkj) (18)

whereas the specificity is expressed in the form

spij = 1−
|vij − aij|
rangeij

(19)

rangeij = |vij − xj,min|, and xj,min is the smallest element in
the data set for the j-th variable. The optimal aij comes as a
solution to the maximization of the product of coverage and
specificity, namely aij = argmaxaijV (aij)

We repeat the above process of information granulation for
each input variable and determine the Cartesian product of
information granules obtained in this way

Ãi = [ai1, bi1]× [ai2, bi2]× . . .× [ain, bin] (20)

(ii) augmented, context-implied principle of justifiable
granularity

To consider an impact coming from the output targetk ,
the construction process can be realized similarly stated in
(i), only to modify the coverage criteria by including the
membership grades of targetk .
To determine the upper bounds bij of the interval, we have

coverage expressed in the form

covij =
∑

xkj∈[vij,bij]

max{0,Ai
(
xkj
)

−max l = 1, 2, . . . , c
l 6= i

Ai(xkj)} (21)

Note that in contrast to (10), we incorporate here member-
ship values of the associated information granules positioned
in the output space.

We can follow the same process to determine the upper
bound bij and lower bound aij as discussed in (i).
In sequel, we talked about two approaches of construction

of information granules of input space in (i) and (ii). The
determination of the information granules in the output space
B̃i = [ci, di] is completed following the principle of justifi-
able granularity as discussed previously only based the data
available in the output space.

III. CHARACTERIZATION OF THE QUALITY OF THE RULES
Having the rules composed of the pairs Ãi and B̃i, the quality
of the rule is described by investigating the two aspects:

(i) Data coverage provided by the rule. It is expressed
by counting the number of data included in the Cartesian
product of the intervals. The higher the coverage, the higher
the quality of the rule.

cov
(
Ãi, B̃i

)
=

1
N
card{(xk , targetk )|xk ∈ Ãi, targetk ∈ B̃i}

(22)

(ii) Specificity of condition rules Ãi versus specificity of
conclusion rules B̃i. Lower the values of specificity of Ãi and
higher the values of specificity of B̃i, reflect higher quality of
the rules.

There is a sound argument behind this: the rule is applied
to many situations (expressed in conditions) and at the same
time produces conclusions that are very detailed. The detailed
computing of the specificity is outlined in terms of the follow-
ing expressions.
Specificity of the conclusion part

spi = 1−
|di − ci|
rangetarget

(23)

where the bounds ci and di of the interval are determined
using the principle of justifiable granularity explained in
section 2.2, B̃i = [ci, di], while rangetarget is the range of
values assumed by the output variable, namely rangetarget =
|targetmax − targetmin|.
Specificity of condition part is the following average

spi =
1
n

n∑
j=1

spij (24)

and

spij = 1−
|bij − aij|
rangex

(25)

where, similarly, the lower and upper bounds of the intervals
are constructed by the principle of justifiable granularity,
Ãi = [ai, bi], with rangex = |xmax,j − xmin,j|.
The two aspects can be positioned in three-dimensional

space where the coordinates are specificity of condition and
specificity of conclusion parts as well as the joint coverage.
Evidently the quality of rules becomes higher if the speci-
ficity of condition part decreases, the specificity of conclu-
sion part increases and the joint coverage increases.

IV. PROCESSING IN GRANULAR RULE-BASED MODEL
A. FORMATION OF GRANULAR RULE-BASED MODEL
Having constructed interval information granules Ãi and B̃i,
i = 1, 2, . . . , c along with the ensuing collection of rules,
we look at the mapping of any input xk through such rules.
Two cases are considered depending upon a location of x vis-
à-vis the Ai.
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FIGURE 3. Plot of the prototypes and information granules.

(i) xk is located in Ãi.
As we are concerned with xk that is included in the input

information granules Ãi, the output is B̃i. If there is any
overlaps between the two different information granules Ãi
and Ãl, l = 1, 2, . . . , c, l 6= i, when xk is included in either
of the information granules, the output can be determined in
the form of a union of B̃i and B̃l , namely B̃i∪B̃l .
(ii) xk is located outside the core regions of Ãi, namely xk

union of Ãi.
In this case, the output is defined by determining a level of

matching xk vis-à-vis individual Ãi. Here we follow the same
formula as commonly encountered in rule-based models by
bringing together the levels of activation of the rules and
engaging the corresponding interval B̃i. More specifically,
we have

Ỹk = A1 (xk)⊗ B̃1 ⊕ A2 (xk)⊗ B̃2 ⊕ . . .⊕ Ac(xk )⊗ B̃c
(26)

where the symbols in small circles emphasize that the oper-
ations concern intervals. The detailed formulas deal with
the multiplication of interval by a non-negative constant and
the addition of intervals, namely δ ⊗ [a, b] = [δa, δb] and
[a, b]⊕ [c, d] = [a+ c, b+ d].

To illustrate the behavior in determining granular out-
put, we assume three information granules defined in
one-dimensional input space in form of intervals, Ã1 =
[−2,−1], Ã2 = [0, 1.5] and Ã3 = [3.1, 3.3] while the
corresponding output intervals B̃1, B̃2 and B̃3 are given as
[2.0, 3.1], [0.1, 0.3], and [3.2, 3.7]. The information granules
are defined as Cartesian products Ãi×B̃i, and we determine
the prototypes by the center point of the information granules,
refer to Figure 3.

For any numeric values x located in the input space,
we consider the following two cases: (i) x is located in Ãi
and (ii) x is not included in the core region of Ãi. The
granular output Y = [y−, y+] are determined following the
formation process explained above. The results are displayed
for selected values m(m = 1.1, 2.0 and 3.5) as Figure 4.

In Figure 4, we present the upper and lower bound of the
granular output Y . As expected, when the input data x is
located in the region of Ã1, Ã2 and Ã3, the upper bound y+

and lower bound y− is the upper and lower bounds of B̃i,
i = 1, 2, 3. If x is located outside the space of Ã1, Ã2 and

FIGURE 4. Granular output Y with selected m: (a) m = 1.1, (b) m = 2.0,
(c) m = 3.5.

Ã3, the determination of y+ and y− is realized following the
formation process. In the second case, the granular output
behaves differently based on the selected values of m. Con-
sider input space located at the left of Ã1and right of Ã3,
the bound of the output behaves smoothly whenm = 1.1, and
when m = 2.0 and 3.5, the bound of output exhibits more
changes. However, when m = 1.1, the bounds of granular
output have a great reduction and rise to connect the input data
outsideÃ1, Ã2 and Ã3, while when m is increased to 2.0 and
3.5, the difference between the largest and smallest values of
the output become smaller at the junction point.

B. EVALUATION OF PERFORMANCE OF GRANULAR
RULE-BASED MODEL
Taking into account the non-numeric results produced by the
granular rule based model, its performance is quantified in
terms of the coverage delivered by Ỹk and their specificity.
Both of them need to be maximized. In light of their con-
flicting character, the following product comes as a sound
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performance measure

V = [
1
N

N∑
k=1

cov(targetk , Ỹk )][
1
N

N∑
k=1

spec(Ỹk )] (27)

where N is the number of data. In more detail, coverage and
specificity are expressed in the following way,

cov
(
targetk , Ỹk

)
=

{
1, if targetk ∈ [y−k , y

+

k ]
0, otherwise

(28)

sp
(
Ỹk
)
= 1−

|y+k − y
−

k |

rangetargetk
(29)

where rangetargetk = |targetmax − targetmin|.
Along with the global index V shown above, it is advanta-

geous to visualize the results for the core and the interpolation
part.

-for the core data (the data contained in one of the collec-
tion of information granules Ãi)

V1 = [
1
N1

N1∑
k=1

cov(targetk , Ỹk )][
1
N1

N1∑
k=1

sp(Ỹk )] (30)

where N1 is the number of data falling under the core regions.
-for data for which an interpolation mechanism has been

invoked (the data not contained in one of the Ãi)

V2 = [
1
N2

N2∑
k=1

cov(targetk , Ỹk )][
1
N2

N2∑
k=1

sp(Ỹk )] (31)

where N2 is the number of data not contained in the core
regions.

V. EXPERIMENTS
In this section, we develop a series of experimental studies
about how the fuzzy rule-based model is formed with the use
of information granules. Synthetic data as well as a collection
of UCI data sets are applied to form the fuzzy rules in the
input space and output space.

A. SYNTHETIC EXPERIMENTS
Let us consider a one-dimensional synthetic data set,
the experimental data coming in pairs (xk , targetk ),
k = 1, 2, . . . ,N , N = 1000. The input space
is generated by four groups of Gaussian distribution
N1
(
0, 0.52

)
,N2

(
−5, 0.32

)
,N3

(
5, 0.32

)
,N4(10, 1). The

function of targetk with xk is targetk = 1 + sin (xk) + x0.5k .
The fuzziness coefficient is m = 2.0. Figure 5 shows plotting
of the experimental data,

By using FCM algorithm, the experimental data is clus-
tered into c clusters. The number of clusters c is selected as
c = 3, 4, 5, 6, 7 separately, the prototypes and information
granules are displayed in Figure 6.

As shown in Figure 6, stars ‘‘*’’ represent the prototypes
produced by the FCM clustering while the rectangles ‘‘�’’
denote for information granules constructed based on the
experimental data.

FIGURE 5. Plot of experimental data (xk, targetk).

In Figure 7, the plot of granular output Ỹk (with lower
bound y−k and upper bound y+k ) are presented.

In Figure 7, we compare experimental output data targetk
with the granular output of the fuzzy rule-based model.
It indicates that the granular output is generally tend to the
curve of targetk with xk and the main parts of targetk is
included in between upper bound and lower bound of the
granular output. A good performance of the proposed fuzzy
rule-based model can be obtained while as many as possible
experimental data are covered by the granular output. In this
experiment, the data is clustered to 3-7 clusters, it is con-
cluded that a better performance can be obtained with a larger
number of clusters.

B. ANALYSIS ABOUT THE FORMATION OF FUZZY
RULE-BASED MODEL
Here we consider the reconstruction of the fuzzy sets of
condition and conclusion parts based on the data coming
from the UCI repository (http://archive.ics.uci.edu/ml/). For
each data set, the data is coming in pairs (xk , targetk ), k =
1, 2, 3, . . . ,N , xk is the first n-th variables while targetk is the
(n+ 1)-th variable of the data set, which separately represent
the input and output space. The FCM algorithm is applied
to transfer numeric data into fuzzy sets and the number of
clusters c varies from 2 to 10.

Considering the number of clusters c as well as the fuzzi-
fication parameter, both influencing on the reconstruction
process. The reconstruction criterion of condition space E
and conclusion space F is shown as follows.
Boston housing data set
In Figures 8 and 9, we present the values of the recon-

struction criterion – E for the condition space and F for
the conclusion space, with regards to different numbers of
clusters. We can find that if we get more clusters, the recon-
struction criterion decrease for both space. When the number
of cluster increases from c = 2 to c = 10, the reconstruction
criterion decrease from 0.7 to 0.5 for condition space while
for conclusion the values go from 0.65 to 0.45, both make an
improvement of the reconstruction by about 30%.

In Figure 9, the number of clusters is selected as c = 2, 5
and 10, we consider the parameter λ changing from 0 to 25,
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FIGURE 6. Prototypes and information granules: (a) c = 3. (b) c = 4. (c) c = 5. (d) c = 6. (e) c = 7.

which provide from a very weak impact to an extremely
strong impact of the condition space in the reconstruction
process. Compare the figures in Figure 9, we can find that
the reconstruction criterion for both space decrease with an
increase value of λ. This implies that for both the condition
and conclusion space, greater value of λ can result in better
reconstruction results for Boston Housing data.
Forest Fires data set
For the Forest Fires data, the reconstruction criterion of

both condition and conclusion space keeps decreasing when
the number of clusters increase from 2 to 10, refer to Fig-

ure 10. The improvement is about 4.2% and 0.7% for the
condition and conclusion space, respectively.

In Figure 11, we observe that when the number of cluster
is selected as c = 2, 5 and10, the reconstruction criterion
E of condition space increase with an increasing value of
λ, while in the conclusion space, the reconstruction criterion
F decrease with an increasing value of λ. This difference
implies that in reconstruction, if we increase the influence
of the output part, we can make an positive impact to the
reconstruction of the rules of the ouput space but an negative
impact to the input space.
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FIGURE 7. Plot of y−k and y+k with selected number of clusters: (a) c = 3. (b) c = 4. (c) c = 5. (d) c = 6. (e) c = 7.

Auto MPG data set
The reconstruction criterion for Auto MPG data decreases

smoothly with an increasing number of clusters c from 2 to
10. The improvement of reconstruction with different number
of clusters is 52.2% of condition parts and 79.1% of conclu-
sion parts.

As for Auto MPG data, the reconstruction criterion of
input space increases with an increasing values of λ while
the reconstruction criterion of output space decreases with an
increasing values of λ when c = 2, 5 and 10.
Computer hardware data set

The plots in Figures 14 and 15 shows the same tendency
of reconstruction criterion with different number of clusters.

The higher the number of cluster, the smaller the reconstruc-
tion criterion for both condition and conclusion space, and
the improvement is 52.7% and 23.1% for the two spaces
separately. In Figure 15, we can find that for some selected
number of cluster c = 2, 5 and 10, the reconstruction criterion
decreases with an increasing value of λ for the condition and
conclusion space.

Considering the plots presented in Figures 9 – 15, it is
concluded that the reconstruction criterion for both the
condition space and conclusion space goes decreasing with
an increasing number of clusters. It implies that an increase
of clusters can make a better results of the reconstruction of
fuzzy sets. However, if we are concerned about the impact
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FIGURE 8. Reconstruction criterion E and F versus different number of
clusters c : 2-10 (a) condition space. (b) conclusion space.

FIGURE 9. Reconstruction criterion E and F versus λ. (a) condition space.
(b) conclusion space.

of condition and conclusion space at the same time, in other
words, if we increase the value λ, the results depend on the
data set we used. For example, if we use Boston Housing and
Computer Hardware data, the values of E and F decrease if

FIGURE 10. Reconstruction criterion E and F versus different number of
clusters c : 2-10 (a) condition space. (b) conclusion space.

FIGURE 11. Reconstruction criterion E and F versus λ. (a) condition space.
(b) conclusion space.

λ increases, and if we use Forest Fires data, E increase while
F decrease with an increasing λ. However, in case of Auto
MPG data, there is contract situation as that of Forest Fires.
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FIGURE 12. Reconstruction criterion E and F versus different number of
clusters c : 2-10 (a) condition space. (b) conclusion space.

FIGURE 13. Reconstruction criterion E and F versus λ. (a) condition space.
(b) conclusion space.

In this part, we elaborate in detail on the results obtained
for Auto MPG data. Fuzzy rules are formed with the use of
the FCM algorithm; the fuzzification coefficient is m = 2.0.

FIGURE 14. Reconstruction criterion E and F versus different number of
clusters c : 2-10 (a) condition space. (b) conclusion space.

FIGURE 15. Reconstruction criterion E and F versus λ. (a) condition
space (b) conclusion space.

The results are produced for some pairs of condition rules
Ãi (i = c1 = 4) and conclusion rules B̃i (i = c2 = 4). We are
interested in the three criterion — specificity of condition
space, specificity of conclusion space and joint coverage.
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FIGURE 16. Quality of rules plot in 3-dimensional space ( sp-condition,
sp -conclusion, and coverage).

The quality of rules is high with regard to high specificity of
condition space and joint coverage as well as low specificity
of the conclusion space.

The tabular results, shown in Table 1, brings about a sum-
mary based on Ãi and B̃i.

TABLE 1. Summary of quality versus rules (Ãi , B̃i ).

In Table 1, we present joint coverage based on the fuzzy
rules of condition space and conclusion space with the num-
ber of rules in both space are four. It is indicated that for
each Ãi, there is different corresponding B̃i to attain maximal
value of joint coverage. Maximal joint coverage achieve in
the following pairs: (A1, B4), (A2, B1), (A3, B2) and (A4, B3).
A greater joint coverage implies more experimental data can
be covered in the information granules which is Cartesian
product of condition and conclusion spaces. However, if the
value of cov(Ãi, B̃i) is equal to zero, it means no data is cov-
ered by the information granules. In this part, it is concluded
that the following information granules — (A1, B4), (A2, B1),
(A3, B2) and (A4, B3) — play as Cartesian product, perform
as the ones to obtain good quality of the rules.

For each of these combinations we report the quality of the
obtained results (specificity of condition space, specificity of
conclusion space and joint coverage produced by the rules),
as shown in Figure 9.

In this study, we use a series of publicly avail-
able data coming from the Machine Learning repository
(http://archive.ics.uci.edu/ml/), see Table 2.

The data sets are split into the training and testing sub-
set (70%-30% split). FCM algorithm is running for several
number of clusters c: 3— 7,m = 2.0. The performance index
of the fuzzy rule-based model for both training and testing
data are reported in tabular form.

TABLE 2. Characteristic of the data: N — number of data,
(n+ 1) — dimension of data.

TABLE 3. Performance index of fuzzy rule-based model with traning and
testing data.

In Table 3, we present the performance values of the fuzzy
rule-based model based on a collection of data sets (training
and testing subset). For each data set, it implies a better
performance while the number of cluster c increase from
3 to 7. Considering Computer Hardware data, for both train-
ing and testing sets, the performance index can be achieved
to around 0.5-0.6 when the number of cluster is c = 7,
which indicates a good performance of the proposed model.
The model also performs well based on Forest Fires data,
Yacht Hydrodynamics data, Concrete Compressive Strength
data, Auto MPG data and Boston Housing data, all of them
achieves a performance values to around 0.25 or higher.

VI. CONCLUSION
In this paper, we proposed a two-phase formation of fuzzy
rule-based model. First, as prerequisite, fuzzy sets of con-
dition and conclusion space are reconstructed with the use
of Fuzzy C-Means clustering. Two reconstruction criteria
E and F are introduced to qualify the reconstruction per-
formance. Intuitively, the two reconstruction criterion both
decrease with the increasing number of clusters. Once the
fuzzy sets have been reconstructed, they can be applied to
develop the interval-valued information granules Ãi (input
space) and B̃i (output space) with the aid of the principle
of justifiable granularity. Second, based on the location of
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input data xk vis-à-vis information granules Ãi, two different
cases are considered: i) core mode concerns the region where
information granules Ãi is located in; ii) approximation deals
with data xk that is located outside information granules Ãi.
Based on these two cases, granular output Ỹk of the fuzzy
rule-based model is determined: i) if xk is located in the
region of input information granules Ãi∪Ãl , the granular
output is the union of output information granules B̃i∪B̃l ,
i = 1, 2, . . . , c1,, l = 1, 2, . . . , c2, c1 and c2 are the number
of clusters in the input and output space separately. ii) if xk is
located outside the input information granules Ãi, the granular
output is determined by the output information granules and
considering an impact coming from the input memberships,
that is Ỹk = A1 (xk)⊗ B̃1⊕A2 (xk)⊗ B̃2⊕ . . .⊕Ac(xk )⊗ B̃c.
An illustrative experiment is presented to state that most part
of experimental output data can be covered by the granular
output of the fuzzy rule-based model.

To evaluate the characterization of the quality of rules,
three items are discussed in this study: a joint coverage,
specificity of condition part and specificity of conclusion
part. It is expected that a high level of the specificity of con-
clusion space and joint coverage as well as small specificity
of condition space lead to high quality of the fuzzy rules of
the model.

To analyze the performance, a collection of publicly avail-
able data sets coming from the UCI repository is applied to
complete the experimental studies. The data are split into
training and testing (70%-30% split) for evaluating the per-
formance of the model. It is concluded that by increasing the
number of clusters c from 3 to 7, the reconstruction criterion
E and F goes decreasing which has a positive impact on
reconstruction process. Also when the number of clusters
increases from 3 to 7, a better performance can be obtained for
the fuzzy rule-based model. In future researches, we expect to
design a general model of fuzzy rule-basedmodel using infor-
mation granules, which is of great interesting in the follow-
ing aspects: i) collaborative impacts between the condition
space and conclusion space in developing the model is worth
considering, ii) certify the relationship between specificity of
condition space, specificity of conclusion space and the joint
coverage based on the fuzzy rule of input and output space.
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