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ABSTRACT While the IoT deployments multiply in a wide variety of verticals, the most IoT devices
lack a built-in secure firmware update mechanism. Without such a mechanism, however, critical security
vulnerabilities cannot be fixed, and the IoT devices can become a permanent liability, as demonstrated by
recent large-scale attacks. In this paper, we survey open standards and open source libraries that provide
useful building blocks for secure firmware updates for the constrained IoT devices–by which we mean low-
power, microcontroller-based devices such as networked sensors/actuators with a small amount of memory,
among other constraints. We design and implement a prototype that leverages these building blocks and
assess the security properties of this prototype. We present experimental results including first experiments
with SUIT, a new IETF standard for secure IoT firmware updates. We evaluate the performance of our
implementation on a variety of commercial off-the-shelf constrained IoT devices. We conclude that it
is possible to create a secure, standards-compliant firmware update solution that uses the state-of-the-art
security for the IoT devices with less than 32 kB of RAM and 128 kB of flash memory.

INDEX TERMS Internet of Things, IoT, security, software update, firmware update, open standards,
constrained device.

I. INTRODUCTION
The increasing availability of low-cost hardware, new
low-power radio technologies, and real-time operating sys-
tems specially designed for these embedded devices makes
the Internet of Things (IoT) accessible to a broader range
of developers. IoT devices are now used in many verticals,
from logistics to precision farming, introducing new ways
to optimize existing business processes and enabling novel
use cases. IoT devices are also used in critical infrastructures
where safety and security plays an even more important role.

However, while IoT devices are expected to have a major
impact on our economy, they are also known for their weak
security. TheMirai botnet [7], for example, demonstrated that
large-scale DDoS attacks using compromised IoT devices
threaten other communication infrastructures. It is equally
alarming that many of these compromised IoT devices are not
equipped with a firmware update mechanism and, therefore,
remain unpatched to this day.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

This highlights the need to design a firmware update
mechanism into IoT devices at the beginning of the product
development. Of course, if designed incorrectly, firmware
updates can become attack vectors themselves. The Zigbee
Worm [55], for example, triggered a chain reaction combin-
ing a series of malicious firmware updates and promiscu-
ous wireless communications. The situation would be sig-
nificantly improved if developers could use a standardized
firmware updatemechanism rather than having to design their
own.

In this paper, therefore, we explore the options that devel-
opers have today, and we design a prototype that enables IoT
firmware updates based on standardized building blocks.

We focus in particular on firmware update mechanisms
that can work on constrained IoT devices. Such devices,
as specified in RFC 7228 [21], use microcontrollers – for
instance Arm Cortex-M – on which run real-time operating
systems, such as RIOT, FreeRTOS, µC/OS, Contiki, mbed
OS, among others [32]. Compared to machines that run full-
blown operating systems, such as Linux, constrained IoT
devices use a fraction of the power and are equipped with
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RAM and flash sizes in the kilobyte range. Constrained IoT
devices cannot afford the energy drain of Wi-Fi, and thus
connect to the network using low-power, wireless, link-layer
technologies, such as Bluetooth Low-Energy, IEEE 802.15.4,
LoRa, 3GPP Cellular IoT (NB-IoT), or through wired buses,
such as BACnet.

The contributions of this paper are structured as follows:
1) In Sections II-III, we survey available open standards

and open source libraries, which provide useful generic
building blocks that can be used to enable IoT firmware
updates;

2) In Section IV, we design and implement a proto-
type that leverages the building blocks we surveyed.
This prototype enables secure firmware updates on a
large variety of constrained IoT devices, while entirely
avoiding proprietary mechanisms and code;

3) In Section V, wemeasure and compare the performance
of various crypto libraries that are relevant in this con-
text;

4) In Section VI, we assess the security properties of our
prototype;

5) In Section VII, we measure and compare the perfor-
mance of several deployment configurations using our
prototype, and provide the first experimental evaluation
of the IETF SUIT specification;

6) In Section VIII, we discuss the limitations of our pro-
totype. We conclude that, as we have shown, it is pos-
sible today to create a generic, secure firmware update
mechanism that complies with open standards, and we
provide recommendations for future work.

II. PRIOR WORK ON SOFTWARE UPDATES FOR
CONSTRAINED IoT DEVICES
An IoT firmware update solution is a special case of software
update, and consists of three areas of work [25], namely:
(a) embedded software design on low-end IoT devices,
(b) backend framework, and (c) network transport of the
firmware towards the IoT devices.

A. EMBEDDED SOFTWARE DESIGN ON LOW-END IoT
DEVICES
The software on an IoT device has to be prepared to support a
firmware update mechanism. The device needs a bootloader,
the logic that is executed first when the device boots and
determines which firmware it launches. Sometimes devices
are equipped with multiple bootloaders; for example, a stage
1 bootloader in the ROM and a stage 2 bootloader that can
be updated. The reason for such designs is security-related
because updating a bootloader can lead to a bricked device.
Whenever a bootloader is present on a device, the memory
layout of the hardware has to be considered, and exception
handlers1 must be repositioned.

The typical firmware update procedure is fairly simple:
a developer recompiles the code and generates an entirely

1Exception handlers in the Arm architecture can be compared to the
interrupt vector table in the ×86 architecture.

new firmware image, which is then distributed to the device.
The flash memory of the IoT device is split into memory
regions (slots) containing (i) the bootloader and (ii) firmware
images (with some metadata). The new firmware is stored
into one of the available slots. The IoT device is then reset
so that the bootloader can boot the new firmware image [12].
This approach is used, for example, by MCUboot [4] and
ESPer [30].

Other considerations can lead to different designs. For
instance, one may consider the granularity of the software
update, or the amount of data that needs to be transmitted
for an update. Certain approaches enable partial update via
dynamic loading of binary modules [29], [56], while others
use differential binary patching [35]. Yet another technique
is binary compression [61]. Approaches using component-
based programming [65], [66] aim to simplify dynamic
modification and reconfigurability of the system on con-
strained IoT devices by enforcing black-box-style interac-
tions between system modules. Partial updates of software
can also use scripts instead of binaries [17], whereby pieces
of interpreted language (for example, Javascript) are updat-
able on devices. Yet another technique uses miniature virtual
machines, such as Mate [41] or ReLog [65].

Despite the above-listed research, the typical approach
used for IoT software updates is to replace the full firmware
image at once. The advantage of updating the full firmware
is in the simplicity of this approach.

B. BACKEND FRAMEWORK
The second aspect of IoT firmware updates concerns the
backend framework and securing the supply chain of IoT soft-
ware. The Internet Engineering Task Force (IETF) Software
Updates for Internet of Things (SUIT) working group spec-
ifies a simple back-end architecture [45] for IoT firmware
updates. In addition to authentication and integrity protec-
tion, even when updates are stored on untrusted reposito-
ries, the SUIT specifications enable encrypting the firmware
image, to protect against attacks based on reverse engineer-
ing. SUIT followed previous work such as FOSE [27] which
proposed firmware encryption and signing using JSON and
JOSE. The Update Framework (TUF) [5] and Uptane [39],
designed for use in connected cars, aim to ensure the security
of a software update system, even against attackers who
compromise the repository or signing keys. ASSURED [16]
builds on TUF to improve support for constrained IoT devices
by leveraging a trusted intermediate controller between the
update repository and IoT device. CHAINIAC [48] is another
approach that uses a blockchain-like mechanism to attest to
the history of prior updates, even without central authority.

C. NETWORK TRANSPORT
The third aspect of IoT firmware updates concerns the dis-
semination of software through the network. The variety of
approaches to this topic, as presented in recently published
literature, includes protocols that optimize the dissemination
of updates through multiple paths in a multi-hop, low-power
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wireless network [33]; updating network stack modules to
reconfigure the network on the fly [66]; and using the Mes-
sage Queuing Telemetry Transport (MQTT) protocol to dis-
seminate software updates to a fleet of IoT devices [30].
6LoWPAN protocols [59] enable end-to-end IP connectivity
from constrained IoT devices to anywhere on the (IPv6) inter-
net. The IETF Trusted Execution Environment Provision-
ing (TEEP) working group [34] is standardizing a transport
mechanism to update trusted applications running in trusted
execution environments (TEEs), such as Arm TrustZone and
Intel SGX.

III. OPEN STANDARDS FOR SECURE CONSTRAINED IoT
FIRMWARE UPDATES
Over the last few years, the technical community has been
working on open standards [38] that can be combined to
facilitate IoT firmware updates. These open standards fall
into the following categories:

� Cryptographic algorithms;
� Firmware metadata;
� Protocols for transferring updates over the network;
� IoT device management protocols.
We also have to consider IoT operating systems for use in

our prototype.

A. CRYPTOGRAPHIC ALGORITHMS
The use of state-of-the-art cryptographic algorithms is nec-
essary to guarantee the security of firmware updates. For
many years, the impression was that algorithms used on the
wider Internet could not be used on constrained IoT devices.
This turned out to be incorrect; however, optimization and
selection of different algorithms is necessary. For public key
cryptography, Elliptic Curve Cryptography (ECC) is typi-
cally used because of the smaller key size (compared to
RSA). The National Institute of Standards and Technology
(NIST) standardized the Elliptic Curve Digital Signature
Algorithm (ECDSA) for use with the P256r1 curve [50],
which became popular in the industry. With ed25519 [37],
another signature algorithm, based on a different curve, was
standardized. New standardization efforts are in progress to
evaluate algorithms for the post-quantum crypto area [49].

B. FIRMWARE METADATA
The IETF SUIT working group is currently standardizing
a format for describing firmware updates. The SUIT group
defines a so-called manifest, which provides (1) information
about the firmware required to update the device, and (2) a
security wrapper to protect the metadata end-to-end.

Taking TUF/Uptane [39] as a reference, for instance,
the SUIT manifest format could provide Uptane-compliant
(custom) metadata about firmware images. (The TUF stan-
dards neither target interoperability, nor specify concrete
metadata formating, contrary to the SUIT standards.)

The SUIT specifications include an architecture docu-
ment [45], an information model description [47], and a
proposal for a manifest specification [46].

To achieve its goals, SUIT builds upon a number of other
open standards that provide generic building blocks. In partic-
ular, the Concise Binary Object Representation (CBOR) [22]
specification is used as a data format for serialization. CBOR
is a schema-less format optimized for a small message size
using a binary encoding. Furthermore, the CBOR Object
Signing and Encryption (COSE) [57] specification is used to
cryptographically secure data serialized with CBOR. COSE
defines a variety of structures, among them the sign structure,
which specifies how to protect a payload against tampering by
using a cryptographic signature.

C. STANDARDS FOR IoT FIRMWARE TRANSPORT
A number of protocols provide specifications for transfer-
ring a firmware update over the network. Basic transport
schemes enable a so-called Device Firmware Update (DFU)
over a specific low-power Media Access Control (MAC)
layer technology (such as Bluetooth), or over a specific bus
technology (such as USB). On the other hand, to transport
firmware over several hops, or over heterogeneous low-power
networks, the IETF suite of protocols standardized a network
stack combining Constrained Application Protocol (CoAP)
over UDP [58] and CoAP over TCP/TLS [59]. CoAP offers
features equivalent to HTTP but tailored to constrained IoT
devices. The 6LoWPAN specification was designed to offer
an adaptation layer for networks that cannot directly use
IPv6. To provide communication security, DTLS and TLS
profiles [62] were standardized for use in IoT deployments.

D. STANDARDS FOR REMOTE IoT DEVICE MANAGEMENT
The most prominent open standard for IoT device
management is the Lightweight Machine-to-Machine
(LwM2M) protocol [51]–[53] developed by OMA Spec-
Works.2 To transfer data, LwM2M v1.1 uses CoAP, which
can be secured with DTLS [62]. The LwM2M specifications
define a simple data model and several RESTful interfaces
for remote management of IoT devices. The interfaces enable
devices to register to a server, provide information updates,
and obtain keying material. A large number of objects and
resources have already been standardized to support com-
monly used sensors, actuators, and other resources. Among
the standardized objects is the firmware update object.

A more recent design is the CoAP Management Interface
(CoMI) [64], which is standardized by the IETF. CoMI uses
CoAP and a data model based on the YANG modeling lan-
guage, and aims to reuse existing SNMP-defined objects
and resources. CoMI is still in development, and a firmware
update mechanism has not yet been defined; we do, however,
expect that such an extension will be defined in the future.

The Open Connectivity Foundation (OCF3) standard-
izes an IoT device management protocol operating on top
of CoAP and TLS/DTLS for communication, similarly to

2OMA SpecWorks is the result of a merger between the Open Mobile
Alliance (OMA) and the IP Smart Object (IPSO) Alliance.

3OCF is the result of a merger between the UPnP Forum, the Open
Interconnect Consortium (OIC), and the AllJoyn Alliance.
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FIGURE 1. IoT firmware update prototyping scenario.

LwM2M. The OCF defines a data model with RESTful API
Modeling Language (RAML) as the data modeling language.
While initially targeting bigger IoT devices in smart home
environments, the OCF is now also considering other industry
verticals.

Earlier work on device management for IoT devices use
remote procedure calls instead of a RESTful design. For
instance TR 69 [23], also known as the CPE WAN Man-
agement Protocol (CWMP) developed by the Broadband
Forum4 offers firmware update functionality on higher-end
IoT devices, such as Internet-connected printers. The succes-
sor of TR 69, called User Services Platform (USP) [24], was
recently released by the Broadband Forum.

E. DE FACTO STANDARD IoT OPERATING SYSTEMS
Off-the-shelf open source operating systems, such as Linux,
cannot be used on low-end IoT devices, which lack the
necessary hardware resources. Unfortunately, the increasing
complexity of Internet-connected devices requires a fairly
complex protocol stack, which includes IPv6, UDP, DTLS,
and CoAP.

This situation has led to the development of IoT oper-
ating systems, including many open source IoT operating
systems [32], such as RIOT [18], Zephyr [6], Mbed OS [14],
MyNewt or Tock [42]. Popular commercial operating systems
in this category include µC/OS [40] and FreeRTOS [13].

IV. PROTOTYPE DESIGN
In this section, we describe a prototype we designed to imple-
ment the functionality required by the scenario described
in IV-A, below. A link to the source code is provided in the
References section at the end of this article [3].

A. SCENARIO SETUP
Prior work [45] outlines requirements for firmware updates
of IoT devices, and lists various common deployment scenar-
ios. In this paper, we consider the scenario shown in Fig. 1
for further investigation. In this scenario, an IoT device is
connected through a low-power wireless network to a device
management server, which runs on the internet.

Over the lifetime of this IoT device, an authorized IoT
software maintainer should be able to:

4The Broadband Forum was formerly known as the DSL Forum.

1) Produce firmware updates that are integrity-protected
and authenticated;

2) Trigger the device to fetch (via push or pull) and verify
the integrity and authenticity of a firmware image, and
then reboot;

3) Delegate authorization to another maintainer, in case of
new ownership or change of contracts (we use the same
technique to switch trust anchor when it expires or has
to be revoked);

4) Reconfigure the device so that cryptographic algo-
rithms can be upgraded, if needed.

There are several aspects we do not explore in the prototype
we aim for:

� We only consider the case where the entire firmware is
replaced. We do not consider differential updates.

� We focus on the use of asymmetric cryptography for
digital signatures, although a symmetric key solution is
also possible.

� We do not make use of firmware encryption.
� We avoid proprietary protocols, focus only on open

source software, and aim for simplicity; therefore, we do
not explore optimization potential. Our results should
therefore be interpreted as representing the ‘‘lower bar’’.

We designed this prototype such that multiple configura-
tions are possible – for example, to switch crypto algorithms,
crypto libraries, and network stacks – and the same code
can be executed on IoT hardware from different vendors.
This provides us with a good basis for comparing different
features.

B. COMPONENTS AND FUNCTIONAL OVERVIEW
Based on our survey of applicable open standards in
Section III, we utilize the following building blocks:

� The firmware metadata format based on the IETF SUIT
manifest.

� The 6LoWPAN, IPv6, and CoAP transport stack.
� The LwM2M IoT device management solution.
� Digital signature algorithms based on ed25519 and

ECDSA/P256r1.
We selected the RIOT [18] operating system for this proto-

type, but the results can easily be transferred to other real-time
operating systems.

The remainder of this section provides a functional
overview of the prototype.

1) IoT DEVICE COMMISSIONING
From the embedded software point of view, the prototype
we built is based on the design shown in Fig. 2, articulating:
(i) a minimalistic bootloader, (ii) two firmware image slots in
flash memory, each prefixed with space for their respective
metadata, and (iii) a basic firmware update module, also
implemented on top of RIOT, integrated into each firmware
image, as detailed below.

We enhanced the RIOT build system to enable a maintainer
to simultaneously build and flash (through the serial or USB
port) the bootloader and the initial firmware in the first slot.
The initial firmware includes a software module for firmware
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FIGURE 2. Embedded flash memory layout.

updates, configured with the necessary trust anchor of the
maintainer.

2) TRUST ANCHOR
Our model is based on a single trust anchor, namely of the
authorized maintainer. This trust anchor is used to verify the
authenticity of the signed firmware image. If an attacker man-
ages to trick the maintainer into handing out the private key
associated with the trust anchor, the attacker can load mali-
cious firmware images onto the IoT device. An attacker could
make the compromised maintainer sign malicious firmware
images. Alternatively, the compromised maintainer could
relinquish authorization to the attacker. There is nomitigation
when the only trust anchor used is compromised. In this
prototype, therefore, we rely on the maintainers’ ability to
keep their private keys secure. Extensions using a public key
infrastructure, potentially with a hierarchy of keys, is possible
but out of scope for this paper.

3) PRODUCING AND UPLOADING AN AUTHORIZED
FIRMWARE UPDATE
We enhanced the build system so that a maintainer – a soft-
ware developer – can simultaneously build a new firmware
image and produce the corresponding metadata, signed with
the private key of the maintainer. The firmware and signed
metadata can then be uploaded to the IoT software update
server, using an HTTP-based API. The update server is a web
server, which can speak both HTTP and CoAP. It interfaces
with the maintainer of the firmware and with the IoT device.

4) FIRMWARE UPDATE MODULE
The firmware update module’s main tasks are to retrieve the
firmware image and manifest from the update server, to parse
and verify the manifests, and to store the firmware image on
flash memory.

Themodule implements the required buffering between the
network packet size and the device flash page size. When
a flash page buffer is full, the module writes the buffer to
the next flash page in the (non-active) firmware image slot.
After the entire firmware image has been written to flash,
the module computes a hash and checks that this hash is
identical to the hash announced in the transferred firmware’s
metadata. The receivedmetadata is cryptographically verified
with the help of the trust anchor (the public key stored on
the device). If the digital signature is verified, and if other
security checks pass (for example, the firmware sequence

TABLE 1. Analyzed configurations.

number is confirmed to be newer), the module also writes the
metadata to the flash (otherwise, the metadata is blanked) and
launches a reboot. The bootloader then reads the metadata
from the two available firmware slots and chooses to boot the
newest valid firmware, based on the metadata. Note that, due
to blanked metadata, an interruption (e.g. due to power loss)
cannot cause the system to boot of an invalid, corrupted or
incompletely received image.

5) SCHEDULING FIRMWARE UPDATES
Using the firmware update module, updates can be (i) either
triggered periodically or on demand, (ii) pushed to the device
or pulled from the device [27], so as to fit other operational
constraints. On the device we use the real-time, preemptive
multi-threading capabilities of RIOT, such that the system
is not blocked by the computational-intensive task of digital
signature verification. In practice, signature validation runs
in a separate thread, with low priority, enabling other threads
with top priority to execute as needed. However, note that we
do not target more advanced fine tuning for the schedule of
firmware updates (e.g. to guarantee the continuity of some
service provided by the device, or to optimize network load).
Instead, we focus primarily on the fundamental embedded
system characteristics and constraints imposed by standard-
compliant firmware update on-board constrained IoT devices.

6) LIFECYCLE MANAGEMENT
By changing the trust anchor stored in the next firmware’s
update module, authorization to update the firmware can
be delegated to another maintainer, who can take over the
production and the roll out of authorized updates.

Crypto agility is straightforward because the update mod-
ule in the new firmware image can implement and use
upgraded cryptographic primitives. This flexibility is pro-
vided because we implement the cryptographic primitives in
the software.

Key roll-over is also made possible with the ability to
update the trust anchor.

C. CONFIGURABILITY OF THE PROTOTYPE
The prototype we designed can be configured in multiple
ways, as summarized in Table 1.

We created the following configurations:

1) BASELINE
The Baseline configuration covers a typical sensor scenario,
and is introduced here only as a reference, to evaluate the

VOLUME 7, 2019 71911



K. Zandberg et al.: Secure Firmware Updates for Constrained IoT Devices Using Open Standards

relative cost of over-the-air (OTA) firmware updates. There-
fore, this configuration does not provide firmware update
functionality. The Baseline configuration uses 6LoWPAN
over IEEE 802.15.4 as a network stack. A CoAP server is
installed on the IoT device to respond to requests for sensor
data and to actions that trigger an actuator.

2) BASIC-OTA
This configuration enables over-the-air firmware updates
pushed directly from the update server to the IoT device, over
the MAC layer, without a standard network layer. Therefore,
this Basic-OTA configuration requires that the IoT device and
the update server can communicate directly over the MAC
layer (in other words, they have to be on the same local net-
work/bus). The Basic-OTA configuration uses minimalistic
firmware metadata (in a proprietary format), namely:

� A sequence number.
� The firmware start address and size.
� A digest of the firmware image.
� A digital signature of the metadata.

3) IPv6-OTA
This configuration enables the Basic-OTA configuration by
using an IPv6-compliant network stack. The IPv6 network
layer implementation is provided by the RIOT Generic
(GNRC) network stack. CoAP blockwise transfer (block1) is
used because UDP limits the size of the firmware image to be
transferred to 65,507 bytes and, more importantly, we want to
avoid the inefficiency caused by IP fragmentation.

4) SUIT-OTA
This configuration implements firmware updates follow-
ing the IETF SUIT manifest [46]. Compared to IPv6-
OTA and Basic-OTA, SUIT-compliant firmware metadata
offers more features and additional security guarantees (see
Section VI).

The SUIT manifests used in our prototype contain the
following information:

� The firmware version number.
� An 8-byte nonce.
� A sequence number (whereby we use the current time).
� A single condition: limiting the validity of the manifest

to our device.
� The format of the firmware.
� The size of firmware.
� A storage identifier.
� A single URI to allow the device to download the

firmware.
� A SHA256 digest.
� A digital signature on the manifest.
Upon receiving a manifest, the IoT device checks the sig-

nature, and, if verified correctly, pulls the firmware from the
URI indicated in the SUIT manifest. To pull the firmware
image, we again use CoAP blockwise transfer (block2). It
would be possible to attach the firmware to the manifest, but
using this two-step approach gives us extra flexibility.

FIGURE 3. Time spent per subtask in a firmware update.

5) LwM2M-OTA
This configuration adds support for LwM2M v1.0 (without
the use of the bootstrapping functionality). The device reg-
isters to a LwM2M server and provides the necessary API
endpoints complying with the LwM2M specification and the
core objects, such as the LwM2M Device and the LwM2M
Firmware Update objects. The firmware is updated by push-
ing a SUIT manifest to the Package resource found in the
LwM2M Firmware Update object followed by the workflow
corresponding to the SUIT-OTA configuration.

In the analyzed configurations above, we have not used
TLS/DTLS between the IoT device and the update server
(or device management server for LwM2M). Implementing
TLS/DTLS is certainly useful when considering the larger
device management functionality in addition to the firmware
update. An analysis of IoT device management functionality
is, however, outside the scope of this paper.

D. RELATIVE IMPACT OF CRYPTO
In such a system, cryptography significantly impacts memory
and power budgets. To get an idea of howmuch, wemeasured
the relative memory budget and time spent due to crypto
for the Basic-OTA configuration of our prototype (using the
HACL crypto library [67]). First, we observe in Fig. 3 that,
compared to the time (and thus energy) needed for signature
verification and network transport, negligible time (less than
2%) is spent on network packet handling and parsing, as well
as on firmware metadata parsing and validation (exclud-
ing signature verification). Note that this remains true with
other configurations of our prototype as well, using a more
elaborate network stack (CoAP) or more elaborate metadata
(SUIT). Next, we observe in Fig. 4 that crypto represents 50%
of the memory budget. Going back to Fig. 3, it seems at first
sight that time spent during a firmware update is dominated
by network transfer (60%) then signature verification (38%)
as shown in Fig. 3. However, we observe that, since half
of the firmware image size is contributed by cryptographic
functions, this means 30% of the time is spent on transferring
updated crypto over the network (half the network transfer
time). In effect, we conclude that handling cryptography
dominates, accounting in fact for 68% of the total time spent
on the firmware update process. We conclude that choosing
an appropriate cryptographic algorithms and library, offering
a good compromise on size/speed, is crucial. In the following
section, we discuss this topic in greater detail.
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FIGURE 4. Flash memory budget per system component (basic-OTA
configuration, 35kB flash in total).

V. CRYPTOGRAPHIC LIBRARIES
Our prototype makes use of cryptographic primitives for
verifying digital signatures. Thus, a crucial parameter is the
choice of a signature algorithm, and its implementation.

In the context of this paper, we considered algorithms
that provide a cryptographic strength of roughly 128-bit.
Concretely, we considered mainly signatures based on
ed25519 and signatures based on the NIST P256r1
curve.

Based on the choice of algorithms, a particular implemen-
tation must then be chosen. We briefly survey a number of
relevant libraries, many of which are highly configurable, and
evaluate them in Section VII-B.

1) LIBRARIES THAT PROVIDE ed25519 SIGNATURES
HACL* [67] is a cryptographic library that is written in the
F* programming language and is compiled to C. The goal
of HACL* is to have a verified cryptographic library. In this
paper, we evaluate the version from the HACL-C repository
[1] (commit d65ee4).

TweetNaCl [19] is a small portable and auditable C library
implementing all 25 functions of NaCl. It is simple to use and
does not offer configurable options. It provides one combina-
tion of cryptographic primitives selected for high security. In
this paper, we evaluate version TweetNaCl-2014-04-27.

NaCl [28] is a patch on top of TweetNaCl. NaCl
provides assembly code optimized for some microcon-
troller architectures, and aims to significantly speed up the
x25519 key exchange. In this paper, we evaluate version
NaCl-2015-08-13.

C25519 [8] is a library that implements ed25519 for
embedded implementations. The memory consumption and
code size of C25519 is small. In this paper, we evaluate
C25519-2017-10-05.

Monocypher [63] is a small auditable library implement-
ing the ed25519 signature scheme among other cryptographic
primitives. It aims to keep the code base small while not
sacrificing too much speed. In this paper, we evaluate version
Monocypher-2.0.5.

WolfSSL [11] is an embedded TLS/DTLS library. The
wolfCrypt module is used here to measure raw crypto per-
formance. In this paper, we evaluate a version of WolfSSL
adapted for integration in the RIOT operating system (based
on commit 412eecd).

TABLE 2. Crypto library performance summary (fewer stars ? is better).

2) LIBRARIES THAT PROVIDE P256r1 SIGNATURES
TinyCrypt [10] is a cryptographic library that provides sig-
natures based on the NIST P256r1 curve [43]. The design
goals of TinyCrypt are to minimize the code size and cryp-
tographic dependencies. In this paper, we evaluate version
TinyCrypt-0.2.8.

Mbed TLS [15] is an embedded TLS/DTLS library. In this
paper, we evaluate version mbedTLS-2.12.0.

Note: Although WolfSSL and Mbed TLS are TLS/DTLS
stacks, we only use the implementations of the cryptographic
algorithms in the prototype; not in the TLS/DTLS protocol
itself.

3) OTHER DIGITAL SIGNATURE LIBRARIES
There are also alternative digital signature schemes that pro-
vide the same (128-bit) level of security. For instance, recent
work on hyperelliptic curves includes qDSA [54], a sig-
nature scheme that yields fast signatures and verifications
for constrained IoT devices. An implementation of qDSA is
available as a RIOT package [2], which provides a reference
C implementation and assembly code optimizations for both
AVR and Arm Cortex M0 microcontrollers.

Other work is based on variants with the Gimli permu-
tation [20]. For instance, libhydrogen [9] implements such
a signature scheme and enables fast, small cryptographic
signatures.

4) SUMMARY
The performance of the digital signature libraries we sur-
veyed above are evaluated and compared in detail in
Section VII-B. A high-level summary of the (significant)
differences we observed comparing these libraries in terms
of speed and memory requirements in RAM and Flash can
be found in Table 2. Based on this summary, we chose to
configure and evaluate our prototype firmware update using
ed25519 signatures provided by the C25519 library, which
offers a good speed/size compromise.

VI. SECURITY ASSESSMENT
Typical threats against a firmware update solution are dis-
cussed in the SUIT information model [47] and can be cat-
egorized into (i) privilege escalation, (ii) device malfunction,
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TABLE 3. Security assessment summary.

(iii) resource exhaustion, (iv) reverse engineering, and
(v) social engineering.

Based on these threats, we assess and compare the security
of our prototype in the IPv6-OTA, SUIT-OTA, and LwM2M-
OTA configurations, which are defined in Section IV-C. The
summary of our assessment is shown in Table 3.

A. TAMPERED FIRMWARE
An attacker may try to update the IoT device with a modified
and intentionally flawed firmware image. To counter this
threat, the IPv6-OTA, SUIT-OTA, and LwM2M-OTA config-
urations use digital signatures to ensure integrity of both the
firmware and its metadata. Additionally, the device can verify
that an authorized maintainer signed the firmware image.

B. FIRMWARE REPLAY
An attacker may try to replay a valid, but old (known-to-
be-flawed) firmware. This threat is mitigated by using a
sequence number. All three configurations use a sequence
number, which is increased with every new firmware update.

C. OFFLINE DEVICE ATTACK
An attacker may cut communication between the IoT device
and the update server for an extended period of time. Then,
he or she may try to update the IoT device with a (known-
to-be-flawed) firmware image, which has in the meanwhile
been deprecated. IPv6-OTA does not provide any mitigation
against this threat.

Following the SUIT specification, a best-before timestamp
can be used to expire an update. However, this requires the
IoT device to have an approximate knowledge of the current
date/time, which may not be available on constrained IoT
devices. Therefore, our SUIT-OTA configuration does not
mitigate this threat either. Only the LwM2M-OTA configu-
ration may protect against this attack since LwM2M offers
an easy way to provision the device with time information.

D. FIRMWARE MISMATCH
An attacker may try replaying a firmware update that is
authentic, but for an incompatible device. While IPv6-OTA
does not provide mitigation against this threat, the SUIT-OTA
and the LwM2M-OTA configurations include device-specific
conditions, which can be verified before installing a firmware

image, thereby preventing the device from using an incompat-
ible firmware image.

E. FLASH MEMORY LOCATION MISMATCH
An attacker may attempt to trick the IoT device into flashing
the new firmware to the wrong location in memory. To mit-
igate this attack, IPv6-OTA, SUIT-OTA, and LwM2M-OTA
specify the intendedmemory location of the firmware update.

F. UNEXPECTED PRECURSOR IMAGE
An attacker may try to exploit a vulnerability that results
from a mismatch between previously installed software and
the new firmware. While IPv6-OTA does not mitigate this
threat, SUIT-OTA and LwM2M-OTA enable specifying the
precursor software that must be installed before the update
can be applied (enabling modular/incremental updates).

G. REVERSE ENGINEERING
The firmware image in transmission can be captured by
an attacker for vulnerability analysis. Neither the IPv6-
OTA configuration nor our SUIT-OTA configuration protect
against eavesdropping end-to-end (from the maintainer to the
IoT device). Note that the SUIT specification also defines the
ability to encrypt the firmware image; however, our prototype
does not make use of this feature. The use of (D)TLS in the
SUIT-OTA or LwM2M-OTA configurations can also protect
the firmware image against eavesdropping in-flight, while
transmitted over the network, but doesn’t offer end-to-end
security without the extra protection offered by using SUIT.

H. RESOURCE EXHAUSTION
Receiving, verifying, and storing a new firmware is an oper-
ation that typically uses up a significant amount of resources
on a constrained IoT device. As discussed in Section VII-B,
signature verification can take several seconds. By repeat-
edly attempting fraudulent firmware updates, an attacker
may deplete the device’s battery or, more generally, make it
unavailable for long periods of time. For example, an attacker
who manages to transmit valid manifests without a valid
signature to an IoT device at regular intervals can drain the
battery.

The IPv6-OTA configuration does not mitigate this threat,
but the SUIT-OTA configuration lowers the impact by veri-
fying the manifest before downloading the firmware image.
However, an attacker could still push invalid manifests at any
rate, causing the IoT device to perform signature verifica-
tions. Using LwM2M, an additional layer of defense can be
added by only processing manifest that are conveyed via the
device management infrastructure. In this way, the IoT device
trusts the LwM2M server to only forward manifests that pass
the following security checks:

� The URL in the manifest points to a firmware update
server under the control of the LwM2M infrastructure.

� The manifest signature has been verified correctly.
� Other conditions in the manifest (such as the best-before

timestamp) have been processed successfully.
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TABLE 4. Flash requirements (in bytes) per component and configuration, on cortex M0+.

If the device management server is compromised, the security
characteristics of the LwM2M-OTA configuration fall back to
those of the SUIT-OTA configuration.

VII. EXPERIMENTAL PERFORMANCE EVALUATION
The quantitative analysis of our prototype is split into two
parts. First, we analyze the firmware update solution. Second,
we evaluate the performance of various crypto libraries for
use with our firmware update solution.

a: IoT HARDWARE
For the performance analysis, we use commercially available
hardware based on Arm Cortex M microcontrollers. We use
the following hardware from three different vendors:

� Atmel SAMR21, which features a Cortex M0+ MCU
with 32 kB of RAM and 256 kB of flash.

� STM32F103REY, which features a Cortex M3 MCU
with 64 kB of RAM and 512 kB of flash.

� Nordic nrf52840, which features a Cortex M4 with
256 kB of RAM and 1 MB of flash.

The STM32F103REY and the nrf52840 are clocked at
64Mhz, while the SAMR21 runs at 48Mhz. In the following
measurements, the code is compiled usingGCC7.2.0 for Arm
optimized for code size.

b: METRICS
To evaluate cost in our comparative evaluation, we use
both (i) memory measurements (RAM and flash size) and
(ii) CPU performance measurements. These metrics are deci-
sive in terms of hardware costs and in terms of energy
costs [26].

On the one hand, a slower CPU speed and larger RAM
size increase energy consumption. On the other hand, a faster
CPU with more RAM and flash memory typically increases
the price of the MCU.5 In practice, memory sizes available
for off-the-shelf microcontrollers are typically of size 2n (for
example, 32 kB RAM and 256 kB flash, or 16 kB RAM
and 128 kB flash). Therefore, hardware design constraints are
substantially impacted when such thresholds are crossed.

5The price of an MCU is determined by many factors, including
economies of scale. Therefore, it may even be the case that an MCU with
a better hardware layout is cheaper than a more constrained MCU.

A. EVALUATING THE COST OF THE OTA UPDATE
FUNCTIONALITY
To evaluate the cost of the firmware update functionality,
we measured and compared the RAM and flash memory
overhead incurred by this functionality in our prototype for
the various configurations we defined in Section IV-C. The
flash memory footprints (total and broken down per compo-
nent) are shown in Table 4, while Table 5 shows the RAM
requirements calculated for the stack6 measured on an Atmel
SAMR21 (using a Cortex M0+, the most constrained MCU
we used in our experiments). In these two tables, we also list
the bootloader as a separate item because it is present on the
device alongside the firmware images, as shown in Table 2.

We distinguish between different components in the sys-
tem as follows:

� The core component combines theminimal basic operat-
ing system functionality, including drivers. The newlib-
nano library is also included.

� The crypto component includes cryptographic algo-
rithms, such as digest algorithms, the digital signature
algorithm, the ECC and bignum library, and the pseudo
random number generators.

� The network component includes the protocol stack
from the radio driver up to the transport layer protocol
UDP.

� The modules that enable a firmware update to be
received and stored in flash memory are combined in the
OTA component.

� CoAP refers to the CoAP protocol stack.
� COSE+CBOR contains the libraries for COSE parsing

and CBOR parsing.
� SUIT relates to the code parsing a SUIT manifest.
� Finally, LwM2M contains the code for device registra-

tion, and functionality required for the LwM2Mprotocol
to perform firmware updates (particularly the LwM2M
Device and Firmware Update objects).

6We measure the RAM utilization using static analysis; that is, based on
the compiler-generated call graphs. This technique is simple and a good
approximation. It does, however, produce inaccuracy when the code contains
assembly language and function pointers. Dynamic analysis, on the other
hand, is not perfect either because it does not easily indicate the maximum
stack size. Note that memory allocations on the heap are not considered in
our measurement.
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TABLE 5. RAM requirements (bytes of statically allocated stack) per component and configuration, on cortex M0+.

1) THE COST OF OTA
The cost of basic OTA functionality can be measured by
comparing the memory requirements of the Baseline config-
uration with that of the IPv6-OTA configuration. On a per-
image basis, the flash overhead comes from the need for
additional modules to perform necessary crypto (5 kB) and
to handle OTA (2 kB). However, the prototype needs two
image slots withmetadata and a bootloader.We are, therefore,
comparing the Baseline flash footprint against twice the flash
footprint of IPv6-OTA added with the bootloader footprint
(see Table 4). In total, the relative overhead in flash memory
footprint is 137% (59 kB more). Note that this overhead
means that the flash memory budget crosses over from below
64 kB to below 128 kB. The largest part of the overhead
comes from the doubled image slots. The footprint of the
rest (bootloader and metadata) is small: approximately 3 kB
of flash for the bootloader and a single flash page for the
metadata of each image. Due to flash memory alignment
constraints, the size of the metadata is effectively rounded
up to a full flash page stored in the memory of the IoT
device.

On the other hand, RAM requirements increase by 3 kB,
and could most probably be kept under the 16 kB threshold
with additional optimization. Thememory footprint overhead
can be reduced if standard-compliance is dropped at the net-
work level. For instance, the Basic-OTA functionality stays
below 64 kB flash.

2) THE COST OF STANDARD-COMPLIANCE FOR OTA
The use of standards-compliant specifications, such as
6LoWPAN, SUIT, and LwM2M, increases the memory foot-
print due to the extra functionality provided; for example,
serialization, metadata processing, and object handling. This
is expected.

However, we observe that the relative overhead per image,
compared to the Baseline scenario, is small. This is because a
lot of features are reused in the networkmodule. Furthermore,
it is not unlikely that, OTA functionality aside, application
code already leverages CBOR, COSE, and other crypto func-
tionality. In such cases, the extra memory overhead per image
falls to approximately 10%. This type of software reuse is a
clear advantage of using standard building blocks.

Compared to the 124 bytes of metadata transferred over
the network with the Basic-OTA configuration, 226 bytes of
metadata need to be transferred with the SUIT-OTA configu-
ration (counting full COSE data).

Due to the flash memory alignment constraints on the
IoT device, this overhead has no effect on the flash memory
footprint because 226 bytes typically fit on a single flash
page (for example, 256 bytes fit on a single flash page on
the SAMR21, the most constrained MCU we used in our
measurements).

Finally, we observe that none of the configurations we
experimented with exceeds the thresholds of 32 kB of RAM
and 128 kB of flashmemory. Although our prototype could be
further optimized, it fits the nature of constrained IoT devices
used in the market today.

Extending our measurements to the SUIT manifest case,
the code has to be extended with components required by the
SUIT specification. A SUIT module and the necessary seri-
alization and cryptographic functions increase the flash size
by 10 KB compared to the simple OTA scenario. While the
COSE and the CBOR modules are here specifically required
for SUIT compliance, in a real-world scenario these modules
could also be used for sensor data encoding and application
data encryption.

Using LwM2M compatible handlers for this increases the
flash size by another 2 kB because of the need to imple-
ment the mandatory LwM2M handlers and the registration
protocol. These components must be implemented by every
device that is LwM2M-compliant and should not be consid-
ered as overhead purely related to having over-the-air update
functionality.

B. EVALUATING THE COST OF CRYPTOGRAPHY
In this section, we evaluate the cost of cryptographic sig-
natures on various constrained IoT devices, with the crypto
libraries we surveyed in Section V-.1. We measure the mem-
ory required (flash footprint and stack usage in RAM) and the
speed for digital signature verification. We summarized our
high-level observations in Table 2 and gave points in the form
of ?, where fewer points is better. There are tradeoffs between
code size, RAM utilization, and speed. For the flash size and
the stack size, we take the maximum of the three measured

71916 VOLUME 7, 2019



K. Zandberg et al.: Secure Firmware Updates for Constrained IoT Devices Using Open Standards

TABLE 6. Flash size for crypto libraries (in bytes) for signature
verification.

TABLE 7. Stack size of crypto libraries (in bytes) for signature verification.

architectures (M0+, M3, and M4). For the verification time,
we consider M0+ and M4 only because M3 is somewhere
between the two.

Table 6 shows flash memory measurements, and Table 7
shows RAM (statically allocated stack) memory measure-
ments. Table 8 shows the speed of signature verification.

Among the libraries that provide ed25519 signature and
verification, we observe major differences in terms of per-
formance. C25519 is optimized for a low memory foot-
print on embedded systems and performs best in terms of
flash and stack requirements. While not being specifically
optimized for embedded systems, Monocypher performs the
fastest ed25519 signature operations on all of the hardware
we tested, but requires two to five times more stack and
flashmemory compared to C25519. HACL∗, TweetNaCl, and
uNaCl also require consistently more memory than C25519,
and are slower than C25519 on Cortex M0+. We note that
the HACL∗ and TweetNaCl libraries are also not yet fully
optimized for constrained IoT. On Cortex M4 and Cortex
M3, TweetNaCl and HACL∗ are nevertheless faster than
C25519. Looking at overall performance, WolfSSL has an
average flash size. The stack requirements are relatively low
compared to the other ed25519 implementations, but speed is
a bit lacking compared to other libraries. All in all, based on
our measurements of ed25519 libraries, C25519 seems like a
good compromise.

The P256r1-based ECDSA signature scheme, as imple-
mented by TinyCrypt, outperforms most ed25519 implemen-
tations by a large margin in terms of speed and stack usage.
On the other hand, the flash requirements are comparable
to that of the C25519 library. Mbed TLS requires a bigger
flash size largely because of the big number library, which
requires 5.7 kB. Mbed TLS outperforms TinyCrypt in terms
of speed on the Cortex M0+ platform, but is slower on the

TABLE 8. Signature verification time (in milliseconds).

other platforms with signature verification. Stack usage is,
however, significantly higher than for TinyCrypt but lower
than most ed25519 implementations.

Even faster on Cortex M0+, qDSA outperforms all other
libraries by an order of magnitude or more. The implemen-
tation is optimized with assembly code for use on a Cortex
M0+ and for 8-bit AVR but not yet for Cortex M3/M4 where
it uses a slower C implementation. This explainswhy qDSA is
slower on Cortex M3/M4. While the qDSA implementation
takes a relatively large amount of flash space, a closer look
shows that at least 8 kB are required for a SHA-3 digest
algorithm, which is required by qDSA. This cost could
be amortized when other parts of the system also use the
SHA-3 algorithm.

The Gimli-permutation-based Libhydrogen performs very
well in both size and speed on all platforms.While it is not the
fastest crypto library, the flash usage and stack requirements
are the lowest among the tested libraries.

VIII. DISCUSSION: GOING FORWARD
A few observations can be made based on our work.

� State-of-the-art crypto is doable on IoT devices, but it
takes a toll.Widely-used security algorithms are reason-
ably fast and fit the memory budget on constrained IoT
devices. However, crypto consumes a significant chunk
of the resources available on such devices. Given an
algorithm,memory usage and speed can vary by an order
of magnitude, depending on the implementation’s trade-
offs. New algorithms, such as qDSA, provide promis-
ing alternatives, even faster and smaller. In any case,
hardware crypto acceleration should also be considered.
The implications of switching to post-quantum crypto
algorithms, like hash-based signatures, on constrained
IoT devices have to be studied.

� Making the firmware update reliable is key. With the
system we described, the maintainer is expected to test
the new firmware properly before rolling it out. At a
minimum, the new firmware must be able to update
itself onemore time over-the-air. Guarantees beyond this
minimum requirement – such as the use of watchdog
timers and the ability to use a ‘‘factory reset’’ – fall into
the realm of traditional embedded software management
and increase the flash memory requirements. Without
taking these considerations into account, failures, like
those reported with the Taiwanese YouBike service [36]
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and the Japanese X-ray telescope satellite Hitomi [44],
are likely to occur again.

� Use delegation capabilities with care. As the system
allows the maintainer to transfer its authority to another
entity, the maintainer is entrusted with the responsibility
of not transferring authority to malicious entities. If the
maintainer is the owner of the device, trust is not an
issue; otherwise, maintenance of IoT software is typ-
ically of a contractual nature, and the caveats of such
trust are well-trodden territory. An improvement of the
system could use protected memory and/or a dedicated
crypto hardware module to validate authority transfer.

� Shielding against resource exhaustion and best-
before vulnerabilities. The extent to which an IoT
device is protected against resource exhaustion attacks
depends on the resources of the firmware update server
in the LwM2M-OTA configuration. The aspect of
dimensioning the server’s resources to counter poten-
tial DoS attacks is covered by extensive prior work
in the domain. In the end, due to extreme lack in
resources, constrained IoT devices remain intrinsically
vulnerable.

� Real-world requirements make firmware updates
complex. In this paper we focused our efforts on
the most basic scenario outlined in [45] and we did
not consider refinements, such as firmware encryption,
updating devices with multiple microcontrollers, com-
plications due to policy handling, differential updates,
or more efficient distribution using multicast. Encryp-
tion, for example, raises the question about key man-
agement. In a world where software components are
developed, maintained, and updated by different devel-
opers, additional challenges arise. While the advantages
are known from web development, there are questions
about how to trace component versions and their com-
posability with other software libraries, how to sand-
box components in constrained IoT devices, how to
accomplish faster time to market in regulated industries
where software development requirements and testing
are much harder than on the internet, and so on.
We expect a number of these topics to be investigated in
the IETF SUIT working group.

� IoT software updates are not just for critical infras-
tructure. Interdependence between networks has dra-
matically increased over the past few decades. Enabling
and securing firmware updates is necessary for IoT
devices that are (i) inside the infrastructure perimeter
(for example, industrial sensors), and (ii) outside the
infrastructure perimeter (for example, consumer smart
appliances). For instance, a recent study [60] shows how
the power grid is indirectly vulnerable to DDoS attacks
from hacked consumer appliances in smart homes.
Using simulations, the study shows how a botnet con-
trolling a relatively small number of connected water
heaters and air conditioners could maliciously disrupt
power demand and take down most of a large power grid

serving an area as large as Canada (tens of millions of
people).

� Firmware update security is more than network
security. Software-based attacks, such as buffer over-
flow attacks, known from the desktop and mobile world,
are also very likely to increase in the IoT world. More
work on memory isolation and compartmentalization is
required because the most popular IoT operating sys-
tems offer only few isolation mechanisms to developers.
Hardware-based attacks require attention to be paid to
side channel analysis but also to exposed components,
such as off-chip flash or debug ports that are left unpro-
tected. Note that the system we described does not pro-
tect against tampering of this nature.
Software supply chain vulnerabilities become important
when software bundle components are handled by dif-
ferent developers. Recent attacks have laced legitimate
software with backdoors and/or malware, such as the
Ccleaner software [31]. In our prototype, the authorized
maintainer centralizes the responsibility of assessing the
legitimacy of firmware updates. In some cases, it may
become difficult for the maintainer to assess this legiti-
macy, and a decentralized version of the assessment may
become necessary [48].

� Something is better than nothing. The prototype
described in this paper demonstrates how a basic
firmware update mechanism with state-of-the-art secu-
rity can be introduced to constrained IoT devices. This
added functionality brings a welcome improvement to
the world of unmaintained IoT devices that offer no story
for updating buggy software.

IX. CONCLUSION
Including a firmware update mechanism in IoT devices is a
must-have feature. This need is exacerbated by the current
context, where cyber-criminality is on the rise, while full-
blown, state-driven cyberwars are being fought on a large
scale.

In this paper, we have surveyed open standards, which
provide generic building blocks for secure firmware updates
on constrained IoT devices. We have built a basic prototype,
bundling such standard building blocks and avoiding propri-
etary components as much as possible. We assessed the secu-
rity characteristics of the resulting system, and we showed
how it brings state-of-the-art security to IoT devices. The cost
of enabling the firmware update solution in our prototype is
bearable, in terms of the required memory and computation,
with the currently available IoT hardware. We demonstrate
that it is possible to implement a generic, standards-compliant
firmware update solution on IoT devices without exceeding
the typical thresholds of 32kB of RAM and 128kB of flash
memory.
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