IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 8, 2019, accepted May 24, 2019, date of publication May 29, 2019, date of current version June 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919796

An Efficient Android Malware Detection System
Based on Method-Level Behavioral

Semantic Analysis

HANQING ZHANG ~, SENLIN LUO ", YIFEI ZHANG, AND LIMIN PAN

Information System and Security and Countermeasures Experiment Center, Beijing Institute of Technology, Beijing 100081, China

Corresponding author: Limin Pan (panlimin2016 @ gmail.com)

This work was supported in part by the Technology Innovation Program Major Projects of Beijing Institute of Technology under Grant

2011CX01015 and in part by the National 242 Program under Grant 2017A149.

ABSTRACT According to the recent report, 12 000 new Android malware samples will be generated every
day. Efficient identification of evolving malware is an urgent challenge. Traditional methods based on
structured features such as permissions and sensitive application programming interface (API) calls lack
high-level behavioral semantics to detect evolving malware. The methods based on call graphs (CG) are
good at behavioral semantic analysis but face the problem of huge time and space consumption, which leads
to low detection efficiency. In this paper, we propose a novel Android malware detection method based on the
method-level correlation relationship of application’s abstracted API calls. First, we split each Android appli-
cation’s source code into separate function methods and just keep the abstracted API calls of them to form a
set of abstracted API calls transactions. And then, we calculate the confidence of association rules between
the abstracted API calls, which forms behavioral semantics to describe an application. Finally, we combine
machine learning to identify the different behavioral patterns of malicious and benign apps to build the detec-
tion system. The results of our empirical evaluation show our system is competitive in terms of classification
accuracy and detection efficiency. At dataset Drebin (benign 5.9K and malware 5.6K) and AMD (benign
20.5K and malware 20.8K), our system has achieved 96% and 98% detection results both in accuracy and
F-measure. Compared with the state-of-the-art system in detecting evolving malware called MaMaDroid on
the dataset of 6.0K benign and 20.5K malicious samples spanning from 2010 to 2017, our system achieves
higher accuracy while improving detection efficiency by 15 times (2.9 s versus 45.7 s per sample).

INDEX TERMS Android malware detection, abstracted API call, association analysis, behavioral semantics,

machine learning.

I. INTRODUCTION

In recent years, the popularity of smart phones is increasingly
high and Android becomes an indispensable part of people’s
daily work and life. Due to the openness of free source,
Android covers around 85% of worldwide smartphone mar-
ket until 2018 [1]. At the same time, Android has also become
a prime target for cyber-criminals. According to the recent
report, in the whole year of 2018, 360 Internet Security Center
intercepted about 4.342 million new samples of malware on
mobile terminals, or about 12,000 new samples per day [2].
These malicious apps are created to perform different types of

The associate editor coordinating the review of this manuscript and
approving it for publication was Sedat Akleylek.

attacks such as stealing private information, sending message
without user’s permission, luring users to malicious web-
sites, etc., which pose serious threats to smart phone users.
In order to evade detection, malware continue evolving and
are increasingly complex and diverse, and some notorious
malicious apps have more than 50 variants, which brings a
great challenge to detect them all. Therefore, the effective
and efficient detection techniques are urgently needed to cope
with the increasing sophistication of Android malware.

To address these challenges in Android malware detection,
the research community has developed many works in this
field. The researches based on permissions and intents of
Android apps are prone to false positive, since benign apps
also need to require sensitive permissions, which makes them

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

69246

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8715-0532
https://orcid.org/0000-0002-3310-8312

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

IEEE Access

be misclassified as malware easily. As is proved experimen-
tally in the literature [3], the ways based on frequency of
API calls such as DroidAPIMiner [4] are unable to estab-
lish connections between the API calls to get the high-level
behavioral semantics of applications, which leads to poor
performance in detecting novel malicious. MaMaDroid [3] is
scalable enough to the malware’s evolution by exploiting the
sequence of API calls to characterize the behavioral patterns
of the apps. However, it has a low system efficiency, since
the premise of this method is to build the CG of the entire
software. The experiment in [3] shows that MaMaDroid takes
around 30s for per app’s analysis on a desktop equipped with
a 40-core 2.30GHz CPU and 128GB of RAM, which makes
the system difficult to be applied for lightweight industry
scenario.

In this paper, we propose a novel Android malware detec-
tion method based on method-level correlation relationship
of application’s abstracted API calls. As is well-known to
us, the behaviors of an app is determined by app’s source
code through user-defined methods, and each of methods
implements specific operations by invoking API calls. The
method defined in the app’s source code is the basic unit of
the app’s behavioral semantics. Our intuition is that malware
tend to use some specific API calls’ combinations in a
method to accomplish some maliciously inclined operations
different from the benign. For example, if malware wants
to steal the privacy, it may collect all the sensitive infor-
mation in a method with some API calls (e.g., Landroid/
telephony/TelephonyManager;->getDeviceld(); Landroid/
content/pm/PackageManager;->getPackagelnfo(); etc.). The
benign apps tend to get the privacy information separately
only when they need it, so the API calls associated with
obtaining private information generally do not appear at the
same time in one method in benign samples.

To analyze the differences between the combinations of
API calls in the method of malicious and benign apps is the
key to establish the detection system. Therefore, we intro-
duce association rule analysis technology to characterize the
API calls’ relationships in the same method and capture
app’s behavioral semantic information. In addition, consid-
ering the excessive number of Android API calls and fre-
quent API changes in Android framework, we adopt the
method of abstracting API calls to represent app’s behaviors
instead of directly using specific API calls. For example,
we can abstract the API calls related to network(e.g, Lan-
droid/net/ConnectivityManager;getNetworkInfo) to the API
call’s attribution (e.g., android/net) without abstracting away
the behaviors of an app. Since, if an app invokes an API
call with attribution “android/net”, it means that the app will
do network-related operations whatever concrete API calls
the app invokes. In our systems, API calls are abstracted to
their attributions, abstraction granularity can be determined
depending on the need of the situation.

The results of our empirical evaluation show that our
system has competitive performance in classification accu-
racy and detection efficiency at task of Android malware

VOLUME 7, 2019

detection. At dataset Drebin [5](benign 5.945K and malware
5.56K samples) and dataset AMD [6](benign 20.519K and
malware 20.843K samples), our system has achieved 96%
and 98% detection accuracies. In order to prove our model is
robust to changes in Android malware samples, we collect a
mix of older and newer apps, from 2010 to 2017(5.9k benign
and 20.520k samples) to make comparative experiments
with state-of-the-art(SOTA) work called MaMabDroid. As the
experimental results show, our system achieves higher accu-
racy while improving detection efficiency by 15 times(2.9s
vs 45.7s per sample) in the same environment.

In short, our work has the following major contributions:

1. We propose a novel feature representation that incorpo-
rates behavioral semantics for Android applications. To the
best of our knowledge, it is the first time to use associa-
tion rule of abstracted API calls to characterize the Android
behavioral features. Compared to using frequency of API
calls as features, it can capture the semantic information of
app’s behaviors so that it is more resilient against the Android
malware’s evolution. Compared to the CG-based ways, our
feature construction method is more efficient, since without
constructing call graphs.

2. We develop a practical and efficient Android malware
detection system. Based on the feature representation of
Android applications, we combine machine learning technol-
ogy to develop a practical system. In addition, we present
a comprehensive experimental study based on Drebin and
AMD database and comparative experiments with state-of-
art MaMaDroid, which fully demonstrates the effectiveness
and efficiency of our developed system.

The remainder of this paper is organized as follows:
Sectionll discusses the related work in detecting Android
malware. In the Sectionlll, we first present the framework
of our system and then introduce our method in detail.
SectionsIV discusses the result of experiments on two public
data sources to prove the detection performance, by also
presenting the result and discussion about the comparison
experiments with MaMabDroid. In the SectionV, we discuss
some potential limitations of our approach and the future
work of our research. Finally, SectionVI concludes our work.

Il. RELATED WORK

In recent years, there have been ample works in this Android
malware detection field. We can roughly divide these works
into two categories: dynamic analysis and static analysis.
There are many representative works in dynamic malware
analysis. Crowdroid [7] monitors application system calls
and gets a log file as feature set, and then uses clustering
algorithms for malware analysis and detection. DroidDol-
phin [8] extracts the features of the API calls’ sequences
collected from applications during the runtime by n-gram to
complete the classification. MADAM [9], a host-based mal-
ware detection system, builds detection system by monitoring
features belonging to different Android levels including user,
application and kernel. Dynamic analysis needs to execute
a program and observe the results [10], which could fight

69247

IEEE Access

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

Method Dictionary

1 code_blockl API calls

Unzipper Extraction

2
. smali code ‘
3

Decompiler

code_block2

code_block3
API calls

4 code_blockd. Abstraction

Preprocess

FIGURE 1. The framework of the detection system.

against confusion and dynamically loaded code, but provides
limited code coverage and spends more time and computation
resources.

Compared to dynamic analysis, static analysis provides
more efficient and accurate analysis results, but is hard
to cope with confusion and dynamically loaded code.
DroidAPIMiner [4] relies on the top-169 API calls that are
more frequent in the malware than in the benign sets to
finish the classification task. DroidMat [11] uses clustering
algorithm to process static features such as API calls, per-
missions and intents, and then classifies the clustering results
through KNN. Drebin [5] extracts numerous features include
API calls, network addresses, sensitive system permissions
to accomplish classification by using SVM. SiGPID [12],
an efficient detection system based on permission usage anal-
ysis to cope with the rapid increase in the number of Android
malware. Kumar er al. [13] proposed a novel method to
distinguish between malware and benign applications based
on association rule for permission mining. HinDroid [14]
propose a novel feature extraction method that uses meta-
path to characterize the semantic relatedness of apps and
API calls, and then combine the SVM algorithm to detect
malware. What’s more, Opcode is also a commonly used
analysis material in static analysis. The methods proposed
in paper [15] and [16] both use n-grams of Opcode as
feature extraction to represent the characteristics of appli-
cations. Zhang et al. [17], propose a weighted probability
graph of Dalvik Opcode and extract topology features as the
representation of applications, and then search the similarities
with these features of programs to detect Android malware.

Recently, the CG-based methods have been proposed,
since the methods based on permissions, sensitive API
calls, Opcode, etc. lack behavioral relationship information.
DroidSIFT [16] extracts a weighted contextual API depen-
dency graph as program semantics to construct feature sets
for malware classification. We have already introduced,
and compared against, MaMaDroid [3] ,this detection tools
extract the app calls and use Markov chains to model the
behaviors of Android apps through the sequences of API
calls and get good performance in detecting unknown sam-
ples at sizable amount of memory and unbearable time cost.
Gao et al. [18], extract topological signature for Android
apps by capturing the invocator-invocatee relationship at local

69248

Benign

Abstracted Association Rules Analysis

API calls Transactions

Ttem1 {com/google javarnet,...}

Item2{java/net org/wic,...}

Item3 {org/wac,android/net, ...}

API calls Abstraction

Feature Extraction Classifier

neighborhoods in the function call graphs, and then use SVM
to classify malware. Ma et al. [19], build multi-level fea-
tures to classify samples based on the API information by
constructing control flow graph of Android applications.

Overall, the detection tools such as Drebin and
Droid APIMINER based on traditional static structural fea-
tures cannot deal with the evolution of malware because of
lack of behavioral semantic analysis. CG-based methods are
good at behavioral semantic analysis but have limitations in
time efficiency. Our system uses association rule analysis
techniques to extract the co-occurrence relationship between
abstracted API calls in each Android application method and
form behavioral semantics to describe Android application’s
behaviors, which can effectively detect evolving malware
with good time efficiency.

lll. PROPOSED METHOD
A. THE FRAMEWORK OF OUR METHOD
In this Section, we introduce the framework of our system.
Figurel shows the architecture of our developed malware
detection system. To detect the malware, we first unzip and
decompile the Android Application Package (APK) file to get
smali code, and then transform the smali code into separate
method blocks. By parsing method blocks of smali code, all
the API calls invoked in method are extracted. Next, through
abstracting the API calls, we transform app’s source code into
a set of abstracted API calls transactions. Finally, the vector
representation of the Android application is obtained by using
association rule analysis techniques, and the malware classi-
fication is completed by the Random Forest [20] algorithm.
Our approach follows a classical data mining rationale. The
framework of our system could be the following four major
components.

1) PREPROCESS
In this section, our system uses the tools called Andguard [21]
to unzip and decompile Android APK files to get smali code.

2) API CALLS ABSTRACTION

After getting the smali code of APK, we extract all the smali
code of each methods and generate a method dictionary for
every APK file, and then replace the method code with the
API calls that appear in the method. Rather than analyze API

VOLUME 7, 2019

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

IEEE Access

calls itself, the system here focuses on the abstracted API
calls by transforming the API calls to their attributions to
represent the app’s behaviors. After the abstraction operation,
abstracted API calls transactions of each sample are gener-
ated for further analysis.

3) FEATURE EXTRACTION

The vector representation of sample will be obtained by
associated behavioral analysis in this section. We present
a methodology known as association rule analysis to dis-
cover interesting relationships hidden in data sets including
malware and benign. The uncovered relationships between
app’s behaviors are represented in the form of the confidence
value between two abstraction API calls such as operation:
“java/io” to operation: ‘‘android/net”. All confidence values
between two abstracted API calls constitute the behavioral
vector representation of the app to be analyzed.

4) CLASSIFIER

Given the vector representation of all the malware and benign
in datasets by association analysis, we use machine learning
algorithm to construct the classifier. Each newly collected
unknown Android app could be labeled either benign or mali-
cious by the trained classifier.

B. PREPROCESS

Since APK files cannot be analyzed directly, some
pre-processing operations are required before feature extrac-
tion. Unlike the application for desktop based Portable Exe-
cutable(PE) files, Android app also called as APK file is
essentially an zip file, and we can open it with unzipping
tools such as WinRar [22]. After decompressing the APK
file, we can get the following files: AndroidManifest.xml,
META-INF, res, lib, assets, clssses.dex, resources.arsc.
“classes.dex” file generated after compiling the code written
for Android and could be interpreted by the DalvikVM [23]
is the main concern of our system. In order to get the Android
app’s behavioral data, we need to convert the dex file to
analyzable format. Smalli code can be decompiled directly
from APK files, and contains all the information we need,
thus, it becomes the target format as shown in Figure2. In our
system, we use Andguard [21] to unzip and decompile the
APK files, and get smali code of each Android APK sample.

C. API CALLS ABSTRACTION

In this section, we focus on the motivations for API calls
abstraction and the detailed abstraction steps. API calls
abstraction is based on two considerations: reduce the number
of API calls for raising efficiency and enhance the robustness
to cope with the changes in Android framework. Android
apps get access to operating system functionality and system
resources by using API calls. Therefore, we can use them to
represent the app’s behaviors to detect malware. If we directly
select API calls as the analysis object, it is inevitable to face
the problem of combination explosion, since the total number
of API calls is too large. API calls abstraction could reduce

VOLUME 7, 2019

method private fill PostData)V

Jlocals 5

_prologue

const-string v2, "phone”

k 1 {p0, 2}, L start, SystemS Lin

move-result-object vI
1, Landroidtelephony/TelephonyManager;
dephonyManager”:Landroidtelephony/TelephonyManager;

1. L phony >getDeviceld()Ljava/lng/String;

g)Ljava bngObject.

move-result

Istard tLjavallang/String:
Operator()Ljava lang/St

-obj Istard’ P Name Ljava bngString:
try_start 0

)La
move-result
K

>getl JLjava lang/String;
move-r edt
const/4 v4, 0x0
k 1 {v2,v3, v4}, L. pivPackageManager -
Ljava lng/String:T)L

.end method

FIGURE 2. An example of smali code from a malicious
app(com.satismangrooup.stistart.Bragushterra).

the number of API calls and enable comprehensive behavioral
analysis without losing major information, it becomes a nec-
essary pre-operational step for associated behavioral analysis.
In addition, the use of abstract API calls instead of specific
API calls can solve the problem of quick update of Android
system API calls to a certain extent, which helps to better
detect evolving malware.

.method private fillPostData()V'
_prologue

invoke-virtual {v1}, Landroid/ekephony/TelephonyManager:->getDeviceld()Ljava/hng/String

invoke-virtual {v2, v3, v4}, Landroid/content/pnvPackageManager:-
>getPackagelnfo(Ljava/ling/String;T)Landroidicontent/pm/PackageInfo;

invoke-virtual {v2}, Liavaitil/Locak;>getLanguage()Ljava‘hng/String;

return-void
:catch_0
move-exception v2
goto :goo_0

.end method

l API calls Extraction

invoke-virtual {v1}, Landroid/iclephony/TelephonyManager;->getDeviceld(Ljava: hng/String;
invoke-virtual {v2, v3, v4}, Landroid/content/pnyPackageManager;-
>getPackagelnfo(Ljava‘kng/String;[)Landroidicontent/pm/Package Info;
invoke-virtual {v2}, Liavaiuti/Locak->getLanguage()Ljava lng/String;

¢ API calls Abstraction

Landroid/telephony/ TelephonyManage:
Landroid/content/pm/Package Manager;
Ljava‘util/Locale;

FIGURE 3. An example of API calls abstraction for a single method.

Before abstraction operation, we extract all the user-
defined methods by scanning the smali code of each APK
file to construct method dictionary. And then, each method
is processed separately. An example with detailed process
is shown in Figure3. At first, we get the whole smali code
of method. And then we pick out the instructions (invoke-
virtual, invoke-direct, invoke-static, invoke-super) related to
calling API calls to extract API calls in the method and
delete other smali instructions that we do not care about.
Finally, we have API calls abstraction operations by preserv-
ing some attributes(referring to the rhetorical words sepa-
rated by separators in the API calls’ package name such as
“android”,““net”, etc.) of API calls. In the example shown
in Figure3, the entire package name is preserved as an abstract
result, but in the case, the abstraction granularity can be
flexible. Next, detailed abstract methods as following will be
discussed.

69249

IEEE Access

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

By analyzing the real world app file, the system API calls
can be divided into three different types: Android system API
calls, user-defined API calls in the application, and others that
have been confused. The latter two are abstracted into two
types: self-defined and confused. For the system API calls,
we will further elaborate the abstraction steps. According to
the latest Android platform [24], there are 443 packages in
the Android API-Level 28, and if we directly analyze the rela-
tionship between the two packages, the feature dimension of
an APK file is up to A42L45 = 197580, which is unacceptable to
the original intention of lightweight detection system. Thus,
further coarsening of the abstract granularity is required.

Levell

Level2
Level3

android.telephony. gsm.xxx.xxx Leveln

FIGURE 4. Hierarchical level schematic diagram of API call’s attribution.
The attribution here refers to the rhetorical words separated by
separators in the API calls’ package name such as “android”,
“telephone”, etc.

The package name of the Android system API calls is split
by dot notation and listed in the hierarchical level as shown
Figure4. The meaning of each level is refined layer by layer.
For example, “android.telephony.gsm” can be split into the
following three levels: level-1:android, level-2: telephony,
level-3: gsm. Level-1 means that the API call comes from
Android family, and level-2 means that the API call has
operation about telephone, and level-3 means providing func-
tional service for utilizing GSM-specific telephony features.
Therefore, we could make a trade-off between the precious
behavioral meaning and the number of feature dimensions by
removing high level attribution just like Figure5. Our system
retains only the first two levels of attributions, abstracts the
443 packages in API Level-19 into 73 plus self-defined and
confused, adding up to a total of 75 abstracted operations.

Levell
Level2

Levell
Level3 Abstract

Level2

Leveln

android.telephony.gsm.xxx.xxx

(API call’s Attribution)

android.telephony
(Abstracted API call)

FIGURE 5. An example of API call abstraction operation.

After the above series of processing steps, we could get
abstracted API calls items of each method and then generate
abstracted API calls transactions for each APK file for further
behavioral association analysis.

69250

D. FEATURE EXTRACTION

In this section, we introduce feature extraction based on
associated analysis in detail. The method defined in the
app’s source code is the basic unit of the app’s behavioral
semantics. Malware and benign usually show different behav-
ioral patterns in the construction of function method, which
manifest in different API combinations owned by differ-
ent function methods. To discover these potential patterns
of behaviors, we use the method-level associated analysis
to construct the characteristics. Before elaborating on the
detailed feature extraction steps, some prerequisite knowl-
edge from [25], [26] will be introduced firstly.

1) ITEMSET

Each type of abstract API call can be called an item, such as
“java.io”, “android.net”. The collection of all abstract API
types is called an itemset. Let I = [I1, I, I3--- 1] (In our
system, d = 75) be the set of all items in abstracted API
calls. A sample contains an indefinite number of methods,
and we call the collection of abstract API calls contained
in each method a transaction. At the API calls abstraction
stage, we have got a set of abstracted API calls transactions
of each APK file. If an APK file contains k methods, we can
use T = [f1,, 13- - 1] to represent the APK file. Trans-
action #;; contains a subset of items chosen from itemset /.
In association analysis, a collection of zero or more items is
termed an itemset. If an itemset contains k items, it is called
a k—itemset. In our system, if a method contains i abstracted
API calls, it is called i—itemset.

2) SUPPORT COUNT

Transaction width is defined as the number of items presented
in a transaction. A transaction such as #; is said to contain
an itemset X if X is a subset of #. In associated analysis,
an important property of an itemset is its support count, which
refers to the number of transactions that contain a particular
itemset in the whole transactions. Mathematically, the support
count: o (X) , for an itemset X can be stated as follows:

oX)=[{nlX et;,1; e T} ey

where the symbol “|.|” denotes the number of elements
in a set.

3) ASSOCIATION RULE

An association rule is an implication expression of the form
X to Y, where X and Y are disjoint itemsets, and X or Y
is the subset of /. In our system, because the confidence of
the rules between the two API calls has provided enough
information to express their behavioral semantics, and in
order to maximize the detection efficiency at the same time,
we only care about rules between two items such as {java.io}
to {java.net}, {android.net} to {org.xml}.

4) CONFIDENCE
The strength of an association rule can be measured in terms
of its confidence. The formal definition of the support can be

VOLUME 7, 2019

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

IEEE Access

Algorithm 1: Feature Extraction Based on Associated
Analysis Process

Input: S : sample’s smali code
I =1[1,1Ip,1I5---14]: set of all items in abstracted API
calls
Output: confidence =< Rule, confidence >
From S, get method dictionary D =< N;, C; >,
the number of D is K;;
confidence = {} ;
T=1{};
fori=1;i<K;i=i+1do
C; API call Extract = C/ ;
C! API call Abstraction = t; = [p1, p2, - - - pal ;
| TINil=1;
forry elI[l},r,15---1;] do
o(r))={tilrn €t,5; €T} ;
forry eI[l|,I),15---1;] do
if 1! = r; then
o(riUn)={tilrnUrnecti,teT}|;
cri— > 1) = TR
confidence[r1— > r2] = c(ri— >) ;

return confidence =< Rule, confidence > ;

seen in Eq.(1). It determines how frequently items in Y appear
in transactions that contain X and measures the reliability
of the inference made by a rule(X->Y), which is the key to
represent the characteristics of Android app’s behaviors in
our system.

oc(XUY)

Confidence, c(X — Y) = W 2)

5) FEATURE EXTRACTION BASED ON ASSOCIATED ANALYSIS
The co-occurring relationship between API calls in same
method is able to be well described by the confidence of
association rules between the abstracted API calls. Therefore,
in our system, we combine all 75 abstracted API calls and
generate A%s = 5550 association rules, and then calculate
the confidence scores of them to get the confidence matrix
as the feature representation of Android applications just like
in Figure6. Complete feature extraction process can be seen in
Algorithm1. Compared to the systems using pure frequency
of API call as feature, we argue that our system is able to
build high-level semantics and discover behavioral patterns
through association analysis.

E. CLASSIFIER

Classification is the last step of our system. In this stage, our
system uses the classifiers related to machine learning to label
apps as either malicious or benign. During our experiments,
we extract the features described as SectionllI-D from the
datasets and train the model with different classification algo-
rithms including the Nearest Neighbor [27], Support Vector

VOLUME 7, 2019

Confidence Matrix

Conlfidence Score

Abstracted API-1 Abstracted API-1 Abstracted | Abstracted | Abstracted | Abstracted | Abstracted

APEL APE2 APL3 APE APln

Abstracted

e cn Cn cu Cin

Abstracted
APL2

Cn Cn Cx Cn

Abstracted API22 Abstracted API2

Abstracted
APL3

Abstracted

Abstracted APLn [Abdracted |, [Ca Cs

Abstracted API-n

FIGURE 6. Feature extraction based on association rule between the
abstracted API calls(we use Cjj to represent confidence of rule(Abstracted
API; -> Abstracted API;).

Machines [28] and Random Forest [20]. And the results will
be discussed in detail in the SectionI V-A.

IV. EXPERIMENTS AND ANALYSIS

In this section, we conduct two experiments to prove the
effectiveness and efficiency of our proposed method. In the
first set of experiments, we evaluate the detection perfor-
mance of our proposed Method on the two public mal-
ware datasets(AMD and Drebin). And in the second set
of experiment, we compare our system with SOTA system
called MaMaDroid in terms of time efficiency and evolv-
ing malware detection performance under the same condi-
tions using a mix of older and newer apps ranging from
2010 to 2017 downloads from Androzoo [29]. The following
experiments are performed on a Window7 operation system,
powered by Intel(R) Core(TM) i7-6700 CPU @3.40GHz and
8 GB of RAM.

TABLE 1. Performance indices of android malware detection.

Indices Description

. TP
Precious _
TP+ FP

TP
Recall _
TP+ FN

2 x Precious * Recall
F-measure
Precious + Recall
TP+ TN
Acc

TP+ TN+ FP+ FN

To test our proposed method, the metrics shown in Tablel
are used in the following experiments. Among the equations,
FP is the number of apps that are mistakenly classified as
malicious; FN is the number of apps that are mistakenly clas-
sified as benign; TP is the number of apps that are correctly
classified as malicious; TN is the number of apps that are
correctly classified as benign.

A. DETECTION PERFORMANCE EVALUATION

1) EXPERIMENT PURPOSE AND PROCEDURE

In order to evaluate the accuracy of our system in the detection
of unknown Android applications with the same age distribu-
tion, we conduct a full test experiment on the two well-known

69251

IEEE Access

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

TABLE 2. Overview of datasets used for our system evaluation experiments.

Malware Benign
Dataset
Number Description Number Description
#Drebin 5,560 From Drebin[5] (2010 to 2012) 5,945 From Androzoo[28] (2010 to 2012)
#AMD 20,843 From AMD[6] (2010 to 2016) 20,519 From Androzoo[28] (2010 to 2016)

public datasets: Drebin dataset [5] and AMD dataset [6].
In addition, in order to choose the appropriate classification
algorithm, we perform corresponding experiments on the
three representative algorithms including SVM, KNN and
Random Forest.

In our experiment, we perform 5-fold cross validations
on the combined dataset composed of malicious and benign
and choose the Precious, Recall, F-measure and Acc as the
evaluation index.

In order to show the different behavioral patterns between
malware and benign, we extract the top-10 most important
association rules of abstracted API calls from the trained
model, and list the differences by calculating the average
confidence value of the rules in malicious and benign appli-
cations. Meanwhile, a brief analysis of the key abstracted API
calls involved is presented in the end.

2) DATA SOURCE

To make the experiment more convincing, we collect 2 well-
known datasets, the detail information can be seen in Table2.
The first dataset is Drebin [5] which contains 5,560 appli-
cations from 179 different malware families. The sam-
ples have been collected in the period of August 2010 to
October 2012. To maintain the same chronological distribu-
tion as the malware, we collect 5,945 benign samples from
Androzoo [29] ranging from 2010 to 2012 and compose a
test dataset. AMD [6] is another dataset we collect, and it
contains 24,553 samples, categorized in 135 varieties among
71 malware families ranging from 2010 to 2016. However,
because of the network mistake, we only successfully down-
loaded 20,843 at the end. Similarly, in order to stay con-
sistent with malicious apps and form a complete dataset,
we collect 20519 benign from Androzoo [29] ranging from
2010 to 2016.

In the actual process, not all sample’s API calls can be
extracted due to the errors during unpacking. In our exper-
iment, the successful ratio of #Drebin is 11,332(malware:
5,448 benign: 5,883) out of 11,505(malware: 5,560 benign:
5,945), and #AMD is 40533(malware: 20,583, benign:
19,950) out of 41,362(malware: 20,843 benign: 20,519).

3) RESULTS AND ANALYSIS

We test the performance of different algorithms with the
behavioral relationship features. Table4 shows different
detection results from our system with #AMD dataset, and
Table3 is the detection result with #Drebin dataset. From
the result, we can know that the performances of the three

69252

TABLE 3. Detection performance results with different algorithms on
#Drebin dataset.

Algorithm Precious Recall ~F-measure Acc
KNN 0.90 0.96 0.93 0.92
RF 0.97 0.95 0.96 0.96
SVM 0.94 0.94 0.94 0.94

TABLE 4. Detection performance results with different algorithms on
#AMD dataset.

Algorithm Precious Recall ~F-measure Acc
KNN 0.95 0.97 0.96 0.96
RF 0.99 0.98 0.98 0.98
SVM 0.97 0.97 0.97 0.97

algorithms are consistent on the two datasets. KNN’s perfor-
mance is the worst overall, and Random Forest outperforms
KNN and SVM in the both of datasets. By using a single
feature, the highest detection accuracy of our experiment
(Acc) is 98%, which fully demonstrates the effective detec-
tion performance of our method.

In order to better reveal the classification’s results, we list
the top-10 most important association rules of abstracted API
calls for malware classification. The scores of the associa-
tion rules are obtained from the Gini coefficient in Random
Forest [30]. The top-10 important features and their average
confidence scores between malware and benign can be seen
in Figure7. Among the rules, we find some interesting phe-
nomena. At first, malware tend to have higher confidence
scores than benign among the top-10 association rules. The
combinations of abstracted API calls like the ten rules may be
more dangerous. And then, seven of the ten rules are related
to “android/telephone”. We can speculate that the API calls
associated with telephone are critical to malware analysis.
Meanwhile, we find no rules related to “org*” in the top
10 rules, which portends that the API calls related to “org”
such as “org/w3c.dom”, “org/json’, etc. may contribute less
to malware classification.

B. OUR SYSTEM VS MAMADROID

1) EXPERIMENT PURPOSE AND PROCEDURE

There are reasons to believe that our systems are capable of
detecting evolving malware, since our system could capture

VOLUME 7, 2019

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

IEEE Access

0.150 Benign

0.125 . Malware
0.100 4

0.075 1

0.050

0.025 4 I I

0.000 -_,_,-_,-_,_,_,_,_,._,-_,_

Association rules of abstracted API calls

Average confidence value

FIGURE 7. Comparison of the top-10 most important association rules of
abstracted API calls in malware and benign applications. x—axis lists the
top-10 most important rules of malware classification. y —axis lists the
average confidence values of association rules of malware and benign.
Malware tend to have higher confidence scores than benign among the
top-10 association rules.

semantic information of app behavioral. In addition, because
of not extracting the function call graphs, theoretically our
method should have better detection efficiency than the
CG-based methods. Therefore, in order to prove the ability in
dealing with the evolution of malware and efficiency of our
method, we conduct a comparative experiment with SOTA
system that takes evolution into account called MaMaDroid
on the dataset span across multiple years (2010-2017).
During our experiments, we use the same experimental
method as MaMaDroid and follow their modified source
code.

At the first part of the experiments, a comparative exper-
iment on evolving malware detection performance is carried
out. To be consistent with MaMaDroid, we’ve reduced the
API abstraction granularity. In the experiment, we use the
same abstraction way as MaMaDroid in family mode. The
abstracted system API calls include nine possible families,
i.e., com.google, android, java, javax, org.xml, org.apache,
junit, org.json, and org.w3c.dom. Similarly, we also use the
same experimental method as MaMaDroid. The most signifi-
cant trait between this experimental method and traditional
methods is using previous samples for training, and then
using new samples for testing and vice versa. The setting is
more appropriate to evaluate our system’s robustness to the
evolution of malware. The malware samples in the experi-
ment are from 2010 to 2017 , each of them is marked with a
year number, and the benign datasets consist of two sets of
samples which is denoted as oldbenign (from year of 2014)
and newbenign (from year of 2017). Because the classifica-
tion is missing from the code provided by the authors, during
reproducing the MaMaDroid system, Random Forests that
impress the final effect by using 51 trees with maximum depth
8 is used as classification algorithm as MaMaDroid shows
in paper. We use 3/4 of the dataset for training and 1/4 for
testing. The accuracy evaluation metrics in the process of
experiment all adopt F-measure.

VOLUME 7, 2019

The second part of the experiments are to test the detection
efficiency. As is known to us, the time cost of detection sys-
tem mainly includes two parts: the time of feature extraction
and the time of classification. The characteristic dimensions
of the two systems are almost the same, and classification
time based on Random Forest is less than 0.01s, which
accounts for less than 1% of the whole detection process time
in the actual detection task. Therefore, only feature extraction
time is considered in the analysis of time efficiency. In the
experiment, we firstly select 6 groups of samples distribution
from 2010 to 2017, and each group has 100 samples. Among
them, samples from 2010-2012 are combined into a single
group, and samples for each year from 2013-2017 are the
other 5 groups respectively. And then, the feature extraction
time of each APK file is measured in both systems sepa-
rately for further statistical analysis. The maximum, mini-
mum and average analysis time of each group of samples
are recorded in detail. Through these data, the performance
of the two systems in term of time efficiency is further
analyzed.

TABLE 5. Overview of the datasets used for comparative experiments
with MaMaDroid.

Category Name Date range #sample #our work #[3]
. oldbenign 2014 2,992 2,923 2,942
Benign N
newbenign 2017 3,000 2,915 2,907
Total Benign 5,992 5,838 5,948
Drebin 2010-2012 5,560 5,439 5,518
2013 2013 3,000 2,997 2,873
2014 2014 3,998 2,987 2,510
Malware
2015 2015 2,962 2,886 2,809
2016 2016 2,960 2,923 2,740
2017 2017 3,040 2916 2,830
Total Malware: 20,520 20,148 19,280

2) DATA SOURCE

An exhaustive list of dataset is shown in Table5. Our datasets
are composed of malware and benign samples. As for benign
datasets, they consist of oldbenign and newbenign. All of
them come from the Androzoo [29] ,the difference is that old-
benign sample’s dex_date’s value is 2012, and the dex_date of
newbenign samples is 2017. The datasets of Android malware
contain the chronological distribution from 2010 to 2017.
It should be noted that we take Drebin data as a separate
year database like the work [3] do. The Malware samples
from 2013 to 2017 are also all from Androzoo [29], We use
dex_date’s value to distinguish the years and select those
samples with more than 10 detection engines marked as
malicious. The exact number of all samples can be obtained
from the “#sample” column in the Table5. During samples’
preprocesses, there are samples that cannot successfully be
extracted features in both systems. The concrete information
about the number of successfully extracted samples can be
obtained from the column called “#our work™ and the col-
umn named “#[3]” in the Table5.

69253

IEEE Access

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

TABLE 6. Detection performance on F-measure of our work vs MaMaDroid [3]. As shown in the table, among the 36 test results, 25 of our work are better

than or equal to the MaMaDroid.

Testing Sets

Our work [3] Our work [3]

Our work [3]

Our work [3] Our work [3] Our work [3]

Training Set Drebin&oldbenign 2013&oldbenign 2014&oldbenign 2015&oldbenign 2016&oldbenign 2017&oldbenign
Drebin&oldbenign 097 0.93 0.73 0.84 0.60 0.80 0.59 0.82 0.55 0.78 044 0.51
2013&oldbenign 0.78 0.67 0.93 0.90 0.79 0.87 0.67 0.73 0.68 0.70 0.29 0.20
2014&oldbenign 090 045 0.90 0.81 091 0.92 0.89 0.76 086 0.72 0.61 022

Drebin&newbenign 2013&newbenign ~ 2014&newbenign ~ 2015&newbenign 2016&newbenign 2017&newbenign
2015&newbenign 0.97 0.94 097 097 0.96 0.93 094 093 0.90 091 0.73 0.57
2016&newbenign 093 0.83 096 0.92 0.96 0.89 095 0091 094 0.94 0.89 0.84
2017&newbenign 0.97 0.61 0.93 0.80 0.88 0.85 085 0.85 090 0.92 093 092

3) RESULTS AND ANALYSIS

a: DETECTION ACCURACY

We divide the datasets into different testing sets and training
sets as experiment settings in work [3] and get 36 exper-
iment results. As shown in Table6, we can see that both
detection systems have good performance in the detection
of unknown malware when evolution of Android is taken
into account. In our system, we obtain 0.94 F-measure on
average when we test same year samples with training, and
obtain 0.84 and 0.72 F-measure one and two years after
training. MaMaDroid’s performance is comparable to ours on
the average F-Measure, which is 0.92 at same year, 0.84 after
one year training, 0.70 after two year training. When using
newer samples for training and older for testing, 14 out of the
15 test results show that our system performs better. From
a global perspective, among the 36 results, 25 of our work
are better than or equal to the MaMaDroid, and 13 of the
MaMaDroid are better than or equal to our work. Therefore,
our work can achieve even better results than MaMaDroid in
detecting evolving malware.

b: RUNTIME PERFORMANCE
In our experiment, the exact time that the selected samples
spend on getting the features is measured in both systems.
The statistics in Table7 is the raw data we measured. During
processing the raw data, we find that some APK files spend
several hours in the feature extraction process (the maxi-
mum time taken by a single APK file is around 3.5 Hours).
In order to make the results of the analysis more reasonable,
we remove all files with the analysis time of more than
20 minutes and get the final statistics shown in rows that
marked with # in Table7. At the same time, in order to better
show the difference in detection efficiency between the two
systems, the maximum and minimum values and the average
values of the sample analysis time of each year in our table
are displayed by the method of line graph, and the specific
information can be seen in Figure8 and Figure9.

As shown in the Figure8 and Figure9, two conclusions can
be drawn as following.

1. Our system performs far better than MaMaDroid
in terms of time efficiency. Parsing the complex calling

69254

TABLE 7. Runtime performance of our work vs MaMaDroid [3].

Group Min(second) Max(second) Mean(second) Mean ratio
[3] our work [3] our work [3] our work [3]:0ur work

2010-2012 1.56 0.01 165.69 6.42 15.70.72 21.8
#2010-2012 1.56 0.01 165.69 6.42 15.70.72 21.8
2013 1.56 0.01 462.225.43 33.69 1.61 21.0
#2013 1.56 0.01 462.225.43 33.69 1.61 21.0
2014 4.530.07 546.19 12.45 33.152.00 16.6
*2014 4.530.07 546.19 12.45 33.152.00 16.6
2015 0.47 0.05 7162.13 12.45 160.32 2.68 59.7
#2015 0.47 0.05 1341.46 12.45 40.32.68 15.0
2016 3.610.04 12770.95 14.77 374.013.97 94.2
*2016 3.610.04 1459.54 14.77 87.213.97 22.0
2017 0.940.02 4092.77 15.37 103.98 6.56 15.7
#2017 0.940.02 515.75 15.37 64.21 6.56 9.8
Total Mean: 120.14 2.90 414
*Total Mean: 45.70 2.90 15.6

note: the groups that marked with * mean the experiment results after
removing files with the analysis time of more than 20 minutes

== ourwork ©~ == @®- our work L 1400
—%¢ MaMaDroid - -@- MaMaDroid
4
I 1200
5 31 1000 5
[s} o
S S
2 800 &
T [7]
E 24 £
= [600 F
c
5 s
I 400
1
I 200
04 o
T T T T T T
¢ <) &) o A
PiNe i 0¥ 0% 0% PiNe

Year

FIGURE 8. Results on the maximum and the minimum analysis time in
each group of our work vs MaMaDroid.

relationships between each method in the application is an
inevitable operation of MaMaDroid, and our system focuses
on the relationship between API calls in the individual
method. Hence, our method has a lower complexity in princi-
ple. As seen in Figure8, The average value, maximum value
and minimum value of time consumption of each sample
group in our system are significantly less than MaMaDroid.

VOLUME 7, 2019

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

IEEE Access

—&— Our Work
80 | —&— MaMaDroid

60 4

40

Average Time(second)

20 A

04 a— = =
T T T T T T

1"\’5 ”@% 1‘9’1

Year

o

) o ”@D‘

v

FIGURE 9. Results on the average analysis time in each group of our work
vs MaMabDroid.

In the 2010-2012 sample group, the time efficiency gap
between the two systems is the largest, and MaMaDroid con-
sumes 21.8 times as much time as our system on average(our
work: 0.72s per sample vs MaMaDroid: 15.7s per sample).
The smallest time efficiency gap is in the 2017 samples
group, but the average MaMaDroid still consumes 9.8 times
as much time as our system(our work: 6.56s per sample vs
MaMaDroid: 64.21s per sample). Among all the samples
of 6 groups, the average elapsed time for MaMaDroid sample
analysis is 45.7 seconds per sample, which is 16.5 times that
of our system (2.9s per sample).

2. The stability of our system is much better than
MaMaDroid. The time consumption of our method is linearly
related to the number of methods in the application’s source
code. Hence, the average analysis time(as shown in Figure9)
of each group increases steadily with samples age moving for-
ward(app’s complexity increases over time [3]), and among
all samples, the longest analysis time of an app does not
exceed 15.37s. However, when MaMadroid based Soot [31]
performs CG extraction, the time and memory consumption
of the system grows exponentially as the logical complexity
of the application’s code increases, which brings a lot of insta-
bility to the system. As the Figure8 shows, the Max analysis
time of each group shows great fluctuations in MaMaDroid.
Some extreme samples even need more than 3 hours of anal-
ysis time, and these instability performances are intolerable
in the actual industrial scenarios.

V. DISCUSSIONS

In this section, we first discuss some potential limitations
of our approach. Furthermore, we discuss the future work
of our research. Due to the inherent characteristics of static
analysis, our system is powerless against the technology
such as Bytecode Encryption, Dynamic Loading and Native
Code, because these techniques make the system unable to
get system API calls to analyze malicious behaviors of the
application. Also, considering the principles of our approach,
the attacker may can disrupt malicious behavioral relation-
ship analysis by adding a large amount of extraneous code

VOLUME 7, 2019

containing normal system API calls combinations to appli-
cation in the case of knowing the structure of the detection
system.

As future work, we plan to analyze the samples that are
not correctly classified and find out the reasons to provide
guidances for subsequent search of finding more appropriate
API abstraction granularity, and more effective association
rules. In addition, for the defects of static detection, we will
consider the integration of dynamic analysis to build the next
generation of hybrid detection system.

VI. CONCLUSIONS

To deal with the challenges of efficient identification of
evolving Android malware, we propose a novel malware
detection method based on method-level correlation relation-
ship of app’s abstracted API calls. In our approach, we use
API calls abstraction techniques to reduce the number of
API calls for raising efficiency and enhance the robustness
to cope with the changes in Android framework. Instead of
using call graphs, we transform each app’s source code into
a set of abstracted API calls and then calculate the strength
of association rules between every two abstracted API calls
transactions to get the confidence matrix that incorporates
behavioral semantics as the feature representation of Android
applications, which makes feature extraction much more effi-
cient than CG-base ways and sophistic malware more diffi-
cult to evade the detection.

When detecting malware with the same age distribution
on dataset Drebin [5] and dataset AMD [6], our system can
achieve 96% and 98% detection accuracies. What’s more,
compared with SOTA research work in detecting evolv-
ing malware called MaMaDroid [3], our method does not
require the time-consuming operation of building function
call graphs, hence our approach has obvious advantage in
terms of time efficiency and system stability. Sufficient
experimental results show that the average analysis time per
app file of MaMaDroid is 15.6 times longer than that of our
system (Our Work: 2.9s per sample vs MaMaDroid: 45.7s per
sample) in the case of ensuring detection accuracy, and our
system is more stable than MaMaDroid without the extreme
situation that analyzing a single file takes more than 3 hours.

REFERENCES

[1] (2019). Smartphone Market Share. [Online]. Available: http://www.
michaelshell.org/tex/ieeetran

[2] (2018). 12,000 New Samples Per Day. [Online]. Available:
http://blogs.360.cn/post/review_android_malware_of_2018.html?from=
timeline

[3] L. Onwuzurike, E. Mariconti, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models (extended version),” ACM Trans.
Privacy Secur., vol. 22, no. 2, p. 14, 2019.

[4] Y. Aafer, W. Du, and H. Yin, “Droid APIminer: Mining API-level features
for robust malware detection in Android,” in Proc. Int. Conf. Secur. Privacy
Commun. Syst. Cham, Switzerland: Springer, 2013, pp. 86—103.

[5S] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of Android
malware in your pocket,” in Proc. Annu. Symp. Netw. Distrib. Syst.
Secur. (NDSS), vol. 14, 2014, pp. 23-26.

69255

IEEE Access

H. Zhang et al.: Efficient Android Malware Detection System Based on Method-Level Behavioral Semantic Analysis

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current Android malware,” in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment. Cham, Switzerland: Springer, 2017,
pp- 252-276.

1. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
based malware detection system for Android,” in Proc. 1st ACM Workshop
Secur. Privacy Smartphones Mobile Devices, 2011, pp. 15-26.

W.-C. Wu and S.-H. Hung, “DroidDolphin: A dynamic android malware
detection framework using big data and machine learning,” in Proc. Conf.
Res. Adapt. Convergent Syst., 2014, pp. 247-252.

A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
Effective and efficient behavior-based Android malware detection and
prevention,” [EEE Trans. Depend. Sec. Comput., vol. 15, no. 1,
pp- 83-97, Jan./Feb. 2018.

K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, ‘“The evolu-
tion of Android malware and Android analysis techniques,” ACM Comput.
Surv., vol. 49, no. 4, p. 76, 2017.

D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “DroidMat:
Android malware detection through manifest and API calls tracing,” in
Proc. 7th Asia Joint Conf. Inf. Secur., Aug. 2012, pp. 62-69.

J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant
permission identification for machine-learning-based Android malware
detection,” IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216-3225,
Jul. 2018.

R. Kumar, X. Zhang, R. U. Khan, and A. Sharif, “Research on data mining
of permission-induced risk for Android IoT devices,” Appl. Sci., vol. 9,
no. 2, p. 277, Jan. 2019.

S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “HinDroid: An intelligent
Android malware detection system based on structured heterogeneous
information network,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2017, pp. 1507-1515.

A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code analysis
for classifying android applications using machine learning,” in Proc. Int.
Conf. Comput. Intell. Secur., Dec. 2010, pp. 329-333.

G. Canfora, A. De Lorenzo, E. Medvet, F. Mercaldo, and C. A. Visaggio,
“Effectiveness of opcode ngrams for detection of multi family Android
malware,” in Proc. 10th Int. Conf. Availability, Rel. Secur., Aug. 2015,
pp. 333-340.

J. Zhang, Z. Qin, K. Zhang, H. Yin, and J. Zou, “Dalvik opcode graph
based Android malware variants detection using global topology features,”
IEEE Access, vol. 6, pp. 51964-51974, 2018.

T. Gao, W. Peng, D. Sisodia, T. K. Saha, F. Li, and M. Al Hasan, “Android
malware detection via graphlet sampling,” IEEE Trans. Mobile Comput.,
to be published.

Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination method for
Android malware detection based on control flow graphs and machine
learning algorithms,” IEEE Access, vol. 7, pp. 21235-21245, 2019.

A. Cutler, D. R. Cutler, and J. R. Stevens, ‘“‘Random forests,” Mach. Learn.,
vol. 45, no. 1, pp. 157-176, 2004.

Androguard. Accessed: 2019. [Online]. Available: https://github.com/
androguard

Winrar. Accessed: 2019. [Online]. Available: https://www.win-rar.com/
Dalvik Opcodes. Accessed: 2019. [Online]. Available: http://pallergabor.
uw.hu/androidblog

Android APIS Reference. Accessed: 2019. [Online].
http://www.android/doc.com/reference/packages.html

R. Agrawal, T. Imieliniski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proc. ACM SIGMOD Rec.,
1993, vol. 22, no. 2, pp. 207-216.

P.-N. Tan, Introduction to Data Mining. New Delhi, India: Pearson Educa-
tion, 2018, pp. 328-332.

E. Fix and J. L. Hodges, Jr., “Discriminatory analysis-nonparametric
discrimination: Small sample performance,” Univ. California, Berke-
ley, CA, USA, Tech. Rep. ADA800391, 1952. [Online]. Available:
https://apps.dtic.mil/docs/citations/ADA800391

T. Joachims, “Text categorization with support vector machines: Learning
with many relevant features,” in Proc. Eur. Conf. Mach. Learn. Berlin,
Germany: Springer, 1998, pp. 137-142.

Available:

69256

(29]

(30]

(31]

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ““AndroZoo: Collecting
millions of Android apps for the research community,” in Proc. IEEE/ACM
13th Work. Conf. Mining Softw. Repositories (MSR), May 2016,
pp. 468—471.

R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, ““Variable selection using
random forests,” Pattern Recognit. Lett., vol. 31, no. 14, pp. 2225-2236,
Oct. 2010.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot—A Java bytecode optimization framework,” in Proc. Ist CAS-
CON Decade High Impact Papers. New York, NY, USA: IBM, 2010,
pp. 214-224.

HANQING ZHANG received the B.E. degree
from Harbin Engineering University, Harbin,
China, in 2017. He is currently pursuing the M.E.
degree with the Information System and Security
and Countermeasures Experimental Center, Bei-
jing Institute of Technology. His current research
interests include machine learning, data mining,
and mobile security.

SENLIN LUO received the B.E. and M.E. degrees
from the College of Electrical and Electronic
Engineering, Harbin University of Science and
Technology, Harbin, China, in 1992 and 1995,
respectively, and the Ph.D. degree from the School
of Information and Electronics, Beijing Institute
of Technology, Beijing, China, in 1998. He is cur-
rently the Deputy Director, the Laboratory Direc-
tor, and a Professor with the Information System
and Security and Countermeasures Experimental

Center, Beijing Institute of Technology. His current research interests include
machine learning, medical data mining, and information security.

YIFEI ZHANG received the master’s degree from
the School of Information Engineering, Com-
munication University of China, Beijing, China,
in 2015. He is currently pursuing the Ph.D. degree
with the Information System and Security and
Countermeasures Experimental Center, Beijing
Institute of Technology. His current research inter-
ests include cyberspace security, operating system
security, and virtualization security.

LIMIN PAN received the B.E. and M.E. degrees
from the College of Electrical and Electronic Engi-
neering, Harbin University of Science and Tech-
nology, Harbin, China. She is currently with the
Information System and Security Countermea-
sures Experimental Center, Beijing Institute of
Technology. Her current research interests include
machine learning, medical data mining, and infor-
mation security.

VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	PROPOSED METHOD
	THE FRAMEWORK OF OUR METHOD
	PREPROCESS
	API CALLS ABSTRACTION
	FEATURE EXTRACTION
	CLASSIFIER

	PREPROCESS
	API CALLS ABSTRACTION
	FEATURE EXTRACTION
	ITEMSET
	SUPPORT COUNT
	ASSOCIATION RULE
	CONFIDENCE
	FEATURE EXTRACTION BASED ON ASSOCIATED ANALYSIS

	CLASSIFIER

	EXPERIMENTS AND ANALYSIS
	DETECTION PERFORMANCE EVALUATION
	EXPERIMENT PURPOSE AND PROCEDURE
	DATA SOURCE
	RESULTS AND ANALYSIS

	OUR SYSTEM VS MAMADROID
	EXPERIMENT PURPOSE AND PROCEDURE
	DATA SOURCE
	RESULTS AND ANALYSIS

	DISCUSSIONS
	CONCLUSIONS
	REFERENCES
	Biographies
	HANQING ZHANG
	SENLIN LUO
	YIFEI ZHANG
	LIMIN PAN

