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ABSTRACT Weapon-to-target assignment (WTA), which minimizes the damage to our forces by launching
interceptor missiles (weapons) against ballistic missiles of the enemy (targets), is a critical decision-making
problem of ballistic missile defense missions. The primary objective is to launch an interceptor with a high
hit probability for each target. The existing research on WTA assumes that the hit probability is known
before an engagement regardless of whether the probability varies during the engagement. However, the hit
probability in actual engagement situations is a time-dependent variable that changes in accordance with the
flight states of the target and interceptor that are unknown in advance. Therefore, a rolling horizon-based
decision approach is necessary. In this research, we propose an adaptive WTA (AWTA) model that makes
WTA decisions at each radar scanning time based on the hit probability predicted using radar information
about the engagement situation–for each target, an interceptor with a hit probability higher than a threshold
is launched, thereby maximizing the total hit result. A machine learning model is suggested to learn the
probabilistic relationship between the flight states and hit results, and this model is embedded in the solution
procedure of the AWTA model. The performance of the AWTA model is evaluated via a simulation-based
experiment, and the results confirm that the proposed AWTAmodel is appropriate for real-time engagement
situations.

INDEX TERMS Weapon-to-target assignment, adaptive model, hit probability prediction, machine learning,
simulation.

I. INTRODUCTION
A ballistic missile (BM) is an aerial threat with a warhead
that is launched by its own propellant and has a high destruc-
tive power, thereby possibly causing large damage to our
forces. BM (target) defense missions are carried out in the
sequence of radar detection, target recognition, weapon-to-
target assignment (WTA), engagement, and result verifica-
tion. This sequence is repeated because enemy BMs attack at
different locations at different times; in the sequence, themost
important decision-making task is WTA, which assigns inter-
ceptors (weapons) that are appropriate for targets [1].

WTA has been proven to be an NP-complete problem [2].
Academically, WTA is classified into static WTA (SWTA)
and dynamic WTA (DWTA) [3], [4]. SWTA assumes
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a single-stage engagement in which all available intercep-
tors are launched simultaneously [3]. In contrast, DWTA is
defined as launching interceptors in multiple stages [4], and
this definition enables decision making about the launching
time points of interceptors.

Research on the SWTA problem initiated by Manne [5],
Ash [6], and Day [7] and the results of related studies have
been published [3], [5]–[17]. Manne proposed a WTA model
that can minimize the survival of targets, while Ash and Day
proposed models that can minimize the total threat of targets.
Matlin [8] reviewed various WTA models and proposed a
linear WTA model that minimizes the total threat of targets.
Soland [9] and Hosein and Athans [3] proposed an asset-
based model using an objective function that maximizes
the survival value of defense assets, and Ahuja et al. [10]
defined a network flow-based WTA model and solved it
by using the branch-and-bound algorithm. Karasakal [11]
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applied the WTA problem to the air defense of warships and
proposed a target-based model using an objective function
that maximizes the hit probability. Moreover, to efficiently
solve large-scale problems, a genetic algorithm (GA) [12],
tabu search (TS) [13], particle swarm optimization [14], ant
colony optimization [1], Lagrange relaxation [15], [16], and
hybrid algorithm [17] have been applied. However, these
studies have limitations in application to actual BM defense
missions due to the assumptions of simultaneous launching of
all interceptors and using a fixed hit probability. In particular,
the hit probability in actual engagement situations is a time-
dependent variable that changes in accordance with the flight
states of the target and interceptor.

DWTA has received attention from the academic
field to resolve the limitations of SWTA [4], [18]–[24].
Hosein and Athans [4] defined DWTA as a multistage, asset-
based model but did not consider the flight state and time
of the missile. Khosla [18] considered the flight time of the
missile and proposed a target-basedmodel that maximizes the
weighted sum of the total value of the hit targets and the total
fitness of interceptors assigned to the targets. Karasakal [19]
applied the concept of a time window and proposed an air
defense model of a warship that can perform continuous
missions as the time window progresses. Jinjun et al. [20]
proposed a model to minimize the threats of surviving targets
after an engagement is finished, and Naeem andMasood [21]
proposed a model that regards the targets and interceptors as
men and women and pairs them using the stable marriage
algorithm with the consideration of preference scores. Due
to the reality of engagement, these models have greatly
increased constraints and computational complexity that are
higher than those of SWTA models, and thus metaheuristic
solution methods have been proposed [22]–[24]. DWTA
is more effective than SWTA in BM defense missions.
However, DWTA models still have limitations in actual mis-
sions because the hit probability has a random value within
predefined upper and lower limits regardless of the missile
flight state, and it is assumed that the number and launching
time points of targets can be known in advance.

WTA must consider a variety of factors, including the
type and number of targets, launching locations and times,
interceptor performance, and time-varying hit probability.
These factors mean that adaptive modeling that fits a dynamic
engagement situation is required. The goal of this study
is to develop an adaptive WTA (AWTA) model. The pro-
posed AWTA model assumes that the number of targets and
launching times are not known in advance and that a BM
flies in a parabolic trajectory with varying velocity [25]. The
BM defense procedure of the AWTA model is as follows.
First, the flight state information about the locations and
velocities of targets and interceptors is acquired via a radar
at each scanning moment. An interceptor is assigned to a
target at a moment (stage) when the hit probability is high.
After the engagement, the hit result is verified, and if the
target survives, an additional interceptor can be assigned at

a subsequent moment considering the engagement con-
straints of the AWTA model.

The core of the defense procedure is prediction of the hit
probability at each time point to maximize the number of hit
targets. In this study, we develop a hit probability predictor
by using a machine learning model. In the experiment, three
models (logistic regression (LR) [26], multilayer perceptron
(MLP) [27], and stacked denoising autoencoder (SdA) [28])
are tested for this predictor. The predictor learns the proba-
bilistic relationship between the flight states and hit result and
is embedded in the defense procedure of the AWTA model.
For every pair of targets and interceptors in an engagement
situation, the predictor outputs a hit probability based on the
radar information.

AWTA and DWTA are similar in that interceptors are
assigned across multiple stages. However, DWTA determines
the assignments of interceptors at all stages in the beginning
stage of an engagement. AWTA can be regarded as similar
to repetitive applications of SWTA because AWTA makes a
decision at each radar scanning time considering the dynamic
engagement situation (e.g., detection of new BMs, change in
hit probability). However, SWTA is a single-stage problem
in which all interceptors are assigned to targets at once.
In contrast, the proposed AWTA model does not assign inter-
ceptors until the predicted hit probability reaches a threshold
at each stage (radar scanning time). This assignment process
is a fundamental difference between the two approaches.

The remainder of this paper is organized as follows.
Section 2 presents the formal AWTA model and solution
procedure. In addition, this section explains the machine
learning-based scheme for hit probability prediction.
Section 3 introduces the simulation-based experiments and
presents the performance evaluation results of the hit prob-
ability predictor and AWTA model. Finally, Section 4 con-
cludes this study.

II. PROPOSED MODEL
A. ADAPTIVE WTA MODEL
The proposed AWTA model is based on the following four
assumptions.

• The number of targets and launching times are not
known in advance, and information about targets is
acquired through radar detection at every scanning time.

• A target flies in accordance with a parabolic trajectory,
and the hit probability varies in accordance with the
location and velocity of the target.

• Our forces have enough interceptors to defend against
targets in flight.

• The interceptor launcher is limited to launching only one
interceptor at a time.

The nomenclature used in this study is summarized
in Table 1.

The hit probability has a time-varying nature and should be
estimated based on information of the missile state collected
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TABLE 1. Nomenclature.

at each cycle of radar scanning. Thus, the proposed AWTA
model formulates a WTA problem at each engagement time
t (t = 1, . . . ,T ) corresponding to the radar scanning time.
The objective function at time t is

max
∑
i∈W

∑
j∈Bt

pijtzijt . (1)

Equation (1) determines the assignment (xijt ) of an inter-
ceptor in launcher i for a target j that is alive at time t (j ∈Bt )
such that the total predicted hit result is maximized. The deci-
sion variable zijt is limited to one (assignment success) or zero
(assignment failure).

The constraints at each time t are(
1− pijt

)
zijt ≤ 1− Pmin∀i, j (2)

Zijt
(
pijt − pij(t+1)

)
≥ 0∀i, j (3)

Pεzijt ≤ 1−
∏

(i,t)∈Sjt

(
1− pijt

)
∀i, j (4)

∣∣Sjt ∣∣+∑
i

zijt ≤ M∀j (5)∑
i

zijt ≤ 1∀j (6)∑
j

zijt ≤ 1∀i (7)

Zijt ∈ {0, 1}∀, i, j. (8)

Equation (2) is the minimum launching condition and
allows an interceptor to be launched only if the minimum
probability (Pmin) defined by the user is met. Equation (3)
compares the predicted hit probability between the current
and the next times and allows an interceptor to be launched
after the predicted hit probability reaches the maximum.
Equation (4) allows the assignment of an additional inter-
ceptor only for a target whose predicted hit probability did
not reach Pε. This condition reflects the opinion of military
experts that additional interceptors can be assigned to hit a
target in actual situations. Equation (5) limits the number of

interceptors that can be assigned to one target. Equation (6)
limits the assignment of only one launcher for one target at
time t , and (7) limits the launching of only one interceptor
from one launcher at time t . Equation (8) restricts the range
of the decision variables.

B. DEFENSE PROCEDURE
The WTA problem defined above is solved through the fol-
lowing sequential procedure.

Step 1) Acquire radar information about the state (location
and velocity) of every target and interceptor chasing that
target (if any) at time t .
Step 2) Find CT t , the set of targets in Bt for which an

(additional) interceptor can be assigned (i.e., the target is
chased by fewer than M interceptors). If CTt 6= ∅, go to the
next step; otherwise, stop the procedure.

Step 3) For each target j inCT t , predict the hit probabilities
pijt and pij(t+1) of each interceptor launcher i at the current
time t and the next time t + 1, respectively. The next state of
the target at time t + 1 can be estimated based on the current
state of the target using the velocity equation in [25]; thus,
we can predict the hit probability pij(t+1).
Step 4) Find CI t , the set of interceptor launchers that

satisfy pijt ≥ Pmin and pijt − pij(t+1) ≥ 0. If CIt = ∅, stop the
procedure. Otherwise, for each interceptor launcher i in CI t ,
assign the target j that has the maximum pijt among the targets
in CT t . Launch an interceptor from the assigned launcher to
the target.

The above procedure is carried out repeatedly at each time
point until the end point T is reached.

FIGURE 1. Features extracted from the states of the target and
interceptor.

C. HIT PROBABILITY PREDICTION
1) PROPOSED FEATURES
The information that can be obtained from radar in a three-
dimensional Cartesian coordinate space is the absolute loca-
tions ElB and ElI and absolute velocities EvB and EvI of target B
and interceptor I , respectively. Using the state information,
we extract six features that are useful for calculating the
hit probability. As shown in Fig. 1, the first feature is the
line-of-sight (LOS) distance, RBI , between the target and
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FIGURE 2. Outline of training data generation.

interceptor (RBI =
∥∥∥ElB −ElI∥∥∥). The LOS refers to the straight

line connecting target Bwith interceptor I , as shown in Fig. 1.
The shorter the LOS distance is, the higher the probability of
hitting the target with the interceptor. The second feature is
the relative velocity, EvBI , between the target and interceptor
(EvBI = EvB−EvI ). If the direction of the relative velocity is such
that the distance between the target and interceptor becomes
shorter, the hit probability increases.

We also extract features related to the hit angle because
the angle at the point where the interceptor hits the target can
influence the hit probability. Let the angle between the LOS
and EvI be L and the angle between the LOS and the horizontal
plane be λ. Then, L and λ are the third and fourth features,
respectively. These four features represent the relative state
information of the target and interceptor – the features do
not directly use absolute locations and velocities of the two
missiles to ensure that the machine learning model learns the
hit probability independently of absolute geometry factors.
Due to this property, the trained model and these features
exhibit high performance for scenarios not used in the model
training, and this result also enhances the generalized power
of hit prediction. Among the extracted features, the first,
second, and fourth features are also used for guided navi-
gation used by the interceptor to chase the target [29]. The
fifth feature is the moving distance of the interceptor, dI .
The interceptor cannot chase the target indefinitely because
it has limited fuel. If the moving distance of the interceptor
exceeds a threshold, the hit probability decreases rapidly. The
sixth feature is the flight altitude of the interceptor, hI . The
minimum and maximum altitudes at which the target can
be hit are determined by the interceptor type. The last two
features are not related to the target. These features reflect
the performance of the interceptor.

2) GENERATION OF TRAINING DATA
Consider an engagement scenario in which there is one tar-
get and one interceptor. The radar periodically collects the
target information. Fig. 2 depicts the training data generation

procedure. If the target state is (El tB, Ev
t
B) and the interceptor

state is (El tI , Ev
t
I ) at time t , then feature vector Ext , consisting

of the six proposed features, is extracted from the raw data
repositories. The interceptor chases the target using a true
proportional navigationmethod and thus can calculate its own
state (El t+1I , Evt+1I ) at t + 1 based on its own state (El tI , Ev

t
I ).

The moving distance of the interceptor at t + 1 is obtained
by d t+1I = d tI +

∥∥∥El tI −El t+1I

∥∥∥ . The radar then detects a

new target state (El t+1B , Evt+1B ) at t + 1. Thus, the target state,
interceptor state, and moving distance of the interceptor at
time t + 1 are obtained, and the new feature vector Ext+1 is
calculated by using this information. If the interceptor repeats
this process until the termination time T , the series of feature
vectors for the engagement scenario is recorded. In this study,
the termination time indicates when 1) the target reaches a
defense asset of our forces, 2) the fuel of the interceptor is
exhausted, or 3) the interceptor hits the target.

Each data element for the machine learning training model
consists of input attributes and a response. In the proposed
method, the feature vector Ext at time t corresponds to the
attributes, and the engagement result at termination time T
corresponds to the response yt . In this study, yt is set as
follows:

yt =

{
1, if interceptor hits the target
0, otherwise

∀t = 1, 2, · · · ,T . (9)

The proposed method assigns the value one to yt for every
Ext (t= 1, . . . ,T ) if the interceptor hits the target at termi-
nation time T ; otherwise, it assigns zero to yt for every
Ext (t= 1, . . . ,T ). The reason for this class label assignment
is as follows. If the interceptor hits the target, we assume
that every state of the interceptor contributed equally to the
target elimination and give a reward (yt= 1). If the interceptor
fails to hit the target, every state of the interceptor is assumed
to be responsible for the failure, so a penalty (yt= 0) is
given to every state. We do not consider a negative penalty
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because the hit probability model should output a value in
[0, 1]. This class labeling mechanism enables the model to
learn the individual state pairs of the target and interceptor,
which are represented as feature vectors that have a high
(or low) hit probability. In addition, a single simulation does
not correspond to a data element but generates a dataset of
size T , {(Ext , yt) |t = 1, . . . ,T }. Therefore, a large amount
of training data can be obtained for the model if various
engagement scenarios are simulated; this effect increases the
generalized prediction power of engagement results for new
scenarios.

3) MACHINE LEARNING MODELS
From the viewpoint of machine learning, if a model has
a large bias (i.e., low model flexibility), it is likely that
the complex nonlinear relationship between attributes and
a response cannot be found. On the other hand, if a model
has a large variance (i.e., high model flexibility), it is likely
that the model is over-fitted to the training data and that
the response of the test data cannot be predicted properly.
Because the complexity of the relationship between attributes
and responses is not known in advance, it is not easy to find a
good model that has minimal bias and variance. In this study,
LR [26], MLP [27], and SdA [28] are considered in the hit
probability model. LR is known to have large bias and small
variance; SdA has small bias and large variance; and MLP
has bias and variance that are somewhere between those of
LR and SdA. The best model can be found by comparing their
performance.

LR defines the hit probability P (Ext) as the likelihood
that the interceptor hits the target, as shown in (10) in which
the regression coefficients α and Eβ are determined so that
the difference between the actual response yt of Ext and the
prediction probability P (Ext) are minimized [26].

P (Ext) =
eα+ Eβ·Ext

1+ eα+ Eβ·Ext
. (10)

If LR is used for the classification task that predicts the
success or failure of hitting the target in an engagement,
then LR predicts ŷt= 1 (success) if P (Ext) ≥ 0.5 and ŷt= 0
(failure) if P (Ext)< 0.5. LR is an appropriate hit probability
model if the relationship between the feature vector Ext and the
response yt is not complex.
As shown in Fig. 3, MLP for the hit probability model is

a neural network consisting of an input layer, a hidden layer,
and an output layer [27]. The input layer has as many nodes
as features to accept the feature vector Ext , while the output
layer has only one node for calculating the hit probability.
The number of nodes in the hidden layer is set equal to the
number of features throughout a preliminary experiment. The
nodes of adjacent layers are fully connected, and each con-
nection is weighted to learn using the training data. MLP uses
an activator (also termed an activation function) for hidden
nodes and an output node to express the nonlinear relationship
between the attributes and response. In this study, a rectified
linear unit (ReLU) [30] and a sigmoid function [31] are used

FIGURE 3. Network structure of multilayer perceptron.

as the activators of the hidden nodes and output nodes of
MLP, respectively. To minimize the difference between the
actual response, yt , and the prediction probability, P (Ext),
MLP adjusts the weights while propagating the squared error
{yt − P (Ext)}

2 of the output layer to previous layers using a
backpropagation algorithm.

SdA is a neural network with multiple hidden layers that
can identify a more complex relationship between attributes
and responses than MLP [28]. The SdA model used in this
study has four hidden layers. Each hidden layer has the
same number of nodes as the number of input features. Each
hidden node uses a ReLU as its activator. The output layer
has one node, and this node uses a sigmoid function as an
activator. Unlike MLP, weight training in SdA consists of
pretraining and fine tuning steps. This training method can
solve the vanishing gradient problem of the backpropagation
algorithm in which the weights of the hidden layers close to
the input layer are not trained well if the number of hidden
layers becomes large. The pretraining step serves the role of
training the initial weights. In this step, the output layer is
temporarily placed next to the first hidden layer. Then, the
weight of the first hidden layer is trained so that the input
feature values are reconstructed in the output layer. Next,
the temporary output layer is placed next to the second hidden
layer. Then, the weight of the second hidden layer is trained
so that the first hidden layer values are positioned in the
output layer. Because there are four hidden layers, the weights
of all layers are determined if this process is repeated four
times. In the fine-tuning step, the weights are trained for each
hidden layer. In the pretraining step, the weights are set as the
initial weights of the total network. Then, the weights of the
entire network are trained again by using the backpropagation
algorithm.

III. COMPUTATIONAL RESULTS AND ANALYSIS
A. SIMULATOR
As the flight state information of a target and interceptor in
an engagement situation is a military secret, related data were
generated using a simulator in existing studies [32]–[34].
The simulator developed in this study consists of a target
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TABLE 2. Performance evaluated at every radar scanning time.

simulation part and an interceptor simulation part. The target
simulation part considered a SCUD-B as the BM. When the
user inputs the launching point and targeting point of a BM,
the simulation part generates three-dimensional location and
velocity data during the flight of the BM [25]. The interceptor
simulator chases a target based on proportional navigation
guidance, which determines the location and velocity of
the chasing interceptor at each time based on the location
and velocity information of the target [29]. The maximum
speed and acceleration of the interceptor were assumed to
be 1.5 km/s and 20 gravity, respectively. The simulation was
run on a desktop computer with an Intel Core i5 3.5 GHz
processor and 16.0 GB RAM. Finally, the radar scanning
cycle was set to one second.

FIGURE 4. Engagement scenarios in the hit probability simulation.

B. HIT PROBABILITY PREDICTION EXPERIMENT
1) ENGAGEMENT SCENARIOS
Fig. 4 shows the engagement scenarios designed with a mil-
itary expert’s assistance. The target was launched at a fixed
location (200, 200, 0) on the coordinate system and aimed at
the defense asset of our forces at location (0, 0, 0) in every
scenario. The distance between the target’s launch point and
impact point was approximately 280 km. The second-order
polynomial relationship between the altitude of the target and
the movement distance was determined.

The launch point of the interceptor was varied by changing
the x and y coordinates in 10 km units from −100 km to
50 km. The launch time was changed in 10 second units
from 100 seconds to 200 seconds after the target’s launch.
These experimental conditions generated a total of 2,816
(16×16×11) different engagement scenarios, some of which
included situations where the interceptor failed to hit the
target. Each simulation run corresponded to one engagement
scenario, and approximately 1,000 feature vectors and hit
results were generated. 70% of the data obtained from the
2,816 simulation runs were used to train the three machine
learning models (training), and the remaining 30% were used
to optimize the parameters of the model (i.e., normalization
of the parameter for LR, number of hidden nodes, and the
iteration number of the backpropagation algorithm for the two
neural networks) (validation). In addition, 100 new engage-
ment scenarios were created to test the performance of the
trained models. In each test scenario, the interceptor’s launch
point was randomly determined within the launch point area
in Fig. 4, and the launch time was randomly determined
between 100 seconds and 200 seconds.

2) RESULT AND ANALYSIS
The three machine learning models (LR. MLP, and SdA)
predict the hit result (success or failure) by rounding up
the hit probability calculated at each radar observation time.
As explained in Section II, we assume that the prediction is
correct if the prediction result at any state of the interceptor
is identical to the actual hit result at the termination time. The
reason for this assumption is as follows. Consider a situation
where an interceptor is chasing a target. A new interceptor is
also available for the target. In this situation, launching the
new interceptor at a time when the one in flight has a low
chance to hit the target is a critical decision. To enable this
decision, the proposed method calculates the hit probability
while the interceptor is chasing the target as well as at the
launch time of the interceptor.

Based on these criteria, the experiment measured the accu-
racy in terms of the true positive rate (TPR) and true negative
rate (TNR) for all test scenarios. The experimental results
are summarized in Table 2. The accuracy is the ratio of the
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number of correct prediction results (success or failure) to
the total number of hit results. With respect to accuracy and
compared to the trained MLP and SdA models, the trained
LR model showed excellent overall performance. From the
results, an LR model with a large bias and small variance
is an appropriate model for hit probability estimation. This
result implies that the probabilistic relationship between
the attributes (feature vector) and the response (success or
failure) is not so complex. The accuracy of LR for the test
data exceeded 0.9 for the three feature selection methods.
However, the accuracy of MLP was sensitive to the input
data –MLP showed a high accuracy for the test data when
the raw features were used as inputs (0.870), but its accuracy
decreased when using the proposed features (0.763) or the
whole features (0.826). SdA achieved stable accuracy for the
feature selectionmethods (0.898, 0.909, and 0.895) compared
with that of MLP, but SdA performance was inferior to that of
LR. Based on these observations, the following experiments
utilized the LR model.

In general, the performance of the machine learning mod-
els depended on the quality of the input data. This experiment
compared three input feature selection methods. The first
method (raw features in Table 2) used the absolute locations
and absolute velocities (ElB, EvB, ElI , EvI ) of the target and inter-
ceptor detected by the radar as predictors. The secondmethod
(proposed features in Table 2) used six features (RBI , EvBI ,
L, λ, dI , hI ) as predictors. The last method (whole features
in Table 2) used all features (both the first and second meth-
ods). From the viewpoint of the three performance measures,
the use of whole features as predictors for LR performed
better than the use of raw features or proposed features.

A statistical hypothesis test was conducted to discover the
input features that were significant for the response when
using whole features. The test results indicated that the
p-values of six features were smaller than 0.0001, imply-
ing that these features contributed to the prediction of the
hit result. Among the raw features, lBz in ElB= (lBx , lBy , lBz )
and lIx and lIy in ElI= (lIx , lIy , lIz ) were verified to contribute
significantly to the prediction. Their regression coefficients
were 0.323, −0.310, and −0.311, respectively. Among the
proposed features, the statistical test selected RBI , L, λ, and
dI as significant features, and their regression coefficients
were −0.752, 1.248, 18.405, and −0.398, respectively. The
contribution of the proposed features to hit prediction was
greater because there were more important variables in the
proposed features than in the raw features, and the proposed
features had greater absolute regression coefficient values
than the selected raw features.

The angle λ between the horizontal plane and the LOS
direction played the largest role in the hit probability cal-
culation and had the largest absolute regression coefficient.
The direction of the BM becomes almost perpendicular to
the horizontal plane as the BM approaches the defense asset.
The closer the missile is to the defense asset, the higher the
hit probability. This result implies that the hit probability

increases as λ approaches 90 degrees. For this reason, λ was
selected as the most significant feature. The second important
feature was L, which is the angle between the LOS and EvI .
This angle should be large enough for the interceptor to chase
the target. The features RBI and dI are the LOS distance
and moving distance of the interceptor, respectively. As the
values of RBI and dI decrease, the hit probability becomes
larger. Therefore, the regression coefficients of RBI and dI
were negative. Among the proposed features, RBI and λ were
also used in the guided navigation of the interceptor. These
results imply that the LR model was well-trained and that the
significant features were selected appropriately.

When the whole set of features was input into the LR
model, the TPR was 0.984. The TPR is the ratio of scenarios
that correctly predicted hitting the target using the hit proba-
bility to the scenarios where the interceptor successfully hit
the target. A high TPR implies that the chance of hitting the
BM is very high if the interceptor missile is launched at a
time when the hit probability is higher than 0.5. Thus, the hit
probability can be used as a good target selection criterion
in an engagement situation in which a limited number of
interceptors exist for many targets. Furthermore, the TNR of
LRwas 0.953. The TNR is the ratio of scenarios that correctly
predicted the failure to hit the target to the scenarios where
the interceptor failed to hit the target. A high TNR has an
advantage in the following situation. The hit probability was
high at the time of launching an interceptor, but it dropped
below 0.5 after the launch due to irregular state changes for
the two missiles. In this case, launching an additional inter-
ceptor might be considered. The TNR of the hit probability
model should be high (i.e., the confidence of the model about
a failure to hit the target is high) to minimize the waste of an
additional interceptor.

FIGURE 5. Hit probability over time.

Fig. 5 plots the curves of the hit probability of targets
chased by interceptors launched at various locations. Each
curve shows the time-varying probability fromwhen an inter-
ceptor was fired to when it reached an impact position.
Although the probability curves are different because of the
various launching positions of the interceptors, the overall
shapes are similar – the hit probability increases when the
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TABLE 3. Performance measures.

FIGURE 6. Engagement scenarios in the AWTA simulation.

target direction is upward and decreases when the target
direction is downward.

C. AWTA EXPERIMENT
1) ENGAGEMENT SCENARIOS
Fig. 6 shows an engagement situation of multiple targets and
multiple interceptors designed with the help of a military
expert. In every engagement scenario, a BM is located at
a random point in the area (x, y, z), where x ∈ [−50, 50],
y∈ [180, 230], and z= 0, and fired at a random time in [0,
120] (seconds) from the beginning of the engagement toward
a random impact point in the area (x, y, z), where x ∈
[−30, 30], y∈ [0, 30], and z= 0. Five interceptor launchers
were deployed in the interval of 10 km to the left and right
from location (0, 15, 0). In the figure, the effective range,
which is approximately 100 km, means the area in which the
interceptor can be hit. Ten different engagement scenarios
were created for each number of targets (5, 10, 15, 20, 50,
and 100 targets).

2) COMPARISON MODELS AND TEST MEASURES
In the experiment, the performance of the AWTA model was
compared with that of the DWTA models using a TS [22]
and GA [24]. However, unlike the AWTA model, which
can be performed even if the number of targets, launching

times of targets, and hit probability are unknown, existing
DWTA models, including these two, require that informa-
tion to perform WTA. Therefore, for every comparison case,
a simulation of the targets without deploying interceptors
was run, and then the outputs were fed into the two models.
This process did not make sense as a defense procedure in
an actual engagement, but it was necessary for performance
comparison. The performance of the two comparison mod-
els was evaluated by applying the assignment result to the
engagement scenario in which the same targets were applied
but interceptors were launched this time.

The performance of each model was evaluated using
the measures in Table 3. The parameter settings used in
this experiment were as follows. For the AWTA model,
Pmin = 0.5,M = 2, and Pε = 0.9. For the GA model,
population size = 40, crossover size = mutation size = 10,
selection size = 20, and an iteration count of 200 was set.
For the TS model, an iteration count of 10 was set. The
computation time was limited to 1,800 seconds (30 minutes).
If the limited time was exceeded, the iteration was stopped,
and the engagement simulation was conducted based on the
assignment that was obtained at the end of the limited time.

3) RESULTS AND ANALYSIS
The performances of theAWTA,GA, and TSmodels are sum-
marized in Table 4 for the target numbers of 5, 10, 15, and 20.
The number in each cell indicates the average measurement
of 10 different scenarios.

In terms of the target assignment rate, every model showed
the same performance of 0.979 on average. In terms of the
hit rate of assigned targets, the GA model showed the high-
est performance of 0.836. However, the performance of the
AWTAmodel (0.799) was not much lower than that of the GA
model and was better than that of the TS model (0.754). This
result was very encouraging. Note that the WTA solutions
of the GA model were obtained when future engagement
scenarios were known in advance. In contrast, the AWTA
model performed a series of WTAs with radar information
that was obtained as the engagement scenarios progressed.
From the results, it was verified that the AWTAmodel can be
applicable to actual BM defense situations.
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TABLE 4. Performance results for engagement scenarios.

With respect to the number of interceptors per target,
the interceptor hit success and failure rates, and the inter-
ceptor mission incompletion rate, the AWTA model showed
better performance than the comparison models. This per-
formance gap was caused by the difference in problem-
solving approaches between theAWTAmodel and theDWTA
models. The AWTA model determined interceptor launching
by carefully considering the hit probability – an interceptor
(additionally) is launched when the probability becomes the
highest. As a result, this model did not waste interceptors.
In contrast, the comparison models allowed the assignment
of multiple (M ) interceptors to a target if the assignment
improved the total hit probability – some interceptors could
lose a target because previously launched interceptors might
hit that target. The interceptor mission incompletion rate
represents this case.

FIGURE 7. Computation time according to the number of targets:
(a) average time and (b) maximum time.

The computation times required to obtain the assignment
results are compared in Fig. 7. For each engagement scenario,
the computation time of the AWTA model is the sum of the
WTA calculation times at all points of time from the start to
the end time points of the engagement. For example, if the
total engagement time is 250 seconds, the model is performed
at each time point, and 250 WTA calculations are carried
out. The total of these 250 calculation times becomes the
total computation time of the AWTA model for that scenario.

The computation times of the GA and TS models corre-
spond to the algorithm execution times at the beginning of
the engagement scenario, not including the time required to
acquire input data from the simulation.

As the number of targets increased, the AWTA model
showed better performance than the comparison models in
terms of the computation time (average and maximum).
In every model, the time increased almost linearly as the
number of targets increased, but the amount of the increase
for the AWTA model was the smallest. In the case of TS,
when the number of targets exceeded 10, the model could not
calculate the optimal assignment plan within the limited time
(1,800 seconds). This result means that the DWTA models
are hard to deploy in actual engagement situations due to
the computation burden even if the models know the time-
varying hit probability, number of targets, and launching
times of targets.

TABLE 5. Performance results for large-scale engagement scenarios.

In real situations, many BMs are in flight to attack our
forces during an engagement period. Thus, we conducted
experiments for large-scale engagement problems (number
of targets is 50 and 100). The results are shown in Table 5.
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From the results in Tables 4 and 5, we observed that the per-
formance of the AWTA model was stable even if the number
of targets increased. In particular, when the number of tar-
gets was 5, the average computation time was 91.46 seconds
(see Fig. 7), but when the number of targets increased to 100,
the average computation time was 188.59 seconds. That
is, although the number of targets increased by 20 times,
the average computation time only doubled.

FIGURE 8. Distribution of computation time for the assignment at a time
point: (a) 50 targets and (b) 100 targets.

The AWTA model determines WTA at each radar scan-
ning time. If the computation time for the assignment at a
time point exceeds the radar detection cycle (one second),
it is impossible to launch the interceptor at the current time.
Therefore, the time required for the assignment is an impor-
tant criterion for judging the possibility of using the AWTA
model in actual situations. The distributions of the computa-
tion time are shown in Fig. 8. Even for large-scale problems,
the assignment time was within one second. Consequently,
theAWTAmodel is a promising tool for BMdefensemissions
in large-scale, dynamic engagement situations.

IV. CONCLUSION
In WTA problems, it is unrealistic that the number of targets,
launching times, and hit probability are known to obtainWTA
solutions. In particular, the hit probability varies according
to the flight states of the target and the interceptor chasing
the target. To overcome such limitations, we developed an
AWTA model. In this model, WTA is performed at each
radar scanning moment based on the hit probability calcu-
lated using the radar information acquired at that moment.
An interceptor whose hit probability exceeds a threshold
and is higher than that of the other interceptors is assigned
to each target. We created the hit probability predictor by
training a machine learning model. The input features for
the training model were developed to improve the accuracy
of the hit probability. Among LR, MLP, and SdA machine
learning models, the performance of LR was the highest.
Simulation-based experiments with two comparison DWTA
models employing TS and GA confirmed that the AWTA
model had excellent performance and could be applied to
actual BM defense missions for small- and large-scale WTA
problems.

In this study, we showed the validity of the AWTA
model in an engagement situation where only one type

of BM (SCUD-B) is considered. Future studies should con-
sider engagement situations of different types of BMs and
interceptors that are more similar to reality. In addition, it is
necessary to consider the target reassignment problem, which
allows an interceptor in flight to chase a new target when the
old target is lost, hit by another interceptor, or already reaches
its impact point. This reassignment capability will decrease
the mission incompletion rate of interceptors, enabling effi-
cient utilization of resources. The AWTA model outfitted
with the reassignment function will significantly contribute
to future BM defense missions.
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