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ABSTRACT Gathering extensive public data from the IoT devices scattered throughout a city is a significant
challenge in a smart city. In this paper, a novel urban vehicle network we call the location-based urban
vehicle network (LUV), is proposed to perform the non-real time data gathering task in smart cities. Different
from the most works in-vehicle networks, the empirical research on the real-life 8900 private cars trace data
in Changsha, China, compels us to focus on the parked vehicles and the parking places, rather than on
the moving cars and the urban roads. The location-based mechanism not only provides more reliable and
predictable wireless connections but also dramatically simplifies the system topology. It ensures that the
vehicle network deployed on an intricate metropolitan area reaches the desired scale for gathering data.

INDEX TERMS Vehicular network, Internet of Things, scalability, smart city.

I. INTRODUCTION
Nowadays, the smart city has attracted a tremendous amount
of interests from government, academia, and industry [1], [2].
In this field, connecting everything in a city and sensing
every corner of the city will be within reach if meeting
the booming communication demands from the Internet of
Things (IoT) [3]. The current estimates of about 20 billion
of IoT sensors are connected, and this number will reach
50 billion by 2020 [4]. The Fifth Generation (5G) wireless
networks are developing as the network solution of Smart
City to connect the billions of IoT devices [5], [6].

A. MOTIVATION
In a smart city, the non-real-time urban IoT data collected
over a period are converted to the usable information or
knowledge for daily city operation and long-term urban
planning, and the real-time IoT data are utilized to monitor
the urban environment for rapidly responding the various
emergencies [7]. In the scene of gathering non-real-time
IoT data, there is no significant difference in performance
between the high-speed telecom communication networks
(Cable/5G) and the delay tolerant network (DTN), which is
usually considered as a temporary emergency alternative for
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the destructed communication networks by natural disasters
or military efforts [8]. That shows the potential demands for
the low-cost DTN in smart cities, primarily when the node
of DTN can be deployed on the numerous mobile devices in
the urban environment. While the 5G networks do the real-
time IoT data transmission for emergency monitoring and
responding, the DTN perform the daily urban non-real-time
IoT data-gathering task for the further urban data mining.

Smartphones and vehicles have been treated as the possi-
ble communication and computing resources of a smart city
for their characteristics of the copious quantity, the wide-
coverage and high-density in the urban area [9], [10]. Con-
sidering vehicle can carry larger-size, heavier-weight, and
higher-power terminals, the vehicle-based DTN [11] is more
suitable as the public non-real-time IoT data gathering plat-
form than the DTN networked by the devices carried by peo-
ple [12], [13]. By the dailymovements of vehicles, the vehicle
network can transmit the IoT data distributed in the urban
area [14]–[16].

B. CHALLENGE
More connected vehicles signifymore resources to be utilized
and better network performance when the cars are treated
as the potential communication resources and networked for
gathering IoT data. Given that there are millions of vehicles in
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FIGURE 1. Urban IoT data transmission with the telecom networks and
the DTNs.

the modern metropolis, the scale of the urban vehicular DTN
should reach the same level. Meanwhile, the overall size of
traditional VANETs can hardly be scaled up to large-scale.

A decade ago, when the vehicle was just a tool of transport
for people and cargo, Vehicular Ad-hocNetworks (VANETs),
a type of vehicle-based DTN, were first proposed as a
promising approach for future intelligent transportation sys-
tem (ITS) [17], [18]. Since VANETs are suggested to aid
road vehicle driving, VANETs only connects the on-road
vehicles. The assigned purpose of VANETs implies that
VANETs nodes are always in motion. The task-driven pre-
supposition of VANETs triggers a series of challenges: the
network topology is dynamically varying; the contact dura-
tion between vehicles is transient; the contacts between cars
occur randomly; the wireless channels in the dynamical urban
environment are more prone to error [19].

As a result of the contradiction between the highly dynamic
network topology and the non-centered network structure,
the overhead cost of system collaborations between moving
vehicle nodes will grow exponentially in VANETs with the
increase of network size. It makes the overall size of tradi-
tional VANETs can hardly be scaled up to large-scale. In this
case, the more vehicles are networked; the fewer network
resources would be available to IoT devices owing to the
higher network overhead cost.

Therefore, the primary challenge for the urban vehicle-
based DTN for IoT data comes from decreasing the system
overhead cost and increasing the system scalability.

C. METHODOLOGY
In this paper, firstly, based on the new purpose of IoT, we sim-
plify the network topology to improve the network scalability.
Secondly, we introduce the external network scheduling to
reduce the system overhead on the large-scale vehicular DTN
node.

To design a large-scale vehicular DTN framework,
the properties of urban vehicles the researchers should fully
utilize. To comprehensively study the urban vehicles, we ana-
lyze 3-month trace data of 8,900 private cars in Changsha,

China, collected by a vehicle monitor system. We found that
privately-owned vehicles exhibit significant characteristics,
such as dominant parking time, highly repetitive moving pat-
tern, and concentrated visited places in urban environments.

Based on these characteristics of privately-owned vehicles
we found and the existing urban traffic routing and flow
control system, we present a novel type of urban vehicular
DTN framework for gathering IoT data, which is called the
location-based Urban Vehicle Network (LUV). Instead of
relying on the on-road transient connections, LUV focuses
on the stationary states of vehicles and centers its network
operations on urban places. In the LUV, the city area is
divided into numerous places by roads, and the IoT devices
of one place submit data to the parked vehicles which belong
to the place. While the cars move from one place to another,
they will carry the data as well.

By focusing on the stable places and data exchange among
parked vehicles and IoT devices, LUV provides more sta-
ble connections, more predictable node statuses and simpler
network topology which can reduce the system complexity.
Moreover, by embedding the external urban traffic routing
and flow control system, the system overhead on the nodes
does not rise sharply with the growth of the DTN. Hence,
LUV can scale well into large-scale networks.

D. CONTRIBUTIONS
In this paper, according to the urban vehicle traffic network
and a significant amount of real trace data of privately-owned
vehicles, detailed features of the characteristics of the cars are
extracted and quantified with mathematic models. A novel
vehicle activitymodel is presented to describe the activity pat-
tern of urban privately-owned vehicles. Based on the activity
model, we present a location-based urban vehicular network
framework (LUV) for gathering local IoT data.

The remainder of this paper is organized as follows.
In Section II, we analyze the urban vehicles and the urban
vehicular transportation network. In Section III, we intro-
duce the analysis of real-life monitoring data and the exper-
iment results. In Section IV, we present a daily vehicle
activity model. In Section V, we propose the Location-based
Urban Vehicular Network framework for IoT. In Section VI,
we show the experimental results of LUV over the real-life
dataset. We then conclude this paper and outline the direc-
tions for future works in Section VII.

II. URBAN VEHICLES & VEHICULAR TRANSPORTATION
NETWORK
In this section, we analyze the types of urban vehicles, and
the existed urban vehicle transportation network. We aim to
find out the factors which bring millions of urban cars out of
chaos. By utilizing these factors, we can build a large-scale
urban vehicle network.

A. TYPE OF URBAN VEHICLES
Urban vehicles can be characterized into three categories.
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TABLE 1. Comparison of the three types of urban vehicles.

1) FIXED ROUTE TYPE
Typical examples of this type of vehicles are buses serving as
public transportation means. They usually have fixed routes
and also set schedules. Certain VANETs have centered design
on this type of vehicles owing to regularity and predictability
of their movement patterns [20].

2) ROAMING TYPE
Typical examples of this type of vehicles are taxis. A notable
feature of this type of vehicles is that their moving routes are
seemingly random. Their current path is independent of their
past tracks. Often research VANETs models roaming type
vehicle with Markov chains.

3) REGULAR TYPE
Often overlooked in the existing study are privately-owned
vehicles in urban settings, possibly owing to the difficulty of
obtaining real trace data. We term this regular type as these
vehicles are the most common in everyday life. It is also more
complicated as the states of the vehicles exhibit a combination
of certain randomness and repetitiveness. Researchers have
used Bayesian decision models for the predicting of the states
of the regular type vehicles. Table 1 provides a comparison of
the three types of vehicles.

As we discussed above, quantitatively, privately-owned
vehicles are typically the dominant type in the most metropo-
lis of the world today. while buses and taxis mainly serve as
complementary roles of municipal vehicles. To understand
the essential feature of urban vehicles, we prefer to study the
characteristics of private cars. To achieve this goal, we present
a comprehensive analyzing of privately-owned vehicles in the
next section.

B. URBAN VEHICULAR TRANSPORTATION NETWORK
The studying of the existing urban vehicular transportation
network helps us understand the rules of the vehicle in an
urban environment to design a new type of large-scale urban
vehicle network.

In a vehicle trip, a vehicle loads passenger/cargo before
leaving its departure place. Then the car moves on the roads
and unloads its passenger/cargo after arriving at its destina-
tion place. The purpose of a privately-owned vehicle trip is to
transfer people/cargo from one place to another. The depar-
ture and destination places are fixed before the vehicle starts
its tour, while the drivers change the road paths temporarily
according to the variable road conditions.

FIGURE 2. Urban vehicular transportation network.

Individually, the drivers usually receive the real-time traffic
guidance from the multiple sources and self-execute dynamic
path tuning to optimize their trips. Wholly, the traffic police
and the staff of the city traffic management center exploit the
deployed urban traffic control infrastructures to guarantee the
holistic transportation performance against traffic congestion
as possible. All of them compose the urban road routing &
traffic flow control system, which ensures the efficiency of
the urban transportation with millions of vehicles.

If we can embed the urban road routing & flow control sys-
tem into the urban vehicle network, the network will obtain
the capabilities of mega-size network congestion control and
scheduling without the need for the massive resources of
vehicle nodes.

III. EMPIRICAL DATA ANALYSIS
Vehicle network study from the perspective of private vehi-
cles is rare due to the lack of real-life traces of privately-
owned vehicles. In this section, we provide a study of a broad
set of traces of privately-owned vehicles. First, we give a brief
overview of the monitor dataset source. We next present the
primary stationarymetrics embedded in the monitor data sets,
including average daily parked time, all-day parking ratio,
and residential area. Then we carry out a detailed statistical
analysis of the pretreated dataset and obtain empirical metric
values.

A. MONITORING DATA SET
The monitoring dataset we study is generated by the pri-
vate vehicle monitoring system (PVMS), which installed
on 8900 privately-owned vehicles in Changsha, China.
The PVMS provides remote vehicle monitoring service to
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FIGURE 3. System architecture of PVMS.

privately-owned vehicles. The essential functions of PVMS
include GPS location tracking, theft alarm, and remote device
diagnosis. A vehicle terminal is mounted on the target vehicle
for real-timemonitoring. It collects real-time vehicle data and
sends them to a central monitoring platform through GPRS
networks. The system architecture of PVMS is illustrated
in Figure 3.

The vehicular terminals reported the monitoring data of
vehicles back to the central monitoring platform every 30 sec-
onds. To reduce the total amount of the history monitoring
data, the PVMS samples the monitoring data of every vehicle
at every 10 minutes. As a result, the history monitor data
we study are totaling 42,518,112 records from 8900 vehicles
spanning 61 days from March to April of 2013.

During Mar.1-Apr.30, 2013, some privately-owned
vehicles joined, some quitted the PVMS, and some had
encountered monitoring equipment failure. Therefore, these
vehicles’ record periods are less than 61 days. To improve
the accuracy of data statistics, the data from these vehicles
have been excluded from the dataset. After the process of
filtering, totaling 37,789,904 records from 7520 privately-
owned vehicles in Changsha spanning 61 days were retained.

B. AVERAGE DAILY PARKED TIME
With the statistics of average daily parking time of
privately-owned vehicles in Changsha, we can learn the
empirical probability of vehicle parking per day. Corre-
spondingly, privately-owned vehicles daily running time is
1.37 hour/day, or 82 min/day. The average daily parked
time of privately-owned vehicles in Changsha is about
22.63 hours/day.

The result is highly consistent with previous studies in
urban design, which claimed that vehicles are not on the road
for 95 percent of the day [21]. It indicates that stationarity
is a dominating feature of privately-owned vehicles. In the
majority of the time, urban vehicle network nodes are in
parked states.

C. ALL-DAY PARKING RATIO
If a vehicle did not move in a day, then the vehicle has an
All-day parking state. All-day parking is the most steady
and predictable state. It is usually taken as an extreme and

FIGURE 4. PDF of Days_AllDayPark & exponential distribution.

rare circumstance, generally ignored in most vehicle network
studies. However, our data set indicates that the average daily
parking time counts for 95% in a day. A reasonable inference
is that the scale of all-day parking states of vehicles in the
urban environment more common than we have thought.
To study this, we introduce one key metric, All-day park-
ing Ratio (R_ADP), to describe the global privately-owned
vehicle All-day parking situation in the urban environment.
We define R_ADP as

R_ ADP =
Days_All Day Park
Days_statistics

(1)

Days_statistics represents the statistical period, and
Days_AllDayPark represents the number of the all-day
parking days in the statistical period. Based on the vehi-
cles’ monitoring data statistics, we obtain the distribution
of Days_AllDayPark in Figure.4. The plots follow a clear
exponential distribution.

Let X be a random variable as Days_AllDayPark over
the 61 days (Days_statistics) that has an exponential distri-
bution with the mean E(X ) and the variance VAR(X ), i.e.,
X ∼ Exp(λ).

To identify the exponent constant λ of the exponential
distribution of all-day parking day, we apply polynomial
regression. The validation of the regression is measured by
the coefficient of determination (R_square), and the root
mean squared error (RMSE)

R_square = 1−
n∑
i=1

(xi − x̂i)2/
n∑
i=1

(xi − x̄)2 (2)

where xi denotes the sample value with the mean x̂

RMSE =

√√√√1
n

n∑
i=1

(xi − x̂i)2 (3)

We apply this exercise to the plots in the Figure.4 where
the distribution of all-day parking radio is very well approxi-
mated (R_square= 0.9942,RMSE= 0.0016) by an exponen-
tial distribution Exp(0.07889).

⇒ E(X ) =
1
λ
= 12.68, VAR(X ) =

1
λ2
= 160.68 (4)
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Let R be a random variable as R_ADP, we have

⇒ E(R) = E(
X

Days_statistics
) =

1
Days_statistics

·

E(X ) = 0.2079 (5)

The expectation of R_ADP in Changsha city is 20.79%.
It indicates that on average one-fifth of privately-owned vehi-
cles are in the state of all-day parking. All these All-day park-
ing vehicles can be the transit node (the nodes running DTN
routing) in the vehicle network. It indicates that the urban
vehicle network has adequate resources for local message
storage and forward.

D. RESIDENTIAL AREA
By further analyzing the states of all-day parking, we observe
that the locations of all-day parking of vehicles are very
predictable and varying little. These mostly are the places of
residence of the owners. Being consistent with our common
sense, most people only have one residential house. The
monitor data shows that the residential area of a vehicle is
sole. Additionally, these places have the highest daily visit
frequency and the most prolonged parking periods, about
14.6 hours per day. It indicated that the privately-owned vehi-
cle in the urban environment has one fixed place of residence,
and it routinely departs from and returns to the residential area
with some case of staying at the residential area all day.

It implies that the millions of vehicle nodes in a large-
scale urban vehicle network can be naturally divided into
the much smaller location-based groups by their places of
residence. Moreover, the vehicles nodes addressed in the
same place have the similar activity patterns, considering
that the residents living in the same community have the
same urban living facilities, such as parking lots, schools, and
supermarkets.

IV. MODEL ANALYSIS
In this section, we propose our vehicle activity model for the
large-scale urban vehicle network.

A. NOTATIONS
We define the following notations.
Definition 1: The region of Urban is defined as U
Definition 2: The vehicles in the region Re are defined

as VU , the amount of the vehicles in the region is defined as
Num_VU , and the vehicle i is defined as

vi ∈ VU , 0 < i ≤ Num_VU

Definition 3: The parked areas which vehicles gathered
in the region U are defined as P, P ∈ U, the amount of the
parked areas in the region is defined as Num_PU , and the
parking area j is defined as

pj ∈ P, 0 < j ≤ Num_PU

Definition 4: The residential place of the vehicle vi is
defined as RP_vi ∈ P

Definition 5: The time slots of a day are defined as TS, the
amount of the time slots of a day is defined as Num_TS, and
the time slot k is defined as

tsk ∈ TS, 0 < k ≤ Num_TS

Definition 6: The parked/active status of the time slot tsk
of the vehicle vi is defined as status_tsik

status_tsik =

{
1, vehicle i parked at the time slot k
0, vehicle i with motion at the time slot k

(6)

Definition 7: The daily parked time of the vehicle vi is
defined as PTi

PTi =
Num_TS∑
k=1

Status_tsik (7)

Definition 8: The average daily parked time of the vehi-
cles VU with the time slots is defined as ADPT VTS

ADPT VTS =
1

Num_VU

Num_VU∑
i=1

Num_TS∑
k=1

Status_tsik (8)

B. TIME UNIT OF TIME SLOT
To observe and describe the daily activities of a vehicle,
we divide a day into continuous time slots with a specified
time unit. The smaller the time unit is, the more precise the
results are. On the other hand, to urban VANETs, a system
with millions of nodes, a smaller time unit means mas-
sive overhead in data processing. Considering that privately-
owned vehicles are not on the road for 95 percent of the
time, there is a chance of reducing the system overhead and
also maintaining the accuracy of the results by setting coarse-
grained time unit.

The dataset we studied was sampled every 10 minutes. The
analysis result with 10min time unit shows that the average
daily park time is 22.63 hours/day. The result is highly con-
sistent with previous studies in urban design. It shows that
10 minutes time slot have good performance in accuracy.

In this paper, we try to set a coarser time unit than 10 min-
utes for lower system complexity and overhead. We place
1 hour as an essential time unit and divide a day into 24 slots.
With the data set from 7520 privately-owned vehicles span-
ning 61 days, we obtain the distribution of the total number of
daily parked time slots (the time slot unit is 1 hour), as shown
in Figure.5.

The average daily parked time average ADPT1h from the
7520 privately-owned vehicles spanning 61 days is

ADPT1h=
1

61× 7520

61∑
d=1

7520∑
i=1

24∑
k=1

Status_tsik = 20.54 (9)

Combined with ADPT10m (the time slot unit is 10 minutes)
is 22.63 hours/day, the following equation can obtain the
coefficient degree of ADPT1h.

CADPT1h == 1−
|ADPT10m − ADPT1h|

ADPT10m
= 90.76% (10)
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FIGURE 5. Probability distribution of the total number of DPTS1H .

FIGURE 6. Method to obtain the parked states and the active states.

FIGURE 7. Probability distribution of the total number of daily parked
states.

The result shows that one hour is an appropriate time unit
to observe and describe the daily parked events of vehicles in
urban vehicle network.

C. PARKED & ACTIVE STATES
For a privately-owned vehicle, we split a day into some
parked states and active states based on the vehicle trips.
Hence, by merging the adjacent parked/ active time slots of a
day, we obtain the parked and the active states of the vehicle,
as shown in Figure.6.

From the data of the 7520 vehicles spanning 61 days,
we obtain the probability distribution of the total number of
daily parked states (DPS) as shown in Figure.7. The average
total number of daily parked states is 2.85.

We know that the All-day parking (none active state, one
parked state) ratio is 20%. Now we know that one to three

TABLE 2. Statistic analysis result of privately-owned vehicles in
Changsha.

FIGURE 8. The five regular parked patterns accounted for 97%.

trips/day ratio is 68.58%; four trips/day ratio only is 9%, and
more than four trips/day ratio is less than 3%.

The average numbers of daily trips, ADT , which denotes
the daily vehicular motion frequency, is

ADT =
NumTrip∑
i=1

i · Pr ob_Tripi = 1.85 (11)

Combined with the average privately-owned vehicles daily
running time is about 82 min/day, the average time of an
active state is 0.73 hours/day from the data. Table.2 sum-
marizes the statistical analysis results of real data from the
privately-owned vehicles in Changsha.

D. URBAN PRIVATELY-OWNED VEHICLE ACTIVITY MODEL
Based on the analysis results of normal parked states of
vehicles, we obtain five daily parked patterns which account
for 97% of the population, as shown in Figure.8.

Combined with the fact that privately-owned vehicle in the
urban environment has one fixed place of residence and rou-
tinely depart from and return to the place, there are 23 types
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FIGURE 9. The 13 Daily vehicle activity patterns with the parked place.

FIGURE 10. Urban privately-owned vehicle activity model.

FIGURE 11. The instance of a vehicle’s daily activities with the activity
model.

of daily activity patterns with the parked places, as shown
in Figure.9.

From the above daily activity patterns, the probability of
that the number of daily parked places is fewer than five
accounted for 97%. Therefore, we propose the activity model
of privately-owned vehicles for urban vehicle network based
on the privately-owned vehicle activity patterns, as shown
in Figure.10.

The activity model has five parked states, three parked
places, and one place of residence. It can describe 97% daily
activity behaviors of urban privately-owned vehicles in real
life. For instance, on a working day, a vehicle departed home
at 7:10 am and arrived at the workplace parking lot at 7:50.
At 5:30 pm it left the parking lot and returned home at
6:20 pm. The daily parked behaviors of the vehicle belong to
the parked type t4, and its activity model description is shown
in Figure11.

Based on the different vehicle activity patterns between the
workdays and the rest days, as shown in figure 12, there are
two activity models for a vehicle, which we define as the
workday activity model and the rest-day activity model.

FIGURE 12. Distributions of daily activities of vehicles in workday & rest
day.

By embedding the calendar into the vehicle system,
the vehicle can distinguish whether the current day is a
working day or a rest day. Therefore, the urban vehicles
generate the two activity models, depending on their history
traces records of the working days and ones of the rest days
respectively. Then the vehicles adaptively choose the right
model in their daily operations.

V. URBAN VEHICULE NETWORK FRAMEWORK
In this section, we propose our vehicle activity model for the
Motivated by the characteristics of privately-owned vehicles
in urban environment discussed above, we present a location-
based urban vehicle network, which we term LUV, for the
urban IoT data transmission.

A. LOCATION-BASED MECHANISM
The unique place of residence of a vehicle implies that it
can address the vehicle node in the vehicle network. When
the vehicle network needs to transfer IoT data to a specified
location, it can easily find the target carrier by comparing
the place of residence of the candidate vehicle and the data
destination.

In the local-based network, the vehicles provide the
datalinks between their place of residences and their visiting
places. The distributed IoT data can be transported from
one place to another place by the movements of the urban
vehicles. We termed this vehicle network as the Location-
based urban vehicle network (LUV).

LUV is quite unlike the traditional road-based vehicle net-
work. It only considers the departure places and the destina-
tion places of urban vehicles. Since every vehicle has its road
routing mechanism, it can autonomously select a reasonable
path to reach its destination. Taking advantage of the factor,
LUV obtains the urban road routing capability by following
the movement of vehicles.

The Location-based mechanism simplifies the vehicle net-
work topology remarkably considering the complexity of
the urban road network. Moreover, the mechanism drasti-
cally reduces the network dynamics by removing the random
factor about the temporary road choosing of the vehicles.
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FIGURE 13. Network framework of LUV.

Hence, the Location-based mechanism offers the possibil-
ity for the urban vehicle network to accommodate millions
of self-originating vehicle nodes in the sophisticated city
environment.

B. NETWORK FRAMEWORK
By following the existed people/cargo transmission pat-
tern of vehicles, LUV is parasitic on the existed urban
vehicle transportation network to obtain the mega-size net-
work traffic control and path routing in the complex urban
environment.

If we consider the IoT data of an urban place as a particular
type of cargo and follow the existed people/cargo transmis-
sion pattern of vehicles, the non-central urban vehicle net-
work can integrate the urban vehicle transportation network
to improve its network capabilities and scalability. Hence,
we present a novel location-based network framework for the
large-scale urban vehicle network, as shown in Figure 13.
The parked vehicles exchange and route IoT data in the
local data center which is deployed on the long-time parking
vehicles in the area and transfer data on the roads under the
effect of the existing urban traffic routing and flow control
system.

The primary network operations are composed of three
components: message exchange at a place between IoT
devices and the local data center which is deployed on the
parking vehicles, message routing (relay-place) at a place by
the local data center, and message forwarding from place to
place by the moving vehicles.

C. LOCAL DATA CENTER OF PLACE
Based on our previous analysis of the data traces, we find
that almost one-fifth of private vehicles are in the state of
all-day parked and more vehicles are in the states with long-
time parking. It shows the practicability of deploying the
distributed local data center of place on the all-day parked
vehicles and the long-time parked vehicles in the area.

To describe the deployment scheme of place data center,
we introduce two types of nodes in place as follows.

Local node: a parked node at its place of the parked list of
its activity model.

Foreign node: a parked node not in its place of the parked
list of its activity model.

We devise the following approach for deployment of the
local data center among the local nodes in steps.

a: OBTAINING THE DEMANDS OF THE DATA CENTER
IN THE PLACE
By the registration information from the IoT devices
deployed in the place, LUV can obtain the IoT data cache
demands of the area for the local data center. Depending on
the data needs of the IoT devices and the IoT data cache
capacity of a vehicle node, the number of required vehicle
nodes in the local data center can be obtained.

b: CHOOSING DATA CENTER NODES
The probability of remaining in parked states (Prob_RPS)
during a time slot can be inferred from the local node’s
activity model which is generated and updated by its history
trace records. We merely randomly choose these local nodes
as data centers when their Prob_RPS satisfy the predefined
threshold Thr_RPS, till the amount of data center nodes fulfill
the demands. For there are plenty of all-day parked vehicles
and long-time parked vehicles in reality, LUV can generally
find enough candidates for the local data centers from the
local nodes in the places of urban.

c: RETIRING DATA CENTER NODES
Prob_RPS of a vehicle node varies with time. As a part of
the local data center, when its Prob_RPS is lower than the
predefined threshold Thr_RPS, the data center node stops
caching IoT data and sends saved cache data to other data
center nodes. Then the node into a carrier mode and load the
IoT data from the local data center, and carry the IoT data to
the destination place with its trip.

D. PLACE OF LUV
LUV obtains places from the urban street blocks. Street
blocks, as the results of the ongoing urban planning process,
is the fundamental units of the urban traffic network. Gen-
erally, the urban traffic network is designed and operated to
meet the traffic demands of every street block in the city.
Since LUV has the same transmission pattern with the urban
traffic network, the places of LUV come from the urban street
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blocks in reality when the digital map of the city identify its
boundaries.

Based on its historical traces, each vehicle can determine
its place of residence and the daily visiting place list. Accord-
ing to the activity model of a vehicle, the places where the two
parked states belong to compose a place-place pair. After all
parked vehicles in the same area share their place-place pairs
in the local data center, the local data center obtains the vehi-
cle table and the place routing table. Moreover, according to
the vehicles owners’ will, the parking time in each parked
place from the activity model can be shared with the local
data center. The related system files of the local data center
are copied in each of the local nodes.

Single vehicle node of LUV only needs to load the subnet-
work files of the places where belong to its activity model.
When visiting a place where not in the parked place list, as a
foreign node of the place, the node has not necessary loaded
the local subnetwork information and does not join in the
local data center. The foreign nodes share their parked place
lists with the local data center there and exchange the local
IoT data with the local data center.

Place file (P_List) includes the LUV places information.
It comes from the system initialization process of place iden-
tification. Every vehicle node copies the Place file. With
the Place file and their current GPS position, urban vehicles
can detect the LUV place where they are parking. Datalink
file (L_List) includes the information about the data links
between places (place-place pairs) of LUV. It comes from
the parked place lists of vehicles. From the Datalink file, the
place-place pairs of vehicles are stored in an incidencematrix,
PV. The adjacency matrix of the matrixes PV, NL, used to
describe the number of data links between any two places.
Matrix NL is used to calculate the shortest path between any
two places, and the matrix PM stores the results. By bina-
rization of the element values of the matrix PM, a place
connection matrix, PC, is generated to indicate the place-
place connections in LUV. When element PCij is 1, LUV
provides data servers between the place i and the place j;
otherwise, the data servers of LUV are not available between
the two places.

E. IoT DATA SUBMISSION & DELIVERY
In a place of LUV, the IoT devices exchange data with the
local data center by building the wireless connection with the
nearby local nodes. The local data center delivers the IoT data
to the vehicles which are ready to leave, and receive the local
data from the vehicles arrived, as shown in figure.14.

The wireless connection range of the vehicle is longer than
the one of the IoT devices. Although the communication
between the vehicle and the IoT device is limited by the
communication range of the IoT devices, the distance of the
V2V communication can reach farther. Such an extended
communication range make it easy for building the vehicle-
based local data center to cover the entire area.

The local data center connects the other local nodes and
the foreign nodes in the area for data delivery and submission.

FIGURE 14. The wireless connections of IoT-vehicle and V-V in the LUV
place.

It needs to choose a proper vehicle node as data-carrier among
the connected vehicles when it prepares to deliver IoT data
to the destination place. We devise the following approach
for the local data center choosing the carrier for the IoT data
to the destination place. We present it in the following steps.
a) The vehicle nodes of the local data center build the

wireless connections with the nearby parked vehicles.
b) The local data center sends to the connected vehicles

the requests for their visiting probabilities of the data
destination place. Then the vehicles send back their
responses which contain the calculation results based
on their history traces.

c) The local data center selects the vehicle which has the
highest visiting probability as the candidate node.

d) If the likelihood of the candidate is lower than the
threshold, the local data center wait for a new vehicle
to submit data. Otherwise, it sends the IoT data to the
candidate.

e) When the data carrier arrives at the data destination,
it uploads the data to the local data center of the
destination.

f) If the local data center has not found a suitable data-
carrying vehicle during the current waiting time cycle,
it decides whether to into another waiting time cycle or
switch in the relay mode.

g) In relay mode, depending on the place routing table,
which can be obtained from the data links matrix NL,
a suitable relay place is chosen. Then the data is sent to
a parked vehicle which will visit the relay place. When
the vehicle carrying the data arrives at the relay place,
it submits the data to the local data center, and the
center tries to find other vehicles to send the data to
the destination place.

F. ENERGY CONSUMPTIONS
Nowadays, most of the vehicles have not to be equipped
with high-power batteries yet. The vehicular terminals have
to be turned off after the vehicles stop. However, according
to the electrification trend of the automotive industry, it can
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FIGURE 15. Targeted LUV area in Changsha, China.

be expected that the next generation of vehicles will have the
ability to power vehicle-mounted terminals around the clock.
Therefore, during its parking, by peer to peer wireless con-
nections, the vehicles can collect data from the IoT devices,
submit data to the servers, and interact with the other parked
vehicles. Although the energy scarcity of the IoT devices and
sensors limits their wireless communication range, the high
density of parked vehicles in the urban area ensures that the
IoT devices can be connected to the nearby vehicles within
their short wireless communication range.

G. INCENTIVES FOR CAR OWNERS
Given the fact that the car owners pay for the power spending
of the vehicular terminals or other indirect costs, the incen-
tives for them to participate in the urban vehicular network is
necessary.

Considering that urban vehicular networks for collecting
public IOT data are non-profit networks served smart cities,
municipalities should provide public resources for the incen-
tives. The system records the total amount of historical IOT
data transmitted by each vehicle. Similar to airline mileage
conversion points, assign points to the vehicles according to
their total amounts of data transmission. When the vehicles
have earned enough points, they gain priority access to spe-
cific public resources in the city by redeeming their points.
For instance, the car owners can obtain one-time free parking
in a particular area with its points. In the case, it sounds be
attractive to car owners due to the lack of parking resources
in modern cities.

VI. NETWORK EVALUATION
In this section, the set of real-life data on privately-owned
vehicles is utilized for the network evaluation. To reduce the
amount of calculation, we set the urban area scope of Chang-
sha from N28.07 to N28.27, E112.90 to E113.10, which is
shown in Figure 15.

FIGURE 16. LUV place distribution with Thr_density = 0 (Changsha,
China).

FIGURE 17. LUV place distribution with Thr_density = 19 (Changsha,
China).

A. PLACE IDENTIFICATION IN LUV
Based on our approach for place identification in LUV [25],
we first divide the area, as shown in Figure.16, which is 20km
by 20km into 40,000 units, each with an area of 100m by
100m. The total residence time of the vehicle in each unit
is accumulated over the entire observing period and stored
in a matrix, MS. The row of the matrix MS is vehicle ID,
and column is unit ID. The total number of vehicles which
belongs to the area is 5190. As the number of units is 40000,
the size of matrix MS is 5190 by 40000. A vehicle’s total
residence time in each unit is stored in the elements of the
matrix.

If we merely set the Thr_time (the predefined threshold
of residing time in a unit) to 1, the matrix becomes sparse,
and the non-null rate is about 0.43% (89870 non-empty ele-
ments). If we set Thr_density (the vehicle density threshold
of unit) to 19, we identify 873 LUV places which account
for 2.18% of the total area. Figure.16 is the intermediate
result where parameter Thr_density has not been applied yet.
Figure.17 illustrates the distribution of the 873 LUV places.

LUV allows messages exchange within places to ensure
relative stable and reliable connection among vehicles. At the
same time, the places where the vehicles will visit next
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FIGURE 18. LUV places(4km*4km) and the local vehicles.

FIGURE 19. Data links of LUV places.

provide a likely route for message delivery. By using sim-
ple threshold methods, we can identify concentrated vehicle
places in an urban area that can effectively serve as places
in LUV. Given the multiple tunable parameters, the method
can effectively control the size of the place, the number of
vehicles, and the required frequency or residence time in a
place.

B. DATA LINKS OF PLACES IN LUV
Considering the vehicle nodes which from real data set is
much less than the real quantity of vehicles in Changsha,
China, we zoom in the place area to acquire enough local
nodes in one place to study the connectivity of places in
LUV over the real-life data. We divide the area into 25 units,
each with an area of 4km by 4km. By our threshold-based
approach for identifying the places, we identified 13 LUV
places, and 4526 local vehicles belong to these places. The
result as below:

The residential place and the visited place of one vehicle
build a data link between the two places. Therefore, we obtain
the data links between these places as shown in figure.19.

The total number of data links between places fits logarith-
mic normal distribution, as shown in Figure.20.

The connectivity rate in LUV is 96.15%. It indicates that
urban vehicles can provide data service between places and
the network performance depends on the amounts of vehicle
nodes. As the network scale increases, the performance of

FIGURE 20. The total number of data links between places CDF.

LUV will improve as well. Therefore, within LUV, the mil-
lions of urban vehicles can provide low-cost local data access
services to hundreds of millions of IoT devices in the city.

VII. CONCLUSION
With the rapid development of Smart City related technolo-
gies such as IoT, big data, and wireless communication,
the demands for the IOT data in smart cities have snowballed.
In addition to the 5G network, smart cities can also deploy
the vehicle-based DTN network as the non-real-time IoT
data transmission platform to enhance the IoT data collection
capability and reducing the IoT data collection costs in smart
cities.

According to the essential features of urban vehicles from
the analysis of the trace data of the private cars, we propose
a location-based urban vehicle network (LUV) for IoT data
transmission in the urban environment. In LUV, the parked
vehicles, the daily activity patterns of vehicles and the exist-
ing urban vehicular transportation network are fully utilized
to reduce the network complexity and improve the network
scalability for practical application.

Due to prohibitive costs and policy constraints, it is
challenging to deploy sufficient sensors in the urban envi-
ronment for acquiring public sensing data. Compared to sen-
sor deployment, collecting sensing data generated by these
sensors distributed in urban is even harder. Though mes-
sage exchange only happens between parked vehicles within
places, private vehicles can perform various other tasks like
sensing urban environment from multi-sensor mounted on
vehicle or gathering sensing data from the roadside sensors
when moving. Relying on LUV, the urban sensing servers
deployed in particular places can collect these sensing data
on vehicles.

The works of this paper are based on our previous work
over the last four years [24]–[26]. There are still many aspects
for us to study in the future. For the parking places make a
profound impact on vehicles, the studies on characteristics of
parking place, such as the type of place, the spatial scale of
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places, and the vehicle capacity of parking place, is yet to
come. Based on the place studies, we can utilize the features
of places to design the details of LUV further. Furthermore,
in this paper, there are two activity models of vehicles that
are divided merely by workday and rest day which vehicle
can detect by themselves. In the further work, the activity
model of vehicle can be refined to improve the accuracy of
predicting the current behavior of the vehicle.
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