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ABSTRACT Slewing bearings are vital functional components of large machinery. It is of far reaching
significance to study their life prediction and health management. Many studies are based on data-driven
approaches. However, part of them in the form of ““black-box’’ lack actual physical meanings due to opacity
model structures and have difficulty in choosing optimal parameters. Few kinds of literature focus on explicit
model relationships for slewing bearings’ life models. In this paper, a novel approach based on symbolic
regression is proposed with the aim of exploring slewing bearings’ explicit life models in depth and to predict
residual useful life (RUL). The proposed method integrates the strengths of multiple signals describing
a comprehensive response to slewing bearings’ health and various genetic programming (GP) algorithms
modeling life expressions. In addition, independent, hybrid, and piecewise strategies are introduced and
explicit model relationships with respect to degradation indicators (DIs) are established via GPs. To verify
the proposed method, three run-to-failure experiments under discrepant operating conditions of slewing
bearings are carried out. Prediction results demonstrate that models generated by epigenetic linear genetic
programming (ELGP) under hybrid and piecewise modeling strategy with similarity-based combination
strategy perform best. More importantly, their life expressions are more succinct and intelligible than in
other situations.

INDEX TERMS Predictive models, prognostics and health management, remaining life assessment, slewing

bearings, symbolic regression.

I. INTRODUCTION
slewing bearings are widely used in industrial machineries

(e.g., wind turbine generators, tunnel-boring machines, tower
cranes and military technology). They serve as connections
in slewing systems and bear axial force, radial force and
overturning moment under harsh outdoor environments or
improper installation. If failure occurs, the entire machine
will be out of service and even a great accident might happen.
Therefore, a detailed and effective technique of residual use-
ful life (RUL) prediction is urgently needed to reduce down-
time of industrial machineries and maintenance cost. This
paper is devoted to introduce a novel prognostics strategy for
slewing bearings’ RUL prediction under discrepant operating
conditions.

Prognostics methods can be mainly divided into four
categories [1]: physics model-based, statistical model-based,
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artificial intelligence (AI) and hybrid approaches. Kunc and
Prebil [2], Kunc et al. [3] analyzed the contact between race-
ways and rolling bodies by finite element methods and it
can be applied to predict the raceway life and analysis the
contact strength of a single-row, four-point contact slew-
ing bearing. This approach was based on first principle of
damage and failure mechanisms and required a sufficient
research and complete understanding for mechanical com-
ponents. It is not easy for complex systems or components
to completely grasp damage mechanism [4]. Another way in
the form of special models relies on statistics, mainly talking
about reliability problem of RUL. Feng presented a novel
approach [5] of parameters estimation based on Weibull dis-
tribution for life prediction of slewing bearings but failed to
provide online prediction. Statistical-based methods usually
rely on mass data. They are also considered to be data-driven
based approaches and another part of these ones is based
on Al algorithms, Al can establish diagnosis or prognosis
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models from signals directly without specific prior knowl-
edge. Kim et al. [6] used support vector machine (SVM) clas-
sifiers to estimate health status of bearing degradation process
and provided long-term bearings’ degradation assessment
and prediction. However, this RUL prediction lacked connec-
tions with actual physical degradation process. Lu et al. [7]
discussed least square support vector machines (LSSVM)
improved by particle swarm algorithm (PSO) in slewing bear-
ing’s degradation prognosis but it was limited to the same
working condition. Guo et al. [8] forecasted RUL of bearings
by means of particle filter (PF) algorithm after indicator con-
struction by recurrent neural network algorithm which highly
depended on massive data. In the field of system health prog-
nostics, data-driven approaches have been widely used and
show effectiveness for complex systems or mechanical parts
in the absence of complete degradation mechanism [4]. How-
ever, some of data-driven models including the above ones,
especially Al ones, have some defects: Firstly, prediction or
diagnosis results were influenced greatly by part parameters
inside them and it was not easy to find the most suitable
ones that may cause difficulties for operators who were not
proficient in this algorithm and influenced the ability of
generalization [9]; Second was the opacity of model structure
which was short of practical physical meanings [10], [11],
it was just like a black-box and you may be hindered from
truly understanding the life model or degradation process.
For scenarios requiring high reliability, this uncertainty and
opacity may be fatal. The motivation of this paper is to
explore this problem.

Another factor that influences prediction accuracy of data-
driven approaches is quality and quantity of input data. In tra-
ditional bearings, vibration data was considered as effective
signal [6], [8], [12], [13] for its ability to reflect the degrada-
tion trend. Owing to the low speed and heavy load character-
istics, large-size slewing bearings are of great diversity from
small bearings. If only vibration signal is applied in slewing
bearings’ condition monitoring, it may not perform as well as
bearings and a comparison is given in Section I'V. Caesarendra
and Zvokelj [14], [15] both combined vibration signals with
acoustic emission techniques to diagnose slewing bearings’
fault. Ding et al. [16], [17] applied vibration, temperature and
torque signals to assess health status of slewing bearings.
Above multiple signal based solutions performed better than
single signal ones. That is to say single signal may lose fault
information compared with multi signal.

In view of two factors above, vibration, temperature and
torque signal are discussed in this paper and symbolic
regression [18] based prediction methods which are the first
attempt in the field of rotating machinery are applied later.
They mainly focus on the exploration of explicit mapping
relationships between RUL and DIs and provide a reliable
and effective life prediction way.

Threefold contributions are summarized: (1) Life models
describing explicit relationships between slewing bearings’
health and DIs can be obtained which is helpful to further
study internal structures of life models and semi-empirical
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life models with determined functional structures could be
summarized or identified through massive experiments in the
future; (2) Researchers can obtain a preliminary identification
of the most representative damage signal from this symbolic
life expressions (it is noted that sensitive indicators need to be
verified next and they are just preliminary judgments) which
could be helpful to select suitable monitoring signals; (3)
RUL estimation just relies on the formulas like Eq. (12), as
shown at the bottom of page 11. which has low computational
pressure. Hence, the calculation cost can be reduced greatly.
Researchers might establish lightweight expert systems in
view of this merit in the near future. Remaining sections
of this paper are organized as follows: Section II presents
signal processing strategies. Section III describes symbolic
regression methods and their principle. Verifications related
to run-to-failure experiments are discussed in Section IV.
Section V summarizes the paper.

II. SIGNAL PROCESSING STRATEGIES

A good degradation indicator is one of the main factors influ-
encing the prognostics result. In this section, three parts of
signal processing strategies, determining DlIs, are presented
in the following subsections. Also, three-dimension of signal
(vibration, temperature and torque) is utilized to continuously
and integrally depict the slewing bearings’ degradation pro-
cess which is a combination of our past study [7], [19].

A. SIGNAL DENOISING USING EEMD-SVD
In this section, we introduce ensemble empirical mode
decomposition (EEMD) [20] and singular value decomposi-
tion (SVD) [21] algorithms for signal denoising. SVD is a
powerful tool applied in many domains (e.g., features extrac-
tion and dimensionality reduction), also serving as a signal
denoising method in rolling bearings widely. EEMD is the
development of EMD which avoids inherent shortcomings
via the assistance of white noise. It can decompose the signal
into components from high to low frequency and usually,
noise is stored in high frequency. We take advantage of this
feature and combine SVD algorithm for signal denoising. The
detailed comparison with wavelet denoising algorithms is dis-
cussed in Section 4.2.2. Detailed steps based on EEMD-SVD
algorithms are as follows.

Step I: Decompose the raw signal into IMFs and residue
using EEMD method as Eq. (1).

n
s =Y en®) +r(®) e
n=1
where s(¢) is raw signal, ¢,(¢) and r(¢) are IMFs and residue,
respectively.
Step II: Determine the number m of low frequency IMFs
and form the trend component with the residue as Eq. (2).

m
tr(t) =Y cm(t) + (1) ©)
m=1
where #r(¢) is trend component and ¢,,(¢) are low frequency
IMFs.
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Step III: Then the raw signal is divided into trend compo-
nents and remaining high frequency components as shown in
Eq. (3) where k + m=n.

k
s() =Y () + tr(t) 3)

k=1

where ci (¢) are high frequency IMFs.

Step 1V: Each of the remaining high frequency component
is reconstructed using SVD with difference spectrum [22]
that determines the number of singular values.

Step V: Generate final denoising-signal s*(¢) as Eq. (4)
using the reconstructed and the trend components.

k
NOESPAGEREG! (4)

k=1

where s*(¢) and cj(t) are denoising-signal and reconstructed
components, respectively.

B. FEATURES EXTRACTION & SELECTION
Three main types of features: time domain, frequency domain
and time-frequency domain features are utilized in this paper.
Detailed formula expressions are the same with [16].
Subsequently, three selection metrics are conducted for
suitable features. One is monotonicity, applying to all fea-
tures, which is a little different from quantitative descrip-
tion of monotonicity [23]. Considering the imprecision and
incompleteness of that description and supposing the irre-
versibility of a degenerate process for slewing bearings,
we apply a qualitative trend description for monotonicity.
That is, the trend is consistent over a wide range, allow-
ing volatility within the short interval. For IMF energy fea-
tures, we adopt another two metrics: correlation [24] and
kurtosis [7] defined as Eq. (5-6). Correlation calculating sim-
ilarity between relative important features and candidate fea-
tures, kurtosis describing waveform peak and indicating the
damage inside the machine are applied to select the suitable
scale space of time-frequency features that can well reflect
degradation process and reduce redundancy to some extent.

> (Xi -X)(Yi—Y)
corr = =1 (®)]
Y X —X? Y (Yi—Y)?

i=1 i=1

where X; is a series of root mean square (RMS) value
extracted from the original signal, Y; is a series of feature.
X, Y are their mean values.

— 4
_EX-X)* 1| X(n-X
K—T—;g[T} ©

where X, o are mean and standard deviation of the series
of X(#). The screening principles are as follows: First apply
the monotonicity metric to filter all the indicators and obtain
the required indicators. then calculate the correlation between
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RMS and time-frequency features, only value of corre-
lation greater than 0.85 will be retained. The remaining
time-frequency features will be further evaluated under kur-
tosis and the relatively bigger ones are winners at last.

C. FEATURES FUSION VIA LPP ALGORITHM

A feature fusion method, which is a new attempt for slewing
bearings, named locality preserving projection (LPP) [25]
is presented in this part. LPP, one of the manifold learn-
ing algorithms [26], optimally preserves the neighborhood
structure of the data and extensively apply in the domain of
exploratory data analysis, feature fusion, machine vision, and
pattern identification. It can greatly preserve the local infor-
mation from high dimensional features which is more useful
than global information based fusion algorithms explained
amply in [27] and has low computational cost in the com-
parison with other manifold learning algorithms. However,
nearest neighbor nodes and § in heat kernel are two param-
eters need to be predefined in LPP which may influence the
trajectory trend of DIs. Detailed steps of LPP can be found
in [25].

Ill. THREE SYMBOLIC REGRESSION METHODS AND
THEIR PRINCIPLES

Symbolic regression methods for modeling slewing bear-
ings’ life model are introduced and presented in this
section. Genetic programming (GP) algorithm [28] and its
two variants: multi genes genetic programming (MGGP)
algorithm [29], [30] and epigenetic linear genetic program-
ming (ELGP) algorithm [10] are employed to study slewing
bearings’ life models.

A. INTRODUCTION OF THREE TYPES OF GP
GP, a branch of evolution algorithms, can obtain solutions
under the fitness function pressure without preset model
structure. Inspired by the Darwinian principle of natural
selection and survival of the fittest, GP is a solution based
on global optimization and extensively used in the domain
such as nonlinear function approximation, system identifi-
cation, pattern recognition, machine learning, etc. Hence,
we introduce this thinking into the study of slewing bearings’
life model. It can directly obtain life model expressions and
figure out the relationships between RUL and DIs compared
with “black box” algorithms. Based on this feature, forms
of expression of different DIs to the degradation process can
be clearly and quantitatively analyzed and researchers could
further study the degradation process of slewing bearings.
However, in [31] and [32], researchers point out the tra-
ditional GP has some weaknesses: (1) bloat which means
there exists no improvement of fitness as trees grow; (2)
when dealing with complex problems, GP often performs
bad; (3) large search space may cause the increase in com-
putational cost and complicated models. As a variant of GP,
the only difference between MGGP and GP is the number
of gens or trees. It can improve the accuracy trading off the
complexity of models. It seems that modeling by MGGP is
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more precise than traditional GP, but the greater the gens
number is, the longer the expression of model is. The users
will have difficulty understanding this tediously long model
expressions. In fact, part of GP’s shortcomings mentioned
above still exist in MGGP. ELGP as a novel GP, which will
be introduced in detail in the next subsection, has innovations
as follows:1) it adopts stack-based [33] approach to express
models; 2) ELGP owns the ability of local optimization by
introducing the layer of epigenetic [34]; 3) multi-objective
optimization is utilized in ELGP to make the model intelligi-
ble and succinct. Figure 1 of detail steps from GP and ELGP
is presented below:

FIGURE 1. Procedure of traditional GP is on the left, right is epigenetic
hill climbing procedure.

B. DETAILED DESCRIPTION ON ELGP
The detailed description of ELGP is centered around its three
salient innovations against traditional GP.

1) STACK-BASED MODEL REPRESENTATION

ELGP utilizes stack-based representation to epigenetic lay-
ers. Compared with tree-based representation which may be
invalid owing to the change of instructions, it can guarantee
the validity of the syntax all the time under any instruction.
Robustness of this approach depends mainly on ignoring the
executions that have a larger size than the current stack. For
example, if x4 operator wants to implement and the x is the
only element on the stack, the result is meaningless. Another
rule is that it only remains the expression on the top of the
stack. Here are some examples in Eq. (7).

i1 = [xixo—]= M : (x1 —x2)
i =[x1x2—+ X /1= M (x1 —x2)
i3 = [x3 +x1 X x102—] = M3 : (x] — x2) @)
Three genotypes express the same model: x;-x;. From i
we can find the execution + x / are ignored due to the

insufficient stack size; i3 only remains the last expression due
to the second rule.

2) EPIGENETIC LAYER

Epigenetic layer which is ignored by traditional GP is used to
play arole of an on/off marker controlling the genotypes. This
corresponding sequence of on/off markers is referred to as an
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epigenome. For a clearer understanding of layer of epigenetic,
a few examples can be found in Eq. (8):

., _Jr 10001 1] .

13:13—_ T _:>M3.(X3—X2)

. '//__1 1 00 0 1 1] "

3=y = | n o xorxo— _:>M3.(X3X1)

. ~///_-1 1 000 1 1] m

l3$l3 = X3+ x| X X1xX— $M3 ~(-xl_-x2)
®)

From the above representations, 1/0 means on/off and the
binary numbers above the genotype is an epigenome (epige-
netic layer). The epigenetic markers are initialized randomly.
In the evolution of the epigenetic layer, epigenetic hill climb-
ing (EHC), which the whole processing is in the right half
of Figure 1 and stems from local optimization algorithm:
random hill climbing algorithm, are applied. It can make each
element of epigenome has a probability to mutate (i.e. from
1to 0, or 0to 1) presenting in Figure 2 and turns to the smaller
fitness (fitness f; is being minimized) value with succinct
models. The evaluation mechanism of individual in EHC is
based on the model’s accuracy and complexity [10]. Only the
lower complexity with smaller or equal fitness can pass this
evolution, otherwise, the new individual will be discarded.

FIGURE 2. Epigenetic mutation: Activation means the element of
epigenome changes from 0 to 1 and vice versa.

3) MULTI-OBJECTIVE OPTIMIZATION

To obtain succinct and accurate models, ELGP apply multi-
objective optimization: accuracy, complexity, and age of indi-
viduals in the evolution. The first two objectives ensure the
final model interpretability and accuracy, the third objective,
age of individual which is the number of generations since
the oldest ancestor was born, avoids premature convergence.
Combined with three objectives, models via ELGP can be
more precise and succinct.

IV. EXPERIMENT VERIFICATION

In this section, run-to-failure experiments of slewing bearings
under three working conditions are carried out to certificate
the proposed methods above and we will discuss this sym-
bolic regression based approaches in depth.

A. EXPERIMENTAL FACILITIES AND LOADING
PROCESSING

Two test rigs will be introduced in this part. One is laboratory
slewing bearings test rig, which is suitable for relatively small
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FIGURE 3. Lab test system and corresponding sensor installations: (a) lab test stan; (b) installation of torque sensor; (c) installation of acceleration

a1—4 and temperature ¢; _, sensor; (d) flow of the whole test stand.

TABLE 1. Loading processing of experiment A&B.

NO. Axial force Overturning moment Rotating speed Duration
Experiment A B A B A B A B
1 24(KN) 82.5 60(KN'm) 34.5 4(rpm) 2 30(minute)

2 48 165 120 69 4 2 30
3 72 247.5 180 103.5 4 2 30
4 96 330 240 138 4 4 run to failure

size slewing bearings’ experiments. Two sets of run-to-failure
data are generated from this rig. Structures of test rig and
layouts of sensors are represented in Figure 3. It contains
mechanical part, hydraulic loading part and measuring and
controlling part. The hydraulic load part shown in Figure 3(a)
is mainly composed of hydraulic cylinders and a hydraulic
motor. The torque sensor is mounted on the gear of the drive
mechanism presented in Figure 3(b). Accelerometers with
the sample frequency is 2048Hz and temperature sensors
(PT100) are installed every 90 degrees at the outer ring and oil
fill holes from Figure 3(c). Figure 3(d) gives a brief flowchart
of the entire experiment.

Two experiments under this lab test rig using the same
type slewing bearing which the raceway diameter is 730 mil-
limeters were carried out in June (Experiment A) and in
August (Experiment B). Both of them were run for 12 days
and 152 hours in Nanjing, China respectively. Main differ-
ence between the two experiments are ambient temperature
which ambient temperature of Experiment A is much lower
than that of Experiment B and loading process recorded in
detail in Table 1 below. Also, slewing bearings’ assembly
and installation foundation will influence the life of slewing
bearings to a certain extent.

Another industrial test rig is suitable for slewing bearings
with large size. Its structure is shown in Figure 4. The prin-
ciple is similar to the lab one before. Experiment C from this
rig lasted 72 days from March to June in Shanghai, China.

Slewing bearings under this industrial test rig is installed
in 3MW wind turbines and their raceway diameter is
2410 millimeters. Loading processing is as Table 2 below.

B. STUDY ON RUL PREDICTION OF SLEWING BEARINGS
This section is devoted to detailly discuss the RUL predic-
tion of slewing bearings. Figure 5 below present the entire

72080

FIGURE 4. Industrial test rig.

TABLE 2. Loading processing of experiment C.

NO. Axial force Overturning Rotating Duration
moment speed
1 O(KN) 0(KN-m) 0.5(rpm) 30(minute)
2 115.9 1074.3 1.5 60
3 231.7 2148.6 1.5 240
4 347.6 32229 1.5 240
5 463.8 4297.2 1.5 run to failure

process intuitively. Utilizing signal processing strategies and
symbolic regression methods as discussed before, we com-
bine two slewing bearings’ life models established by GPs
algorithms to forecast RUL of the third slewing bearing. It is
noted that signal processing strategies are the same in the train
sample A and B and the validation set.

1) DATA PROCESSING

Three sets of experiments data including vibration tem-
perature and torque signal can be obtained from the lab
and industrial test rig. In Figure 6, we found that noise is
still widespread. Hence de-noising processing is of great
significant for signal processing. In this paper, we utilize
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FIGURE 5. The whole process for the verification of proposed methods.

FIGURE 6. Raw signal and DIs of three experiments.

EEMD-SVD based de-noising algorithms. Compared with
other traditional de-noising algorithms (wavelet denoising,
EMD denoising, SVD denoising, etc.), EEMD-SVD can
denoise signal at different frequencies with adaptive number
of singular values determining by difference spectrum.

Table 3 is a simple comparison with wavelet de-noising
algorithm based on Experiment A and two judging criteria:
signal-to-noise ratio (SNR) and mean square error (MSE) are
given. It is clearly that the performance of EEMD-SVD is
better than wavelet algorithm in signal denoising and few
parameters in the algorithm need to be predefined.

Three domain features are extracted from original signal.
From our signal processing strategy, not all the features are
suitable for the next processing. Features selection based on
the metrics discussed in Section 2 will be implemented. For
all features, we first choose the ones with obvious trend,
excluding those who continue to float. Then, we select the
time-frequency features based on the correlation and kurtosis
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TABLE 3. Comparison between EEMD-SVD and wavelet(db4).

Denoising . N
. Criteria Vibration Temperature Torque
algorithms
SNR 0.5197 23.2934 7.4237
EEMD-SVD
MSE 6.1356e-04 0.5679 0.0594
Wavelet(db4) SNR 0.6255 21.1485 7.2976
MSE 6.2446¢-04 0.7271 0.0610

criteria and choose features with high similarity and kurtosis.
There is no uniform standard to indicate which indicators
are most responsive to the degradation trend of slewing bear-
ings. The intrinsic dimension of features here is determined
by packing numbers [35], it is calculated that all intrinsic
dimensions of high dimension feature sets are close to one,
so intrinsic dimension is set to one. Then we adapt features
fusion via LPP algorithm to represent degradation trends of
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the three slewing bearings. In the algorithm, we define the
range of the nearest neighbor is bigger than the intrinsic
dimension and smaller than the number of features [36].
Therefore, six nodes are taken in the adjacency graph and
parameter B in the heat kernel above is set to 0.05. After
fusion, DIs shown in Figure 6 are normalized to remove
statistical error in repeated data and make subsequent symbol
regression algorithms easier to converge.

From Figure 6, we can find health conditions of the same
slewing bearing varies greatly under different working con-
ditions. Therefore, it is not easy to predict different types
of slewing bearings. Usually, only one set of data includ-
ing training sets and validation sets is used in many papers
which study bearings’ or slewing bearings’ life prediction.
The results of those literatures are usually ideal because the
training set and the validation set are derived from a set
of data and even have an overlapping. It is unreasonable to
verify life models with data from training sets. In our study,
we propose a novel method based on symbolic regression and
can obtain life model expressions directly. Through analysis
of the structure of life models under different working con-
ditions, mapping relationships between DIs and RUL can be
found.

2) MODELING STRATEGIES AND HYPOTHESIS

Two modeling strategies are applied: One is to establish a
life model for each degradation indicator, we assume that
the contribution of each degradation indicator to RUL is
same because of the uncertainty of quantitative effect of each
indicator to RUL, hence final model can be obtained by
combining three models corresponding with each degradation
indicator using weighted average. We call this method inde-
pendent modeling ignoring the interaction between signals.
Another is hybrid modeling which establishes life models
with three DIs simultaneously. This hybrid modeling strategy
considers the interaction between diverse signal under the
pressure of natural selection of GPs. The two strategies are
all based on three GP algorithms talked above.

We believe that although the overall trend of degradation
is different but major factors mapping to RUL and the local
structure of factors are fixed. This local mapping relationship
is magnified or reduced due to differences in operating con-
ditions. Another hypothesis is that if we can get enough life
models under diverse situations. A reasonable combination
of them, which will greatly improve the accuracy of forecast.
It is worth noting that we both apply weighted average and
similarity based methods for a quantitative comparison of
precision. When the sample size is large, we do recommend
the weights based on the similarity between samples which
consists of working condition, loading process, sample size,
degenerate trajectories after signal processing and so on.
Based on the two above hypotheses and GPs algorithms, life
model expressions of full life cycle from Experiments A and
B are first obtained to test Experiment C. In order to study
the life models conveniently, simple function sets showing
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TABLE 4. Parameter settings for GPs.

Parameters GP/MGGP ELGP

Population size 2000 2000

Max generations 10000 10000

Function sets {+, -, X, /, ~, sin, cos, {+, -, X, /, ™ sin, cos, exp,
exp, log} log}

Selection strategy Tournament Age-fitness Pareto [37]

Inputs DIs

Outputs RUL

TABLE 5. Performance of GPs under different modeling strategies.

Metric R’ RMSE
Strategies Independent Hybrid Independent Hybrid
GP 0.7210 0.8657 227.9669 145.9360
M4GGP 0.8193 0.8557 183.4605 163.9290
M8GGP 0.8284 0.7671 178.7517 175.1026
MI12GGP 0.8181 0.7980 184.0529 193.9763
ELGP 0.7925 0.9009 196.5773 135.8817

in Table 4 are applied in this paper and the rest of GPs’
parameter settings can be found above.

3) VALIDATION AND DISCUSSION

In this subsection, we do predictions for three existing experi-
ments. First, raw signal and three DIs from Experiment C pre-
sented in Figure 6 are used for verification. The degradation
of large-size slewing bearings is quite different from small
ones, especially in temperature and torque signal. Based on
the second hypothesis we proposed before, we combine the
two models of the full life cycle from Experiment A and B
with the same weights and two different modeling strategies
(hybrid and independent) are conducted for verification.

It is intuitively to discovery that the hybrid modeling
method is better than the independent modeling method
depicted in Figure 7 clearly. Residual useful life prediction
of hybrid modeling strategy considering the interaction under
the pressure of fitness function are more precise than inde-
pendent ones. Also, when the prediction time goes on, the
hybrid models are closer to real RUL and ELGP model per-
forms best. To quantify the performances between modeling
strategies and GPs, Table 5 are listed below.

In general, the performances of the independent models are
worse than hybrid models. The only difference between the
two modeling methods is the interaction between different
signal components. In the independent models, life model is
established by three DIs independently and the interaction
between the signals is not considered. The hybrid models
considering the coupling between the different signals are
more precise. Inspired by this detection, we infer different
signals are interactive. That means when the temperature
increases, the vibration of the slewing bearing may be more
severe. If the coupling between signals can be understood and
considered in the prognosis, RUL prediction may be more
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FIGURE 7. Predictions and errors under two modeling strategies: (a), (c), (e), (g) and (i) are RUL prediction of GP, M4GGP, M8GGP,
M12GGP and ELGP respectively; (b), (d), (f), (h) and (j) are RUL prediction error of GP, M4GGP, M8GGP, M12GGP and ELGP respectively.

precise than before. This is also confirmed from the side
of this article using a variety of signals to establish the life
model is reasonable. In hybrid models, prediction precision
of ELGP is obviously higher than that of the other two and
the expressions of models are more succinct and compact than
MGGPs owing to the epigenetic layer and the multi-objective
optimization mechanism. Models from GP, M4GGP are bet-
ter than M8GGP and M12GGP and the performance of the
training set is getting better as genes increase, indicating
that there exists overfitting. Under hybrid modeling strategy,
GP models discards the vibration components in the evolu-
tion of the population, it’s unreasonable to establish mod-
els only with temperature and torque components because
vibration index is one of important components [7], [14], [15]

VOLUME 7, 2019

reflecting the degradation processing for slewing bearings.
Therefore, the performance of GP models in Table 5 is worse
than ELGP models.

To further verify the effectiveness and improve the pre-
cision of the proposed methods, data from lab test rig will
also be verified under ELGP algorithm and hybrid modeling
strategy. In the attempts we find that it doesn’t perform well
when we directly weight average life model expressions from
full life cycle. Three factors may lead to the poor generaliza-
tion we consider: (1) Individual health of slewing bearings
varies greatly which can be found from the raw signal of
three experiments in this research and historical run-to-failed
experiment data is scarce; (2) The ability for representation of
single symbolic regression based model is limited, it means
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TABLE 6. Life model expressions of experiment A from lab test rig.

Stage  Life models of Experiment A

I RULM,t.n)= 4.38(cos(exp(((sin(n)-£)+4.48)))-0.26)-n+1470.3cos(sin((4.77t))) 9-1)
1 RUL,t,n) = v+((10.42c0s(58.78sin(sin(?))))+(v+(exp(((sin(exp(rn)) x (-3.07¢))+7.46149))+v))) (9-2)
M RUL(v,tn)=4.25sin(6.80(27.45¢))+exp((sin(8.77((n-¢)-0.19))+5.67))-v (9-3)
IV RUL.t,n) = v-cos(v)+(exp(((3.86218-¢) x sin((-7.78n))))+287.75) x cos((-1.59¢)) (9-4)

TABLE 7. Life model expressions of experiment B from lab test rig.

Stage  Life models of Experiment B

1 RUL(v,t,n)= cos(32.13n)+exp(7.68-exp(v+cos(n+3.30)))-0.07 (10-1)
1l RUL(v,t,n) =20.82cos(-0.22+exp(exp(?)))+t+(-0.077-(exp(exp(n + 1.1)-sin(cos(n)))-exp(7.27))) (10-2)
11 RUL(v,t,n) = 1.79326+(2.33(-4.63sin((-35.18(v+1)))))+1248.88sin(3.037) (10-3)
v RUL(v,t,n)=2.13+8.52(cos(exp((4.51n))) x n)+exp(6.79)-exp(n x (5.76+n)) (10-4)

TABLE 8. Life model expressions of experiment C from industrial test rig.

Stage Life models of Experiment C

1 RUL(v,t,n)=(212.09(v x sin(exp(n))))+exp(cos(n)+6.29)+72.48sin(-11.44¢) (11-1)
II RUL,t,n)= v+(v+exp((cos(sin(((0.91-n)+((¢-1) x (10.81v)))))+6.08))) (11-2)
I RUL,t,n) = t-(v-(exp(v-(sin(n) x (-12.15c0s(¢))))-(654.294-174.85t))) (11-3)
v RUL(v,t,n) = 57.6cos((n+143.67) x cos(v))-exp(5n)+281.75+v-1.45-exp(3.74¢) (11-4)

that descriptions and explanations of a complex degradation
from slewing bearings’ full life cycle are hard to obtain;
(3) Combination strategy among training samples need to
be adjusted according to the characteristics of experiment
data. Take a careful observation of DIs shown in Figure 6,
vibration, temperature and torque indicators vary evidently
near the 250", 750™ and 1250™ points. Great changes of
degradation processes before and after these points are likely
to occur. Mapping relationships of potential functions corre-
sponding to different degradation stages are obviously dif-
ferent. Therefore, multi-stage modeling is helpful to improve
the representational ability of a single model and reduce
over-fitting. Meanwhile, it is clearly that big data techniques
achieve tremendous improvements in data-driven based fault
diagnosis and RUL prediction which results in part from
the complete sample learning space that can cover verifica-
tion sets sufficiently. In predictions of rare learning samples,
to select learning samples more related to validation sets can
improve generalization ability of data-driven model. Hence,
we attempt to piecewise modeling at four different stages
according to these sudden change points and combine life
models by taking the similarity between training samples
and testing samples into account. Table 6-8 lists life model
expressions from lab and industrial test rigs below. It is noted
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TABLE 9. Performances of the proposed methods and linear regression
models on three experiments.

Methods Experiment R? RMSE

A 0.8030(0.7107) 191.5651(232.1260)
Proposed

B 0.8412(0.6796) 171.9573(244.2849)
method

C 0.9216(0.9178) 120.8763(123.7438)

that v, ¢, and n represents vibration, temperature and torque
DIs generated by LPP.

Due to the large individual difference between slewing
bearings, this combination strategy takes into account the
similarity among three experiments and it is determined based
on the Euclidean distance of degradation trajectories. A set of
cross validations based on the proposed approaches under the
same modeling strategies are shown below:

Figure 8 and Table 9 clearly depict RUL prediction and
detailed performances under cross validations. It is noted
that values in brackets of Table 9 represents weight-average
combination methods. This piecewise modeling and combi-
nation methods considering the differences between samples
can effectively obtain more accurate predictions of three
experiments within huge differences compared with weighted
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FIGURE 8. Cross validations of the lab and industrial test systems: (a), (c)
and (e) are RUL prediction of Experiment A, B and C; (b), (d) and (f) are
RUL prediction error of Experiment A, B and C.

average modeling method of the full life cycle talked before.
Cross validations can greatly prove the effectiveness of our
prediction strategies for slewing bearings” RUL prediction.

4) INTERPRETABILITY OF SYMBOLIC REGRESSION

BASED LIFE MODEL

Next, life model structures will be discussed in depth. Thanks
to the merits of ELGP in the compactness and accuracy of life
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modeling, we delve into hybrid life models of ELGP under
the full life cycle and different life stages. To observe the
model structure conveniently, we ignore the parameter size
only considering the impact of the model structure. Replace
all parameters from the three hybrid models of Experiment A,
B and C’s full life cycle into ¢ as shown in Eq. (12-14), as
shown at the bottom of the next page.

Temperature and torque components are almost in the
exponential form and appear at higher frequency which
is consistent with expressions at diverse life stages shown
in Table 6-8 (since GP is a random search algorithm, we do
not consider inconsistencies among the small structures here
and the exponential form above is a common result of several
attempts) proving the first hypothesis of this paper. It also
means that the two indicators could be more responsive to
RUL. Occurrences of vibration components from expres-
sions are less than temperature and torque and vibration
components are discarded in GP hybrid modeling processing
although this abandonment will lead to a decrease in accu-
racy. We suppose that the sensitivity of the vibration signal
reflecting degradation performance of slewing bearing is not
high. This means even when the slewing bearings’ vibration
is very violent, it is not proper to judge severe damage of
slewing bearing. Compare the two experiments from the same
test system, it is obviously that Experiment B in August when
the ambient temperature is much higher than June lasted
about 152 hours which is far less than duration time in June.
We infer this discrepancy is caused by loading process and
external temperature. The greater the load is and the more
energy it produces inside the slewing bearing, Therefore,
temperature of the slewing bearing will rise. In addition,
from the physical point of view, when temperature of slew-
ing bearings in service rises to the degree of the melting
of the grease, the lubrication become very poor. Hence,
friction between raceways is aggravated and it makes the
driving torque increase violently. If this situation continues,
the slewing bearing is very likely to fail. Combining the dura-
tion time of the same slewing bearing’s experiment talked
before, we speculate that it is more accurate to judge the
damage degree of slewing bearing by observing the change
of temperature and torque indicators than vibration indicator
only. Overall, temperature and torque indicators may be more
sensitive than vibration indictor when RUL of the slewing
bearing is estimated and the life model using three indicators
is more precise which will be verified in the next subsection.
In the view of other institutions’ researches [38], [39], experts
in the domain of slewing bearings’ condition monitoring
agree with the viewpoint that vibration signal is too weak and
not sensitive at low speed operations accompanied by strong
noise which proves the interpretability of the life expres-
sions from our proposed methods. Expressions obtained by
symbolic regression methods allow researchers to clearly see
the mapping relationship between DIs and RUL of slewing
bearings, which are incomparable to those of the traditional
“black box’ algorithms. However, more precise predictions
rely on more experiment data to some extent. If enough
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TABLE 10. Performance of diverse signal based on ELGP.

Diverse signal R? RMSE
vibration 0.4078 332.1131
temperature 0.8224 181.8700
torque 0.8249 180.5737
vib and tem 0.8348 175.3901
vib and tor out of range 663.8295
tem and tor 0.8579 162.7566
vib, tem and tor 0.9009 135.8817

TABLE 11. Performances of diverse DIs under hybrid modeling strategies.

DIs R? RMSE

PCA 0.7676 208.0478
LPPMD 0.7951 195.3380

LPP 0.9009 135.8817

samples are available, accuracy of RUL prediction will be
greatly improved. In general, we consider this study has
some enlightening significance, practical application value
and prediction results and methods are relatively good ones
compared with our previous works [7], [19].

5) COMPARISONS UNDER DIFFERENT SITUATION

This subsection presents three comparisons between different
signals, DIs and other life models to deeply and comprehen-
sively explain the superiority of the proposed methods.

Vibration is the traditional signal for condition monitoring
and life prediction of mechanical parts. Experts in the field of
slewing bearings utilize more than vibration signal [14]-[16]
for their life prediction or fault diagnosis. We suppose that
failure information will be lost if vibration signal is used alone
for condition monitoring of slewing bearings and temperature
or torque signals are more representative of degeneracy of
slewing bearings. Comparative results for RUL prediction
of Experiment C among three indicators are presented in
Figure 9 and Table 10.

From Figure 9 and Table 10: (1) multiple signals based life
prediction can greatly improve the accuracy of slewing bear-
ings; (2) In the predictions of single signal, temperature and
torque signals performs much better than vibration; (3) Life
models considering both temperature and torque signals are
superior to the others.

(@)

(b)

(©

(d)

FIGURE 9. Prediction and error under diverse Dls: (a) and (b) are RUL
prediction and error for single signal driven methods; (c) and (d) are RUL
prediction and error for multi signal driven methods.

Next, to inspect the goodness of LPP algorithm for features
fusion, a comparison between principal component analy-
sis (PCA) and an improved LPP algorithm based on maha-
lanobis distance (LPPMD) [40] with the same predefined
parameters of LPP will be presented as following and cor-
responding DIs are depicted in Figure 10 and Figure 11.
It is note that the first principal components with contribution
value greater than 85% are designed as DIs.

RUL prediction and error between the three kinds of DIs
are described in Figure 12 and a detailed comparison of per-
formances are listed in Table 11 below. It is clearly that LPP
based DIs outperform the other two ones. In reference [40],
manifold learning algorithms improved by mahalanobis

RUL(v, t, n) = sin(c/t) + ((cos(((cos(exp(exp(cos((t + ¢)))))v)/sin(c)))(((v/t) exp(c))n))

+ ] exp((cos((ct))cos(sin(sin(n))))(c cos(t)) \) (12)
RUL(v, t, n) = cos(c(ccos(n))) — (ccos(((cos(t)(t2v)) — (n + exp(exp(n)))))v

+ ¢ + (cos(cos(c) + | exp((log(cos(cos(cos(sin(c) + 1))) + log(cos((2)))n)n) — ¢) (13)
RUL(v, t, n) = ((cos(cv) x exp(c)) + —n) + | exp(ccos(tn)) — n) ‘ + ’ exp(c(n — ¢))))) (14)
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TABLE 12. Prediction performances of cross validations between SVM, GPR.

Metric R’ RMSE
Experiment A B C A B C
SVM (Quadratic) Out of range 0.38 0.82 465.49 339.86 179.79
SVM (Cubic) Out of range Out of range Out of range 876.52 815.19 486.53
SVM (Fine Gaussian) 0.64 0.78 0.45 260.34 200.69 318.71
SVM (Medium Gaussian) 0.63 0.53 0.82 263.38 296.62 180.00
SVM (Coarse Gaussian) Out of range Out of range 0.95 532.01 431.75 97.73
GPR (Rational Quadratic) 0.66 0.69 0.84 25333 241.59 171.52
GPR (Squared Exponential) 0.66 0.85 0.43 252.92 168.41 327.01
GPR (Matern 5/2) 0.70 0.79 0.71 238.16 198.01 230.79
GPR (Exponential) 0.62 0.60 0.88 267.24 271.83 152.24
(a) (a)
b
®) (b)

FIGURE 10. DIs of PCA: (a) Experiment A; (b) Experiment B.

(@)

(b)

FIGURE 11. DIs of LPPMD: (a) Experiment A; (b) Experiment B.

distance obtain good results of fault diagnosis. However,
the RUL prediction of slewing bearings is undesirable.

The third comparison with SVM and gauss process regres-
sion (GPR) are presented in Table 12. In order to ensure the
reliability of the comparison, signal processing methods and
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FIGURE 12. Prediction and error based on different Dis: (a) RUL
prediction based on three kinds of DIs; (b) RUL predictionerror based on
three kinds of Dls.

modeling strategies are consistent with our proposed meth-
ods. Also, we utilize different kernel functions to mitigate the
influence of model preset parameters.

SVM and GPR both have difficulty in the selection of
optimal kernel functions and other hyperparameters. The
performances of life models vary enormously along with the
change of validation sets. It’s hard to determine the correct
kernel function or model structure for specific situations.
These models are unintelligible and difficult in determination
of kernel function or model structure. This uncertainty often
makes the prediction results instable and unreliable. Although
there also exists predefined parameters in GPs, they have little
influence on the generalization of prediction models after
several attempts with different parameters.

From Table 12, Only two situations (SVM with coarse
gaussian kernel function and GPR with squared exponential
kernel function) perform better than the proposed life model
expressions. The “‘black box” algorithms do perform well in
many cases including rolling bearings’ and slewing bearings’
life prediction. However, we consider it is uneasy to figure out
the true reason to choose the correct predefined model struc-
ture or parameters and to understand the real degradation
process. That’s the weakness of the so-called ‘‘black-box”
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algorithms. Moreover, we do not completely deny all of such
methods but one thing is worth affirming: “black box” based
life models are so unintelligible and lack physical meanings
that it is difficult to understand the quantitative relationship
between degradation process and indicators. It hinders people
from truly obtaining the most sensitive degradation indicator
and relatively less important indicator to RUL. We utilize
symbolic regression based method which is never consid-
ered before and life model established by ELGP in hybrid
modeling strategy can obtain a relatively good prediction and
explain the degradation process to some extent which is the
aspect that “black-box” algorithms can’t reach.

Via the three groups of comparisons above, Appropriate
DIs are of great importance to life prediction of slewing
bearings, our study applies three-dimension based indicators
which can extract fault information to some extent and LPP
based feature fusion method greatly preserves the local struc-
ture of high dimensional features and outperforms the others
in the comparison. We think these are half of the contribution
to the ideal prediction results. Symbolic regression based
modeling method directly obtains life model expressions and
relationship between indicators and RUL can be analyzed.
Although some ““black box” algorithms are better than ELGP
in precision of prediction, we think it is unsuitable to focus on
precision only, physical meaning and interpretability for life
models or functional relationships among them are of equal
importance. This is the biggest contribution of our research.

V. CONCLUSIONS

This paper presented a complete set of signal processing
methods based on multiple signals. Then reasonable DIs were
achieved to describe health condition. We utilized symbolic
regression methods to establish life model expressions of
slewing bearings based on DIs and analyzed the life models
by comparing models under different working conditions.
It was a big innovation in the domain of life prediction and
significantly outperformed other conventional ‘“‘black box™
algorithms. At last good predictive results were presented
mainly owing to comprehensive signal processing strate-
gies and ELGP models under reasonable modeling strate-
gies including hybrid and piecewise modeling and similarity
based combination strategies.

We find (1) there was an interaction between different
signals for life model of slewing bearings after compare inde-
pendent models and hybrid models. Life models considering
interaction between different signals were more precise than
opposite ones. But quantitative description of this interaction
was not discussed here; (2) In the performance comparisons,
ELGP under hybrid and piecewise modeling and similarity
based combination strategies can obtain more compact model
expressions and better predictive results than others in estab-
lishing complex nonlinear models as shown in real-measured
experiments; (3) Temperature and torque components were
usually in exponential form and we speculated that the two
indicators were more sensitive and effective than vibration
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components by analyzing life model structures from three
experiments and comparative experiments.

In the future, an on-line dynamic detection and prediction
system which the training sample library is updated online
and a semi-empirical life model expression through massive
symbolic regression based life model expressions will be
established. In addition, the following key points are advised
to study in detail: (1) Relatively fixed functional relations
between RUL and DIs under different working conditions; (2)
Coupling interactions among signals for slewing bearing life
prediction; (3) High-precision health evaluation under small
samples and variable working conditions.
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