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ABSTRACT Hovering over an asteroid is challenging due to both the large gravitational uncertainty and
the strong external disturbance. When a spacecraft is not equipped with velocity sensors to simplify the
navigation system and reduce the mass and costs, or the velocity sensors malfunction, the situation may be
worse. In this paper, an extended state observer (ESO) is devised to estimate the velocity and the lumped
disturbance simultaneously. The estimate errors are proved to be uniformly ultimately bounded with the
assumption that the change rate of the lumped disturbance is bounded. To cope with control input saturation,
a backstepping controller in conjunction with an auxiliary system is proposed for the hovering. Combining
the controller with the ESO, we develop a disturbance rejection control scheme without velocity feedback.
The stability of the whole closed-loop system is analyzed via the Lyapunov theory, showing that the control
scheme can drive a spacecraft to the neighborhood of the desired hovering state. The numerical simulations
of both body-fixed hovering and inertial hovering are conducted to demonstrate the effectiveness of the
proposed scheme.

INDEX TERMS Asteroid hovering, backstepping control, extended state observer, input saturation.

I. INTRODUCTION
Recent years, the research on asteroids has gained increas-
ing interest for the purposes of science exploration, hazard
prevention and resource identification [1]. In asteroid explo-
ration missions, hovering plays a key role in asteroid surface
mapping, landing site candidate identification, lander deploy-
ment, etc. In addition, hovering is much easier than designing
a stable orbit around the small body in the extremely irregular
gravitational filed. In the Hayabusa mission of the Japanese
Aerospace Exploration Agency (JAXA), a hovering approach
was applied to the spacecraft for scientific observation of
asteroid 25143 Itokawa [2].

However, hovering over an asteroid is rather challenging
in that the extremely irregular shape of a small body results
in large gravitational uncertainties, and the weak gravity is
prone to be disturbed by solar radiation pressure and grav-
itational attraction of other celestial bodies. What is worse,
the dynamic environment, the shape, and the rotational state
of an asteroid are hard to be known through remote obser-
vation. In asteroid exploration missions, the control author-
ity of the spacecraft is usually quite limited, and thereby
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control input saturation is another problem should be taken
into account. Due to the challenges of the hovering, plenty
of research has been devoted to designing control schemes
for asteroid hovering spacecrafts. Sawai and Scheeres [3]
characterized the ability of hovering control with only
one-dimensional altimetry measurements by linearizing the
equations of motion, and some ideal control methodologies
yielding stable hovering trajectories were found. However,
in this study, the assumption of infinitely tight control is not
realistic. Hence, the previous work was furthered to investi-
gate the stability of hovering under dead-band control of the
altitude by numerically simulating the nonlinear equations of
motion [4]. Then, the dead-band control methodology was
applied to time-invariant Lagrangian dynamical systems and
the sufficient conditions for local and global boundedness
were derived [5]. To eliminate the requirement of a priori
knowledge of the environment in asteroids’ vicinity, Gaudet
and Furfaro [6] employed reinforcement learning to develop a
hovering controller with sufficient robustness to allow precise
hovering in unknown environments. For a tumbling aster-
oid, Nazari et al. [7] studied body-frame hovering by using
time-varying LQR and the combination of Lyapunov-Floquet
transformation and time-invariant LQR, with the state vec-
tors estimated by an observer. However, the observer cannot
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estimate disturbances to improve hovering accuracy. In order
to reject disturbances, Furfaro [8] devised a class of dis-
continuous two-sliding homogeneous controllers for hov-
ering by employing the higher-order sliding mode theory.
Zeng et al. [9] investigated body-fixed hovering of the space-
craft equipped with compact form of controllable nonideal
solar sails, and then body-fixed hovering flight over an elon-
gated asteroid using solar sail technique was studied with the
asteroid taken as a rotating mass dipole [10]. Employing the
sliding mode control theory, Lee et al. [11]–[13] developed a
series of controllers for asteroid hovering in the framework of
geometric mechanics, which stabilized the orbit and the atti-
tude of a spacecraft simultaneously. Using the non-canonical
Hamiltonian structure in the body-fixed orbit-attitude hover-
ing problem, Wang and Xu [14] proposed a feedback hover-
ing control law for a rigid spacecraft. Liu et al. [15] designed
a 6-DOF controller for a rigid spacecraft with control input
saturation handled by a RBF network. Gui and Ruiter [16]
designed an ESO to estimate the spacecraft velocity and the
disturbance simultaneously, based on which a disturbance
rejection PD-like hovering control scheme was developed
without velocity feedback. By using the terminal sliding
mode control theory, Yang et al. [17] designed a finite-time
controller for asteroid hovering and landing in the presence
of uncertainties and disturbances in the vicinity of asteroids.
In [1], a controller with both control input saturation and its
change rate saturation considered was developed for asteroid
hovering by full use of the sliding mode theory. Zhang and
Cai [18] developed an adaptive controller for the spacecraft
hovering over an asteroid with unknown parameters. The
control scheme deals with unknown parameters well, but it is
hard to estimate uncertainties and disturbances in the design.

In general, the position and velocity of a spacecraft are
required to design a controller for hovering over an asteroid to
achieve appropriate transient process and high final accuracy.
However, velocity sensors may be too cumbersome for the
spacecraft to investigate an asteroid. Using only position
measurement to implement hovering [3]–[5], [16] implies
the potential benefit of simplifying the navigation system
and reducing the mass and costs of a spacecraft. Besides,
a velocity-free controller is vital to the success of a mission
when onboard velocity sensors malfunction. However, in the
absence of velocity feedback, a controller is hard to achieve
desired performance due to lack of damping. In addition,
large uncertainties and strong disturbances in the vicinity of
asteroids also corrupt the controller of a hovering spacecraft
every moment. Recently, the controller for spacecrafts and
aircrafts with disturbances explicitly rejected were widely
studied to improve robustness [16], [19]–[26]. However, it is
obvious that a disturbance observer [19], [20] is not ade-
quate for our controller design because the velocity needs
to be estimated as well. Therefore, an ESO is pivotal to
the hovering controller without velocity measurement, owing
to its capability of estimating the velocity and disturbance
simultaneously. First devised by Han [27], an ESO is a high
gain state observer that regards the lumped uncertainty as

an augmented state, which has be widely used to design
controllers for spacecrafts and aircrafts. Yang et al. [21]
applied an ESO to the problem of attitude synchronization
of spacecraft formation. Zarovy and Costello [22] used an
ESO to estimate the mass and center-of-gravity location of a
helicopter online, and the estimate accuracy is demonstrated
by Monte Carlo trade studies. A linear ESO was proposed
in [28] by setting the parameters of Han’s ESO to some
special values, which was used to robustify an input-output
linearization based controller for wing rock motion. A novel
ESO for a class of nonlinear systems subject to multiple
uncertainties was presented in [23], and then it was applied
to partial integrated guidance and control design for missiles.
Li et al. [24] combined an ESO with an inverse optimal
controller to stabilize the attitude of a spacecraft with input
saturation. Shao et al. [29] developed a high-order ESO by
following the principle of high-gain observer design, and
applied it to a trajectory tracking controller for quadrotors.

In this paper, a novel controller for accurate asteroid hover-
ing is developed with only the position of the spacecraft used.
To estimate the velocity of the spacecraft and the lumped
disturbance in the vicinity of an asteroid, an ESO is devised
to ensure the estimate errors are ultimately bounded. Then a
backstepping controller in conjunction with an auxiliary sys-
tem is developed to stabilize the trajectory of the spacecraft
to the desired hovering state in the presence of control input
saturation. For the sake of disturbance rejection, the esti-
mated disturbance is introduced to the controller to counteract
the real total disturbance. Meanwhile, the velocity in the
controller is replaced by the estimated velocity to realize a
velocity-free controller.

The rest of this paper is organized as follows. In Section II,
the equations of motion for the spacecraft is described in a
body-fixed coordinate frame and the asteroid hovering prob-
lem is formulated. Then, in Section III, a novel ESO is pro-
posed and the dynamics of the estimate errors is established,
and the ultimate boundedness of the estimate errors is proved
via Lyapunov theory. The backstepping control scheme for
asteroid hovering with input saturation considered is devised
in Section IV, which is combined with the proposed ESO to
accomplish the disturbance rejection velocity-free controller;
after that the stability of the entire closed-loop system is
proved. Numerical simulations are conducted in Section V
to demonstrate the effectiveness of the proposed method.
Finally, some conclusions are drawn in Section VI.

II. PROBLEM FORMULATION
The body-fixed and inertial hovering problems are both con-
sidered in this paper. Hence, it is necessary to introduce
the body-fixed and inertial reference frames to describe the
proximity operations. As shown in Fig. 1, the origin of the
body-fixed frame o − xyz is located at the mass center of
the asteroid, the z-axis aligned with the rotation angular
velocity ω. The x-axis and y-axis coincide with the axes of
the minimum and middle moment of inertia to complete a
right-handed coordinate frame. The body-fixed frame shares
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FIGURE 1. Definition of the coordinate frames [1].

its origin with the inertial frame, and the three axes of the iner-
tial frame are fixed in inertial space and coincident with those
of the body fixed frame in time zero. Coordinate transforming
from the inertial frame to the body-fixed frame is achieved by
virtue of the following transformation matrix [1]:

T (ωt) =

 cos (ωt) sin (ωt) 0
− sin (ωt) cos (ωt) 0

0 0 1

 ,
where ω is the magnitude of ω, and t represents time.

In the formulation of the hovering problem, a two-body
gravity model is used as the mass of the spacecraft is
negligible compared with that of the small body. For the
convenience of computing the gravitational acceleration
vector, the dynamics of the spacecraft in the vicinity of
an asteroid is established in the body-fixed frame in this
paper [3], [7], [8], [17], which is described by

ṙ = v, (1)

v̇ = −2ω × v− ω × (ω × r)+ g (r)+ ac + d, (2)

where r ∈ R3 is the position vector, v ∈ R3 the velocity
vector; ω = [0, 0, ω]T is the angular velocity of the asteroid;
ac ∈ R3 is the control acceleration provided by the thrusters;
g(r) ∈ R3 is the acceleration due to the gravity of the asteroid;
d ∈ R3 is the lumped disturbance, which can be expressed as

d = aspr + aother +1g,

where aspr is the solar pressure acceleration, aother the grav-
itational acceleration caused by other celestial bodies, and
1g the uncertainty of g (r). The effect of these quantities is
relatively significant, but they cannot be accurately measured
or calculated, thereby considered as disturbances [8], [17].

The gravitational acceleration can be expressed as

g (r) =
∂U
∂r
,

where U is the potential function of the gravitational field.
Because the shape of an asteroid is very irregular (the polyhe-
dron shapemodel of asteroid 433 Eros is shown in Fig. 2 as an
example), U is usually obtained via the spherical harmonics
expansion or the polyhedron gravity model. When a space-
craft flies near an asteroid, the position of the spacecraft may
be inside the Brillouin sphere where the spherical harmon-
ics gravity model is no longer guaranteed to converge [30].

FIGURE 2. Polyhedron shape model of asteroid 433 Eros [1].

Therefore, the polyhedron gravity model [30] is employed in
this paper:

U =
1
2
Gρ

∑
e∈edges

LerTeEere −
1
2
Gρ

∑
f ∈faces

ωf rTf Ff rf

∂U
∂r
= −Gρ

∑
e∈edges

LeEere + Gρ
∑

f ∈faces

ωf Ff rf

where G is the gravitational constant, ρ represents the bulk
density of an asteroid, and the other symbols and more details
of the polyhedron gravity model can be found in [30].

To take the control input saturation into consideration,
the commanded acceleration is restricted by

ac = sat (u) =

 sat (ux)
sat
(
uy
)

sat (uz)

 , u =

 uxuy
uz

 ∈ R3,

where sat is defined as

sat (ui) =


umax, ui > umax

ui, −umax ≤ ui ≤ umax, i = x, y, z,
−umax, ui < −umax

where umax is the maximum control authority in each direc-
tion that can be provided by the thrusters.

Now, the goal of the hovering control can be addressed
as steering the spacecraft to the desired location rd and
afterwards maintaining the hovering in the vicinity of the
asteroid, with the commanded acceleration ac bounded by
‖ac‖∞ ≤ umax, despite the presence of the disturbance d .

III. EXTENDED STATE OBSERVER
In the scenarios studied in this paper, the velocity of the
spacecraft v and the disturbance d are unknown. To estimate
the velocity and the total disturbance from the position vector
r, an ESO is designed in this section. The ESO regards the
disturbance as an extended state of the system and estimates
it together with the unattainable state v. Denote the estimates
of v and d by v̂ and d̂ respectively, and then the ESO is
formulated as

χ̇ = β + κ1r, (3)

β̇ = −2ω × v̂− ω × (ω × r)+ g (r)+ ac + d̂

− κ1 (β + κ1r)+ κ2ζ , (4)
˙̂d = κ3ζ , (5)
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where

ζ = r− χ , (6)

and κ1, κ2 > 0 are observer gains; χ , β and d̂ are the states
of the ESO. The outputs of the ESO are

v̂ = β + κ1r, (7)

d̂ = κ3

∫ t

0
ζ (τ ) dτ, (8)

In this paper, the term d̂ not only contains the uncertainty
of asteroid’s gravity, but also comprises other disturbances.
Therefore, d̂ is more helpful to the controller than the esti-
mates of the gravity model parameters [7], [11], [18].

To begin the analysis of the ESO’s stability, the estimate
errors are defined as

ṽ = v− v̂, (9)

d̃ = d − d̂. (10)

Differentiating (9) and (10) yields

˙̃v = −2ω × ṽ− κ1ṽ− κ2ζ + d̃, (11)
˙̃d = −κ3ζ + ḋ. (12)

From (3), (6) and (7), the dynamics of ζ can be obtained:

ζ̇ = ṽ. (13)

Thus, (11), (12), and (13) represent the dynamics of the
estimate errors. Rewriting the equations of the dynamics in
a compact form yields ζ̇˙̃v
˙̃d

=
 03×3 I3 03×3
−κ2I3 −κ1I3 − 2ω× I3
−κ3I3 03×3 03×3

 ζṽ
d̃

+
00
ḋ

 ,
(14)

where I3 is the 3× 3 identity matrix, and 03×3 represents the
3× 3 zero matrix. ω× is a skew-symmetric matrix given by

ω× =

 0 −ω 0
ω 0 0
0 0 0

 .
For convenience, the following variables are defined:

ϑ1 =
ζ

ε2
, ϑ2 =

ṽ
ε
, ϑ3 = d̃, (15)

κ1 =
h1
ε
, κ2 =

h2
ε2
, κ3 =

h3
ε3
. (16)

where ε is a small positive constant. Then, (14) can be written
as

ϑ̇ = ε−1Aϑ + p, (17)

where

ϑ =

ϑ1
ϑ2
ϑ3

 , p =

 01×3
01×3
ḋ

 ,

A =

 03×3 I3 03×3
−h2I3 −h1I3 − 2εω× I3
−h3I3 03×3 03×3

 .
Assume ḋ is bounded by ‖ ḋ ‖2≤ ψ . Then, it is obvious

that the right-hand side of (17) consists of a linear part and
a bounded unknown disturbance. To simplify the analysis of
the perturbed system (17), the nominal systemwith vanishing
perturbation is considered firstly [31]:

ϑ̇ = ε−1Aϑ .

The characteristic polynomial of A is

p (s) = det (sI9−A) = −p1 (s) p2 (s) ,

where

p1 (s) = s3 + h1s2 + h2s+ h3,

p2 (s) = s6 + 2h1s5 +
(
h21 + 2h2 + 4ε2ω2

)
s4

+ (2h1h2 + 2h3) s3 +
(
2h1h3 + h22

)
s2

+ 2h2h3s+ h23.

Evidently, p (s) is Hurwitz if and only if both p1 (s) and
p2 (s) are Hurwitz. In accordance with Routh-Hurwitz crite-
rion, p1 (s) is Hurwitz if∣∣∣∣∣∣

h1 h3 0
1 h2 0
0 h1 h3

∣∣∣∣∣∣ > 0,

∣∣∣∣ h1 h3
1 h2

∣∣∣∣ > 0, h1 > 0. (18)

Solving the inequalities in (18), we get

h1 > 0, h3 > 0, h2 >
h3
h1
. (19)

From the results in (19), it is readily to conclude that the coef-
ficients of the polynomial p2 (s) are all positive. Therefore,
p2 (s) is Hurwitz if the following conditions hold:

2 h1 > 0, det (H3×3) > 0, det
[
H3×3 H3×2
H2×3 H2×2

]
> 0,

where

H3×3 =

 2h1 2h1h2 + 2h3 2h2h3
1 h21 + 2h2 + 4ε2ω2 2h1h3 + h22
0 2h1 2h1h2 + 2h3

 ,
H3×2 =

 0 0
h23 0

2h2h3 0

 ,
H2×3 =

[
0 1 h21 + 2h2 + 4ε2ω2

0 0 2h1

]
,

H2×2 =

[
2h1h3 + h22 h23
2h1h2 + 2h3 2h2h3

]
.

With tedious but straightforward algebraic operations, the fol-
lowing inequalities are achieved:

h1 > 0, (20)

h41h2 − h
3
1h3 + h1h2h3 − h

2
3

+ 4
(
h21h2 + h1h3

)
ε2ω2 > 0, (21)
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h3
(
h21h

2
2 − 2h1h2h3 + h23 + 4h22ε

2ω2
)

×

(
h21h

2
2 − 2h1h2h3 + h23 − 4h1h3ε2ω2

)
> 0. (22)

Solving (20)-(22) in conjunction with (19), one obtains

h1 > 0, h3 > 0, h2 >
h3
h1
+ 2εω

√
h3
h1
. (23)

Hence, if h1, h2 and h3 satisfy the conditions in (23),
matrix A is Hurwitz. In accordance with Lyapunov stability
theorem of linear systems, there exist symmetric positive
definite matrices P and Q satisfying Lyapunov equation [31]

PA+ ATP = −Q. (24)

In order to analyze the stability of the perturbed system (17),
Lyapunov function candidate (25) is selected:

Vϑ = ϑTPϑ . (25)

Thus, we have

λmin (P) ‖ ϑ ‖22≤ Vϑ ≤ λmax (P) ‖ ϑ ‖22, (26)

where λmin (P) and λmax (P) are the minimum and the maxi-
mum eigenvalues of P respectively. Differentiating (25) leads
to

V̇ϑ = ϑTPϑ̇ + ϑ̇
T
Pϑ

= ϑTP
(
ε−1Aϑ + p

)
+

(
ε−1Aϑ + p

)T
Pϑ

≤ −ε−1ϑTQϑ + 2ϑTPp

≤ −ε−1λmin (Q) ‖ ϑ ‖22 +2λmax (P) ψ ‖ ϑ ‖2

≤ −ε−1
λmin (Q)
λmax (P)

Vϑ + 2ψ
λmax (P)
√
λmin (P)

√
Vϑ .

To obtain a linear differential inequality that is easy to tackle,
we take Wϑ (t) =

√
Vϑ and invoke the fact that Ẇϑ =

V̇ϑ/
(
2
√
Vϑ
)
. Thus, when Vϑ 6= 0, we have

Ẇϑ ≤ −
1
2
ε−1

λmin (Q)
λmax (P)

Wϑ + ψ
λmax (P)
√
λmin (P)

. (27)

By the comparison principle [31], the following inequality is
derived from (27)

Wϑ ≤ [W (0)− C0] exp
[
−

1
2ε
λmin (Q)
λmax (P)

t
]
+ C0,

where

C0 =
2εψλ2max (P)

λmin (Q)
√
λmin (P)

.

Invoking (26), one gets the upper bound of ‖ ϑ ‖2
immediately:

‖ ϑ ‖2≤

√
Vϑ (0)− C0
√
λmin (P)

exp
[
−

1
2ε
λmin (Q)
λmax (P)

t
]
+

C0
√
λmin (P)

.

It is clearly that

lim sup
t→∞

‖ ϑ ‖2≤ C =
2εψλ2max (P)

λmin (Q) λmin (P)
. (28)

From the analysis, it can be concluded that ϑ is uniformly
ultimately bounded with the upper bound given by (28).
Consequently, from (15), the ultimate upper bounds of the
estimate errors are given by

lim sup
t→∞

‖ ζ ‖2≤ ε
2C, (29)

lim sup
t→∞

‖ ṽ ‖2≤ εC, (30)

lim sup
t→∞

‖ d̃ ‖2≤ C . (31)

For a set of specified values of h1, h2 and h3 that satisfy
conditions in (23), as ε goes to zero, the stability of A is not
influenced. Thereby there always exist symmetric positive
definite matrices P and Q to meet Lyapunov equality (24) as
ε→ 0. This fact implies that

lim
ε→0

λ2max (P)
λmin (Q) λmin (P)

= δ0 ∈ R+.

Thus, we have C → 0, as ε→ 0.
Remark 1: Equations (29) - (31) indicate that decreasing

ε can improve the estimate accuracy of the ESO. However,
when measurement uncertainties of r are present in the ESO,
any tiny uncertainties will be amplified excessively if ε is
too small, which is easy to be drawn from (15). Therefore,
ε should be tuned to make a trade-off between the estimate
accuracy and the robustness to uncertainties.

IV. SATURATED BACKSTEPPING CONTROLLER WITHOUT
VELOCITY MEASUREMENT
Asmentioned previously, spacecrafts for asteroid exploration
missions are usually equipped with low thrust engines with
large specific impulses to attain longer exploration time.
On the other hand, the low thrust renders the controller prone
to be saturated. To simplify the navigation system and reduce
the mass and costs, a spacecraft without velocity sensors is
preferred from a practical point of view. Additionally, when
the velocity sensors of a spacecraft malfunction, a controller
does not rely on velocity feedback is an essential alternative
for the mission. In this section, base on the proposed ESO,
a saturated controller for asteroid hovering without velocity
measurement is derived. The stability of the closed-loop sys-
tem is established via Lyapunov analysis in the presence of
disturbances.

A. FULL STATE SATURATED BACKSTEPPING
CONTROLLER DESIGN
First, according to the backstepping technique [31], [32],
the position error is defined as

z1 = γ1 (r− rd ) , (32)

where γ1 > 0. Taking derivative of z1 gives

ż1 = γ1 (ṙ− ṙd ) . (33)

Select a candidate Lyapunov function as

V1 =
1
2
zT1 z1. (34)
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Differentiating (34), one gets

V̇1 = zT1 ż1 = γ1z
T
1 (v− ṙd ) . (35)

To render the derivative of V1 negative definite, the virtual
control is given by

v0 = −k1z1 + ṙd , (36)

where k1 > 0. Then, define

z2 = v− v0 = v+ k1z1 − ṙd . (37)

Substituting (36) and (32) into (33) and denoting the deriva-
tive of z2 by ν, we have

ż1 = −k1γ1z1 + γ1z2, (38)

ż2 = ν. (39)

Consider the following Lyapunov function candidate:

V2 = V1 +
1
2
(z2 − ξ)T (z2 − ξ)+

1
2
ξTξ ,

where ξ is an auxiliary variable whose dynamics will be
designed later to cope with input saturation. The derivative
of V2 along the trajectory of (38) and (39) is

V̇2 = V̇1 + (z2 − ξ)T
(
ż2 − ξ̇

)
+ ξTξ̇

= −k1γ1zT1 z1 + γ1z
T
1 z2 + (z2 − ξ)

T (ν − ξ̇)+ ξTξ̇ .
(40)

Application of Lyapunov stability theory to (40) yields the
following results:

ν = −γ1z1 − k2 (z2 − ξ)+ ξ̇ , (41)

ξ̇ = −k3ξ +1u, (42)

where k2 > 0, k3 > 0 and 1u = sat (u) − u. Assume 1u
is bounded by ‖ 1u ‖2≤ ϕ. Substituting (41) and (42) into
(40), we get

V̇2 = −γ1 k1zT1 z1 − k2 (z2 − ξ)
T (z2 − ξ)+ γ1ξTz1

− k3ξTξ + ξT1u

= ξT1u−
(
γ1 k1 − µ2

)
zT1 z1 − k2 (z2 − ξ)

T (z2 − ξ)

−

(
k3 −

γ 2
1

4µ2

)
ξTξ −

(
µz1 −

γ1

2µ
ξ

)T (
µz1 −

γ1

2µ
ξ

)
≤ −2ρV2 +

√
2ϕ
√
V2,

where µ > 0, γ1 k1 − µ2 > 0 and k3 − γ 2
1 /
(
4µ2

)
> 0.

Additionally, ρ is given by

ρ = min

{
γ1 k1 − µ2, k2, k3 −

γ 2
1

4µ2

}
> 0.

Employing the comparison principle again [31], we have√
V2 (t) ≤

[√
V2 (0)−

ϕ
√
2ρ

]
exp (−2ρt)+

ϕ
√
2ρ
. (43)

Therefore, the states of the closed-loop system composed of
(38), (39), (41), and (42) are uniformly ultimately bounded.
Invoking the definition in (32), one has

lim sup
t→∞

‖ r− rd ‖2≤
ϕ

√
2γ1ρ

.

To get the commanded acceleration ac, we take the time
derivative of (37) to yield

ż2 = −2ω × v− ω × (ω × r)+ g+ u

+1u+ d + k1ż1 − r̈d . (44)

Equation (41) substituting for ż2 in (44), the control input u
can be derived as

u = −γ1z1 − k1ż1 − k2 (z2 − ξ)

− k3ξ + 2ω × v+ ω × (ω × r)− g− d + r̈d , (45)

ξ̇ = −k3ξ +1u. (46)

Remark 2: It is assumed that the saturation error 1u is
bounded, but nevertheless the upper bound of 1u is unnec-
essary to be known. When the controller is not saturated (i.e.
ϕ = 0), the control errors will converge to zero asymptoti-
cally according to (43).

B. SATURATED BACKSTEPPING CONTROLLER
WITHOUT VELOCITY FEEDBACK
With application of the proposed ESO in Sec. II, the velocity
v and the unknown disturbance d can be estimated from the
measurements of the position vector simultaneously. Replac-
ing v and d in (45) with the estimates v̂ and d̂ leads to

ur = −γ1z1 − k1 ˆ̇z1 − k2
(
ẑ2 − ξ

)
− k3ξ

+ 2ω × v̂+ ω × (ω × r)− g− d̂ + r̈d , (47)

where

ˆ̇z1 = γ1
(
v̂− ṙd

)
, (48)

ẑ2 = v̂+ k1z1 − ṙd , (49)

ξ̇ = −k3ξ +1u. (50)

To establish the stability of the system in (1) and (1) with
the control input given by (47)-(50), v̂ and d̂ estimated by the
ESO in (3)-(8), the following Lyapunov function candidate is
considered:

V = V2 + Vϑ .

Define vector

η =
[
zT1 , (z2 − ξ)

T , ξT,
√
2 (Mϑ)T

]T
,

and then V can be rewritten as

V =
1
2
ηTη, (51)

where MTM = P. Differentiating V with respect to time
results in

V̇ = zT1 (−k1γ1z1 + γ1z2)+ (z2 − ξ)
T [−2ω × v
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− ω × (ω × r)+ g+ u+1u+ d + k1ż1
− r̈d − (−k3ξ +1u)]+ ξT (−k3ξ +1u)

+ ϑTPϑ̇ + ϑ̇
T
Pϑ . (52)

Recall (33), (37), (48), and (49), and the following relation-
ship can be achieved:

ˆ̇z1 = γ1
(
v̂− ṙd + v− v

)
= ż1 − γ1ṽ, (53)

ẑ2 = v̂+ k1z1 − ṙd + v− v = z2 − ṽ. (54)

Substituting (53) and (54) into (47) yields

ur = −γ1z1 − k1 (ż1 − γ1ṽ)− k2 (z2 − ṽ− ξ)− k3ξ

+ 2ω × v̂+ ω × (ω × r)− g− d̂ + r̈d . (55)

Control variable u in (52) replaced with the right-hand side of
(55), the derivative of the Lyapunov function can be further
written as

V̇ = −k1γ1zT1 z1 + γ1z
T
1 z2 + (z2 − ξ)

T
[
−2ω × ṽ− γ1z1

+ k1γ1ṽ− k2 (z2 − ξ)+ k2ṽ+ d̃
]
+ ξT [−k3ξ +1u]

+ ϑTPϑ̇ + ϑ̇
T
Pϑ

≤ −k1γ1 ‖z1‖22 − k2 ‖z2 − ξ‖
2
2 − k3 ‖ξ‖

2
2

−

∥∥∥∥α1z1 − γ1

2α1
ξ

∥∥∥∥2
2
−

∥∥∥∥α3 (z2 − ξ)− 1
2α3

d̃
∥∥∥∥2
2

−

∥∥∥∥α2 (z2 − ξ)− 1
2α2

(
k1γ1I3 + k2I3 − 2ω×

)
ṽ
∥∥∥∥2
2

+ α21 ‖z1‖
2
2 +

γ 2
1

4α21
‖ξ‖22 + α

2
2 ‖z2 − ξ‖

2
2

+
1

4α22

∥∥(k1γ1I3 + k2I3 − 2ω×
)
ṽ
∥∥2
2 + α

2
3 ‖z2 − ξ‖

2
2

+
1

4α23

∥∥∥d̃∥∥∥2
2
+ ξT1u− ε−5λmin (Q) ‖ζ‖22

− ε−3λmin (Q) ‖ṽ‖22 − ε
−1λmin (Q)

∥∥∥d̃∥∥∥2
2

+ 2λmax (P) ψ ‖ϑ‖2 .

According to the property of norms, one has∥∥(k1 I3 + k2 I3 − 2ω×
)
ṽ
∥∥
2 ≤

∥∥k1 I3 + k2 I3 − 2ω×
∥∥
F ‖ṽ‖2 .

Thus,

V̇ ≤ −
(
k1γ1 − α21

)
‖z1‖22 −

(
k2 − α22 − α

2
3

)
‖z2 − ξ‖22

−

(
k3 −

γ 2
1

4α21

)
‖ξ‖22 −

∥∥∥∥α1z1 − γ1

2α1
ξ

∥∥∥∥2
2

−

∥∥∥∥α2 (z2 − ξ)− 1
2α2

(
k1γ1 I3 + k2 I3 − 2ω×

)
ṽ
∥∥∥∥2
2

−

∥∥∥∥α3 (z2 − ξ)+ 1
2α3

d̃
∥∥∥∥2
2
− ε−1λmin (Q) ‖ϑ1‖

2
2

−

[
ε−1λmin (Q)−

ε2

4α22

∥∥k1γ1 I3 + k2 I3 − 2ω×
∥∥2
F

]

×‖ϑ2‖
2
2 −

[
ε−1λmin (Q)−

1

4α23

]
‖ϑ3‖

2
2

+ 2λmax (P) ψ ‖ϑ‖2 + ϕ ‖ξ‖2 ,

where α1, α2, α3, α4 ∈ R+, and the following inequalities are
satisfied:

k1γ1 − α21 > 0, k2 − α22 − α
2
3 > 0, k3 −

γ 2
1

4α21
> 0,

ε−1λmin (Q)−
ε2

4α22

∥∥k1γ1 I3 + k2 I3 − 2ω×
∥∥2
F > 0,

ε−1λmin (Q)−
1

4α23
> 0.

Consequently, we have

V̇ ≤ −a1
(
‖z1‖22 + ‖z2 − ξ‖

2
2 + ‖ξ‖

2
2

)
− a2

(
‖ϑ1‖

2
2 + ‖ϑ2‖

2
2 + ‖ϑ3‖

2
2

)
+ a3‖ξ‖2

≤ −2a1V2 −
a2

λmax (P)
Vϑ + a3 ‖η‖2 , (56)

where

a1 = min

{
γ1 k1 − α21, k2 − α

2
2 − α

2
3, k3 −

γ 2
1

4α21

}
, (57)

a2 = min

{
λmin (Q)

ε
−
ε2
∥∥k1γ1 I3 + k2 I3 − 2ω×

∥∥2
F

4α22
,

λmin (Q)
ε

−
1

4α23

}
, (58)

a3 = max {2λmax (P) ψ, ϕ} . (59)

Invoking (51), one can write (56) as

V̇ ≤ −2c1V +
√
2c2
√
V , (60)

where

c1 = min
{
a1,

a2
2λmax (P)

}
, c2 = a3.

Application of the comparison principle to (60) yields√
V (t) ≤

[√
V (0)−

c2
√
2c1

]
exp (−2 c1 t)+

c2
√
2c1

.

Thus,

lim sup
t→∞

‖η‖2 = lim sup
t→∞

√
2 V (t) =

c2
c1
.

Therefore, η is uniformly ultimately bounded with the ulti-
mate bound c2/c1.

Recall the definition of η and (32), and it is readily to get

lim sup
t→∞

‖r− rd‖2 ≤
c2
c1γ1

.

It is evident that the proposed controller uniformly ultimately
bounds the hovering error on the neighborhood of zero as t →
∞ with properly selected parameters. It should be noted that
rd can be either constant or time-varying, and therefore the
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FIGURE 3. Controlled trajectories in the body-fixed hovering scenario:
(a) three-dimensional trajectories, (b) trajectories projected onto the x-y plane,
(c) trajectories projected onto the x-z plane, (d) trajectories projected onto the y-z plane.

controller is suitable for both body-fixed hovering and inertial
hovering.
Remark 3: For the same controllers, the parameters γ1, k1,

k2,α1,α2,α3, ε, etc. are not unique. Different combinations of
them could lead to different estimates of the upper bounds of
the final control errors, hence the best estimates of the upper
bounds should be the minimum ones among the estimates.
Remark 4: From the analysis of the ESO, we have known

that reducing ε amplifies the influence of measurement
errors. Besides, a too small ε may also result in unacceptable
upper bounds of the final control errors, just as is indicated
by (58).

V. NUMERICAL SIMULATIONS
In this section, numerical simulations are carried out to
demonstrate the effectiveness of the proposed controller. The
asteroid 433 Eros is taken as the target asteroid and its poly-
hedron shape model is shown in Fig. 2. The gravitational
parameterµ of 433 Eros is 4.46275472004×105 m3/s2, with
the bulk density of 2.67 g/cm3, the rotation period of 5.27
hours [1]. To demonstrate the effectiveness of the proposed
controller, both body-fixed hovering and inertial hovering are
tested.

It is assumed that the maximum magnitude of the
commanded acceleration generated by the thrusters in each
direction is 1×10−2 m/s2. To assess the influence of themea-
surement noise of r on the ESO, the true position vector is cor-
ruptedwithGaussian noise with 0 mmean and 0.1m standard
deviation. The uncertainties and the disturbances [15], [18]
are mimicked by

d =

 1.5 sin (ωt)+ 0.15 sin
(
10ωt + π

2

)
2.1 sin

(
ωt + π

4

)
+ 0.21 sin

(
10ωt + π

4

)
1.3 sin

(
ωt + π

2

)
+ 0.13 sin (10ωt)


× 10−5m/s2 + 0.1× g (r) . (61)

The first part of the right-hand side of (61) represents the
disturbances caused by solar radiation pressure and the gravi-
tational effects of other celestial bodies. Because the asteroid
rotates around its axis of the maximum inertial moment,
the disturbances include periodical components with the
same frequency as the rotational frequency. The higher fre-
quency components appear in (59) to consider other periodi-
cal disturbances. Evidently, the second part illustrates a grav-
itational uncertainty that is equal to 10% of the local gravi-
tational acceleration. Both in the real world and according to
the polyhedron model, the asteroid gravitational acceleration
g (r) and its change rate ġ (r) are bounded, hence d and ḋ both
bounded according to (61).

A. BODY-FIXED HOVERING
The body-fixed hovering scenario is tested first. The initial
position and initial velocity of the spacecraft are given by
r0 = [21, −1, 1]T × 103 m and v0 = [1, 1, 1]T m/s,
respectively. The desired hovering point is set at rd =
[20.25, 0, 0]T × 103 m. Evidently, the desired velocity
is vd = [0, 0, 0]T m/s for body-fixed hovering. Before
proceeding to the simulation, the parameters of the controller
are given in Table 1.

For the sake of verifying the effectiveness of the ESO, both
of the body-fixed hovering trajectories with and without the

TABLE 1. Parameters of the controller for body-fixed hovering.
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FIGURE 4. Position errors of the body-fixed hovering: (a) controller with
ESO, (b) controller without ESO.

ESO are illustrated in the body-fixed frame o− xyz in Fig. 3.
It shows that the trajectory with the ESO deviates from the
hovering point in the initial phase, then makes great efforts
to correct the mistake to approach the hovering point, and
finally maintains its terminal position in the neighborhood of
the hovering point. The abnormal behavior of the trajectory
is resulted from the fact that the outputs of the ESO have
not converged to the neighborhood of the real values in the
initial phase. Although, it seems that the controlled trajectory
with the ESO is not so elegant as the one without the ESO,
the final hovering accuracy of the former is much higher
than that of the latter as revealed by Fig. 4. From the figure,
we can see that the final position errors of the controller
equipped with the ESO are smaller than 1 m. On the contrary,
the position errors of the controller without the ESO are in
the order of 10 m. The corresponding velocity errors are
plotted in Fig. 5. Unsurprisingly, the controller with the ESO
outperforms the one without the ESO, as the figure indicates.

Fig. 6 gives the profiles of the commanded acceleration
of the proposed controller. It is evident that the control input
oscillates in the initial phase, and then shrinks to the neigh-
borhood of the constant values to cancel out the local gravity
and reject the disturbances. The oscillations of the controller
mainly result from the ESO, which can be readily inferred
from the profiles of the ESO’s outputs.

B. INERTIAL HOVERING
Fig. 7 and Fig. 8 report the estimate errors of v and d respec-
tively. All of the estimate errors converge to the neighborhood
of zero after a few transient oscillations. Actually, reducing
the ESO parameter ε can attenuate the oscillation, but the
measurement noise of r, meanwhile, can be amplified to
corrupt the estimation outputs. Therefore, the profiles shown
in the figures are the results of balancing the transient per-
formance and the accuracy of the outputs. In the practice,

FIGURE 5. Velocity errors of the body-fixed hovering: (a) controller with
ESO, (b) controller without ESO.

FIGURE 6. Commanded acceleration of the body-fixed hovering.

FIGURE 7. Estimate error of v in the body-fixed hovering scenario.

FIGURE 8. Estimate error of d in the body-fixed hovering scenario.

the measurements of r are fed to a filter first to refine the
input signals before they are applied to the controller, which
can greatly reduce the adverse influence of the measurement
noise. From the figures, we can seen that the estimate errors
are in the neighborhood of zero, and the accuracy is adequate
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FIGURE 9. Controlled trajectories in the inertial hovering scenario: (a) three-dimensional
trajectories, (b) trajectories projected onto the X -Y plane, (c) trajectories projected onto the
X -Z plane, (d) trajectories projected onto the Y -Z plane.

TABLE 2. Parameters of the controller for inertial hovering.

for the hovering control, which can be confirmed by the
position error profiles in Fig. 4 and the velocity error profiles
in Fig. 5. For inertial hovering, the initial position and initial
velocity of the spacecraft are identified in the inertial frame
by the vectors

rI0 = r I0 ×
[
cos

( π
12

)
, 0, sin

( π
12

)]T
,

vI0 =

√
µ

r I0
×

 sin
(
π
4

)
sin
(
π
12

)
cos

(
π
4

)
− sin

(
π
4

)
cos

(
π
12

)
 ,

where r I0 = 2.5 × 104 m. The desired hovering location in
the inertial coordinate frame O− XYZ is set to

RId = T−1
( π
12

)
× [2.1, −0.1, 0.1]T × 104 m,

and the desired velocity in the inertial frame should be zero,
that is V I

d = 03×1. Inertial hovering is more demanding
than body-fixed hovering because the desired position rd is
not constant any more in the body-fixed coordinate frame.
Thereby, the gravity at the hovering point also varies with
the rotation of the asteroid beneath the spacecraft. Certainly,

FIGURE 10. Position errors of the inertial hovering: (a) controller with
ESO; (b) controller without ESO.

the parameters of the controller and the ESO have to be
re-tuned to cope with the challenging. The parameters for
inertial hovering are listed in Table 2.

Fig. 9 shows the controlled trajectories of the inertial hov-
ering. It can be seen that both of the trajectories resulted from
the controllers with andwithout the ESO extend smoothly and
vary reasonably. Similar to the body-fixed hovering, because
the outputs of the ESO have not converged to the neighbor-
hood of the real values in the initial phase, the trajectory
resulted from the controller with the ESO dose not coincide
with the trajectory driven by the velocity-feedback controller.
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FIGURE 11. Velocity errors of the inertial hovering: (a) controller with
ESO; (b) controller without ESO.

FIGURE 12. Commanded acceleration of the body-fixed hovering.

After the transient process of the ESO, the two trajectories
become similar to each other. However, the final accuracy of
them is quite different just as what happened in the body-fixed
hovering. The position error profiles and the velocity error
profiles are illustrated in Fig. 10 and Fig. 11, respectively.
Even in the inertial hovering, the proposed controller can
still steer the spacecraft to the desired point and maintain
a hovering condition with position accuracy of 1 m and a
residual velocity below 5.0 × 10−4 m/s. On the contrary,
however, the controller without the ESO has much lower
accuracy on both position and velocity.

The commanded acceleration is reported in Fig. 12. The
control acceleration in the body-fixed hovering tends to con-
verge to constants, whereas the control acceleration at the
inertial hovering point varies slowly with the desired position
moving in the body-fixed coordinate frame. Another notable
difference is that the influence of the measurement noise on
the control acceleration is stronger in the inertial hovering
because of the larger gains of the ESO.

Fig. 13 and Fig. 14 give the profiles of the estimate errors
of v and d in the inertial hovering scenario, respectively.
As can be seen, the estimate accuracy tends to deteriorate
a little under the influence of the measurement noise. From
(7) and (8), it is easy to find that the measurement noise is

FIGURE 13. Estimate error of v in the inertial hovering scenario.

FIGURE 14. Estimate error of d in the inertial hovering scenario.

injected into v̂ directly, thereby v̂ prone to be contaminated by
the noise. However, for the estimated disturbance d̂ , an inte-
gration operation is applied to the noise before it enters d̂ .
Hence, v̂ suffers the measurement noise more greatly than d̂ ,
as the figures show. Nevertheless, the estimated values are
still precise enough to implement accurate inertial hovering.

VI. CONCLUSION
This paper presents a backstepping control scheme for both
body-fixed hovering and inertial hovering over an asteroid
without velocity measurement, which can reject the large dis-
turbances in the vicinity of asteroids and copewith the control
input saturation caused by the limited control authority of
the spacecraft in asteroid exploration missions. To attain the
control goal, a novel ESO is designed first to estimate the
velocity and the lumped disturbance simultaneously. With
the assumption that the change rate of the total disturbance
is bounded, the estimate errors of the ESO is proved to be
uniformly ultimately bounded. In order to deal with the con-
trol input saturation, a backstepping controller is combined
with an auxiliary system to guarantee the stability of the
closed-loop system in the presence of control input saturation.
Finally, the velocity in the basic controller is replacedwith the
estimate and the lumped disturbance is compensated for by
the estimated disturbance, which completes the disturbance
rejection saturated controller without velocity measurement.
The stability of the whole closed-loop system is analyzed via
Lyapunov theory, which shows that the states of the system is
uniformly ultimately bounded.

Numerical simulations demonstrate the effectiveness of
the proposed method. Through the comparison between the
controller with and without the ESO, it is easy to find that
the ESO plays an key role in improving the hovering accu-
racy. In the extensively investigated sliding mode control,
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the good performance relies on the high gain (upper bound
of the disturbance) switching term. Not only is the high gain
unnecessary, but also the supremum of the disturbance is hard
to be obtained a priori for asteroid exploration missions. The
proposed control scheme neither relies on velocity measure-
ments nor requires a priori knowledge about disturbances,
and therefore is preferable to asteroid hovering.
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