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ABSTRACT Measuring the distance between two intuitionistic fuzzy sets (IFSs) is an open issue. Many
types of distances for the IFSs have been proposed in previous studies. Some existing methods cannot
satisfy the axioms of similarity or provide counterintuitive cases. Others ignore the relationship between
three parameters characterizing the information carried by the IFS. To address these issues, a new distance
is proposed by analyzing the similarity among the three parameters of the IFS. The comparison with some
existing distances illustrates that the new distance has a higher sensitivity and can effectively measure the
similarity between the IFSs. The results of the application of pattern recognition are also shown that the

proposed method has better recognition ability.

INDEX TERMS Intuitionistic fuzzy set, distance function, similarity measure, pattern recognition, medical

diagnosis.

I. INTRODUCTION

In the real world, human cognition of material objects is
often vague, and the measurement of uncertainty has attracted
increasing interest [ 1]-[3]. Many math tools such as probabil-
ity [4], possibility theory [5], rough sets [6], [7], belief struc-
ture [8]-[10], entropy function [11]-[15], Z numbers [16],
[17] and D numbers [18]-[22] are presented and are wildly
used in lots of real engineering. Among these tools, fuzzy sets
theory, founded by Zadeh [23], is flexible to model linguistic
uncertainty and is efficient in decision making [24]-[26].
In fuzzy set theory, a single value between zero and one is
used to indicate the membership of the element. But in reality,
sometime the uncertainty of information is not completely
grasped by the fuzzy set, so Atanassov [27] introduced the
concept of an intuitionistic fuzzy set which consists of mem-
bership function, non-membership function and hesitancy
degree. As a generalization of fuzzy sets, IFSs are considered
to be more effective way to deal with vagueness than fuzzy
set. It is obvious that an intuitionistic fuzzy set becomes
a fuzzy set if there is no hesitation. Due to the efficiency
of IFSs, it has received great attention from researchers,
and at present, it has been applied in various areas such as
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decision making [28]-[30], medical diagnosis [31], [32], pat-
tern recognition [33], [34] and other areas [35]-[40].

It is often inevitable to measure the similarity between
IFSs in practical application. The similarity measures of IFSs
have received a great attention and several distances for
IFSs have been proposed [41], [42]. Chen defined the first
similarity measure between IFSs which claimed that IFS is
similar to vague set. Szmidt and Kacprzyk [43] proposed four
distances for computing the distance measure between IFSs
which were based on the geometric interpretation of IFS.
Huang and Yang [44] proposed a method to calculate the
distance between IFSs on the basis of the Hausdorff dis-
tance. Grzegorzewski [45] proposed distances based on the
Hausdorff metric, the proposed new distances are straightfor-
ward generalizations of the well known Hamming distance,
the Euclidean distance and their normalized counterparts.
But later Chen [46] implied that some limitations exist
in Grzegorzewski’s two dimensional Hausdorff based dis-
tancesnby showing some counter-intuitive cases. Xu [47] put
forward some weighted distances on the basis of this geo-
metric distance model. Wang and Xin [48] proposed several
new distances and applied them to pattern recognition, the
axiom definition of distance measure between intuitionistic
fuzzy sets (IFSs) is introduced, and corresponding proofs are
given, the relations between similarity measure and distance
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measure of [FSs are analyzed. Hung and Yang [49] proposed
similarity measures of intuitionistic fuzzy sets based on L-p
metric, and they apply the proposed measures to analyze the
behavior of decision making. Yang and Chiclana [50] sug-
gested that the three dimensional interpretation of IFSs could
lead to different comparison results to the ones obtained with
their two dimensional counterparts, and introduced several
extended 3D Hausdorff based distances. Hung and Yang [51]
presented two new similarity measures between intuitionistic
fuzzy sets, and then apply the new measures to evaluate stu-
dents’ answer-scripts. Hatzimichailidis et al. [52] introduced
a distance measure which formulates the information of each
set in matrix structure, where matrix norms in conjunction
with fuzzy implications can be applied to measure the dis-
tance between the IFSs. Since the Sugeno integral provides
an expected-value-like operation, it can be a useful tool in
defining the expected total similarity degree between two
intuitionistic fuzzy sets. so based on the Sugeno integral,
Hwang et al. [53] proposed a new similarity measure with
its application to pattern recognition. More discussion on
similarity measures of IFSs can be found in [54], [55].

Different distances have different focus and have differ-
ent advantages in measuring the similarity of IFSs, as IFSs
is characterized by hesitant index to describe the state of
“membership degree or non-membership degree”, unlike
the first two parameters of IFSs, the information carried by
the hesitancy degree is uncertain, so these three parameters
should not be considered separately when comparing the
differences between IFSs. but most of the existing measures
only consider the differences between numerical values of the
IFS parameters, and ignore the characteristics of intuitionistic
fuzzy information. Therefore, in order to make the results
more reliable, this paper proposes a new distance measure by
analyzing the interaction between the there parameters.

The rest of this paper is organized as follows. In Section II,
the basic concepts of IFSs are reviewed, some existing dis-
tances of are introduced. In Section III, the new distance
measure for IFSs is proposed, and the geometric meaning of
the new distance measurement is explained. In Section IV, the
effectiveness of the new distance is illustrated through numer-
ical comparisons and application of pattern recognition. The
conclusion is given in Section V.

Il. PRELIMINARIES
In this section, some basic concepts on IFS are introduced.

A. INTUITIONISTIC FUZZY SET [27]
Definition 1: Let A be an IFS in the finite universe of
discourse X can be written as:

A = {(x, na(x), va(x)lx € X}, ey

here g : X —> [0, 1], vg : —> [ 0, 1 ] with the condition
0 < pua(x)4+va(x) <1Vx € X. The numbers g (x) and va(x)
denote the degree of membership and non-membership of x
to A.Forany x € X,0 < pua(x) + va(x) < 1.
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The hesitance index ma(x) = 1 — ua(x) — va(x) is used to
measure hesitancy degree of x to A, and for any x € X, 0 <
malx) < 1.

Definition 2 [56]: Let A and B be two IFSs in the universe
of discourse X, then
(H)A CBifandonlyifVx € X, ua(x) < up(x), and
va(x) > vp(x);
(2) A=Bifand only if Vx € X, ua(x) = up(x), and
vA(x) = vp(x);
(3) A€ = {(x,ua(x), wa(x), )|x € X}, where A€ is the
complement of A.

B. EXISTING DISTANCE MEASURES BETWEEN IFSS
Distance measure plays a very important role in many appli-
cations such as pattern recognition [57]-[60] and decision
making [61]-[63]. In this section, several widely used dis-
tance measures are reviewed. Let X be the universe of
discourse, A = {(x, ua(x), va(x))|lx € X} and B={(x,
upx), vp(x))|x € X } are two IFSs in X = {x1, x2, ... x,}.
Szmidt and Kacprzyk [28] proposed distances between IFSs
using the Hamming distance, Euclidean distance as follows:

The Hamming distance:
n

1
di(A, B) = 53 llnale) = up(xi)| + va() — vp(xo)|
i=1
+mat) — x|l (2)

The normalized Hamming distance:
1 n

(A, B) = — Y [lma(xi) — up(x)| + [vaCe) — vp(x)|
2n

i=1
+|ma(x) — wpx)ll ()

The Euclidean distance:
1 n
dg(A,B) = (5 ;[(MA(XD — () + (va(xi) — vp(x))?
+(rate) — ) D (4)

The normalized Euclidean distance:

1 n
dg(A,B) = (% Z[(MA(xi) — () + (va(xi) — vp(x))?
i=1

+(malxi) — TGN (5)

The Hausdorff’s distance measure [44]:

l n
dna(A, B) = ~ 3 max{lpa(xi) — ppCal, |va(xi) — vp(ul)
i=1
(6)
Yang and Chiclana introduced the hesitancy degree into the
expression based on the Hausdorff’s distance [50]:

n

1
dyc(A, B) = =Y max{|ua(x;) — up(xil, va(x) — vp(xil,
n i=1

lva(xi) —up(xpl}  (7)
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Wang and Xin’s distance measure [48]:

dux(A.B) = %Z[ la(xi) — pp(x;l : [ua(xi) — up(x;l

i=1

max|jua(x;) — wp(xil, [lua(x;) — vp(x;l
+ > 1

®)

The greater the distance between two intuitionistic fuzzy sets,
the smaller the similarity between them.

Definition 3 [48]: Let d be a mapping d: IFSs (X) x IFSs
(X) — [0, 1]. If d(A, B) satisfies the following properties,
d(A, B) is a distance measure between IFSs A and B.
PDHO=dA B =1;

(P2) d(A, B) = 0 if and only if A = B;
(P3)d(A, B) = d(B, A);

(P4)If AC B C Cthend(A, C) > d(A, B) and
d(A, C) > d(B, C).

Because the hesitance index could be expressed in terms
of the membership and non-membership degrees, it is argued
that the hesitance index does not have to be taken into
account by the distance measure. Therefore, according to
whether the hesitance index is used, the existing distance can
be divided into two dimensional distance and three dimen-
sional distance. The three dimensional distances proposed by
Szmidt and Kacprzyk have excellent geometric properties,
whether using hamming distance or Euclidean distance to
measure similarity, however, the difference caused by dif-
ferent parameters contributes equally to the distance. As the
hesitance index indicates the unknown membership and non-
membership degree, the hesitation index is somewhat similar
to the first two parameters, so the three parameters cannot be
measured separately, otherwise the counter-intuitive results
would be obtained. For example, suppose four IFSs A, B, C,
and Don X = {x},A = {{(x,0,1))},B = {{x,1,0)},C =
{{(x,0,0)},D = {{x,0.5,0.5)}. the information obtained
from IFSs A and B is certain, while IFSs C and D are highly
uncertain, so d(C, D) should be less than d(A, D). However,
we have dy(A,B) = 1,dy(A,C) = 1,dy(A,D) = 1,
dp(A,B) = 1,dg(A,C) = 1,dg(A,D) = 0.866, it is
obvious that the results are counter-intuitive, this is actually
a typical example, because many existing distances can not
solve this similarity problem well, so useful conclusions can
be obtained by analyzing this set of classical intuitionistic
fuzzy sets. Since the uncertainty expressed by the hesitance
index is related to the first two parameters, it is unreasonable
to separately calculate the numerical difference between the
three parameters. The geometric meaning of this example
is shown below in Fig. 1. Because the three axes in the
Cartesian coordinate system of the three-dimensional space
are equivalent, the distance is independent of the parameters
corresponding to the axis, so even if the coordinate axis
corresponding to the parameter changes, the distance of the
IFSs do not change, Therefore, the sensitivity of these two
methods is relatively low.

70438

D = (0.5, 0.5, 0)

B =(10,0)

FIGURE 1. Three dimensional Cartesian coordinate system.

Another measure is the two-dimensional distance with-
out considering the hesitance index, equations 5 and 6 are
classical two-dimensional distances. Although the hesitance
index can be expressed in terms of two other parameters, but
the information represented by the hesitance index is lost,
and sometimes the results are counterintuitive. For exam-
ple, Suppose A, B, and C are intuitionistic fuzzy sets in X,
A = {(x, 05, 0.5)}, B = {(x, 0.5, 0)}, C = {(x, 0, 0)}.
we have dy,(A, B) = 0.5,dy,(A, C) = 0.5,dy.(B,C) =
0.5, dwx(A, B) = 0.375,dwx(A,C) = 0.5,dwx(B,C) =
0.375. It can be seen that these two distances cannot effec-
tively distinguish the difference between the IFSs A, B and C.
When measuring the similarity between intuitionistic fuzzy
sets, all information contained in the intuitionistic fuzzy sets
should be considered as much as possible, but uncertainty
of IFSs is not well expressed in two dimensions distances
because the hesitance index is ignored. Through the analysis
of the above four distances, it is shown that the hesitance
index cannot be ignored when measuring the similarity of
IFSs, these three parameters have a certain contribution to
the description of the uncertainty of information, and the
hesitance index is not completely different from the first two
parameters.

Ill. NEW METHOD FOR MEASURING THE SIMILARITY

OF INTUITIONISTIC FUZZY SETS

In this section, a new method to measure the similarity
between intuitionistic fuzzy sets is introduced. First, the def-
inition of the score function is given, which is used to prove
that the new distance in measuring the similarity between
IFSs is related to the uncertainty of IFSs.

A. SCORE FUNCTION

The concept of score functions was initiated by

Chen and Tan [64], and it is used to solve multi-attribute

decision making problems of intuitionistic fuzzy set.
Definition 4: Suppose A are intuitionistic fuzzy set on the

universe X = {x1,x2,...,x,}, A = {{x, u(x), v(x))}, define
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S4 as score function, the expression of Sy is

Sa(xi) = p(xi) — v(x;) &)

with —1 < Sa(x) < 1;

The degree that an alternative meets the decision maker’s
expectations can be measured by score function S(A), the
larger the value of S(A) is, the more suitable the alternative
A is for the decision-maker. The larger the value of wu(x;),
the smaller the value of v(x;), the greater the probability of
x € A, and the larger the value of the score function Sa(x;).
So Sa(x) can be applied to describes the degree of support
of about element x € A. If S4(x) > 0, then the higher the
degree of x belongs to A, if S4(x) < 0, then the lower the
degree of x belongs to A. In addition, the absolute value of S
can characterizes the degree of certainty of A. The larger |S|,
then the ambiguity of the IFS is lower. For example, IFSs
A = {(x,0.25,0.25)} and B = {(x, 0.1, 0.4)}, although the
hesitance index of these two fuzzy sets is equal, set B provides
more information, which means that B is more certain, it is
reasonable for the result that |Ss(x)] = O, |[Sg(x)|] = 0.3.
Therefore, the absolute value of the S(A) can be used to
represent the certainty of the fuzzy set.

B. SIMILARITY MATRIX

Let’s first discuss a classic intuitionistic fuzzy sets, for two
IFSs A and B on X = {{x)}, where A = {(x,0,0)},B =
{(x,0.5,0,5)}. The hesitation index in A is equal to 1, which
means that A is completely uncertain whether x belongs
to X, while the hesitation index in B is equal to 0, but the
membership degree in B is equal to the non-membership
degree, so the ambiguity of B is also very high. This example
is sufficient to show that there is a certain degree of similarity
between the hesitation index and the other two parameters. as
the hesitance index is not independent of the other two param-
eters in the new distance, considering the similarity between
the three parameters, the similarity matrix is introduced to
express the “’similarity” between the parameters.

Definition 5: M is defined as the similarity matrix

1 0 0

0 1 0
M =

1 1 3

2 2 2

The elements in the similarity matrix are determined based on
the similarity between the three parameters, because uncer-
tainty is also expressed when the membership is equal to the
non-membership, so the hesitance index is divided into two
parts by % and then assigned to membership and nonmem-
bership. After the similarity between the three parameters
is described, the uncertainty of the intuitionistic fuzzy set
should be decreased, so change the value of the hesitance
index by 4 As shown in Fig. 2, projecting the hesitation
index m in a space Cartesian coordinate system. The projec-
tion length of the -axis in the plane u — v is equal to %JT, and
the corresponding new hesitation index in the space Cartesian
coordinate system is equal to */Tgrr. Therefore, the elements
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FIGURE 2. New metric space.

in the similarity matrix are determined according to the pro-
jection relationship of the Cartesian coordinate system. The
numerical values of the three parameters are changed by the
similarity matrix, and in fact the metric space of the distance
is also changed.

C. METRIC SPACE

The distance proposed in this paper is measured in the form
of a vector in three-dimensional space, But the metric space
of the new distance is different from the classical three-
dimensional space. The membership and the nonmembership
are independent of each other, so the pt-axis and the v-axis are
orthogonal. When the membership and the nonmembership
are equal, the information given by the intuitionistic fuzzy
set in this case is also uncertain, while the hesitance index is
directly used to represent the uncertainty of the intuitionistic
fuzzy set, so the 7 axis and the other two axes are not orthog-
onal, but has a certain angle of inclination. The geometric
meaning of the metric space is shown in the Fig. 2. Give
an IFS A = {(0,0, 1)} in the Cartesian coordinate system,
we can transform this IFS through the similarity matrix to get
the coordinates in the new metric space, and the process is as
follows:

1 0 0 7
0 1 0 1 1 43
O»Oa] =353y 7
R EEE TV AN
2 2 2

D. THE NEW DISTANCE
Definition 6: let A and B be two IFSs on the universe X =

{x1,x2, ..., x,}, The new distance is defined as
dy(A, B)
g miM (M )T
B ;,;u«f\(xi)+v§(xi)+7ri(xl-)+u§(x,')+v§(xl-)+ﬂ§(x,-)

(10)
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with row vector n; = (ua(x) — up(x), valx) —

uB(xi), TA(X;) — 7B(x7)).

Suppose A and B are two intuitionistic fuzzy sets on
X = {x},Only when A ={(x,1,0)} and B=A = {(x,0, 1)},
the distance between the two intuitionistic fuzzy sets is equal
to the maximum value 1. That is, when there is no hesitation in
IFSs A and B, and the membership of X in them is completely
opposite, then the similarity between the two intuitionistic
fuzzy sets is equal to 0. This result is reasonable, because
the membership degree and the non-membership degree are
completely opposite states, and the hesitation index is an
uncertain expression of the membership degree and the non-
membership degree.

Theorem 1: d(A, B) is the distance between two IFSs A
and B in X. the proposed distance measure satisfies the
Definition 3.

Proof (P1):

M = (1) — 1))+ 3 (TaCx) — ),
(oA — ) + 3 (TA ) — ),
?m(xo — ()M (M)

= (Al — D) + 3 TA ) — a6
(@A) — g + 5 0eas) — 7)Y
+ 2 (a) — pe)? = (aaCx) — unx)?

+ (va(xi) — v(x))* + %(m(xz') — 7p(x))*
+ (a(xi) — pp(x))(wa(x;) — wp(x;))
+ (Va(x;) — vp(x))(Ta(x;) — mp(x;))
= pua(x)? + va(x)* + %nA(xaz + 1p(xi)* + Up(x)?

1
+ ZT[B(xi)2 —2pua(x) (X)) — 2vua(x)up(x;)

1
— STACTE(Y) < HAG) + ui ()
+ 72 () + ) + Vi) + TR
SO
- M (mM )T
T pdO0)) + v30) + T2 F a0 + v + ()
1

IA

1
0< -
T n
i M (ni;M )T
SR 00) + Vi) + 00) + ) + vpa) + TE(x)
<1 (11)

And therefore we have 0 < d,(A, B) < 1.
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Proof (P2): If dy(A,B) = 0, then nm;M(m;M)T must
equal to 0, so we have n; = (0,0, 0), and because ni; =
(A () —pp(xi), va(x)—vp(x;), TA (X)) —7B(X:)), SO A (x;) =
up(xi), va(x;) = vp(x;), ma(x;) = mp(x;). Therefore, the new
distance satisfies the property that d(A, B) = 0 if and only if
A =B.

Proof (P3): For dy(B, A), we have

M (mM)T
2 2 1 2 2 2
= up(x)” + vp(x)” + ZJTB(xi) + ma(xi)” + valx;)
1
+ Zm(xi)z — 21 () A (i) — 2Up(x)ua(x;)
1 2 2
— E”B(xi)”A(xi) = pa(x)” 4+ valx;)
1o 2 IR S
+47TA(xz) + up(xi)” + vp(x)” + 4n3(x1)

1
—2ua(xp)p(x;) — 2va(x;))vp(x;) — EﬂA(xi)T[B(xi)

So it is proved that the new distance satisfies the property that
d(A,B) =d(B,A).

Proof (P4): Let A, B, and C be three IFSs on X =
{x1,x2,...x,},a8A € B C C, 50 ua(x;) < up(xi) < pc(x;)
and va(x;) > vp(x;)) > vc(x;). Because the value of 7 (x;)
i1s uncertain, so discuss the distance in different situations.
The paper will give the proof that the new distance satisfies
P4 when the IFSs have equal hesitation index. The proof of
other cases is similar to this proof, so omitted. Let the constant
k satisfies the condition 0 < k < 1, and a(x;) = 7p(x;) =
mc(x) =1—k.

Then

dn(A, B)
_ 12”: (1A (i) = pp(ei))*+ (VA (xi) — Up (1))
1 UG )+ U3 () + up )+ U +2x (1 — K)?
(12)

and
dn(A, C)
_ 12”: (1A (i) = e (i) >+ (Ua(xi) — v (10))?
" R )+ UR () () +Ug (i) +2x (1 = K)?
(13)

First let the hesitance index equal zero, so the geometric
relationship of the distance between these three intuitionistic
fuzzy sets is shown in the Fig. 3.

dy(A, B)
1 (a(x) — wp())? + (va(xi) — vp(x))?
= |- 14
\ " ; A G) + vF() + pp0n) + vp(a) 4
dy(A, C)
TS (al) — e Ga)? + (valxi) — ve(x))?
= |, Z 2 2 2 2 (15)
ne pa(xi) + vy (xi) + Mc(xi) + Uc(xi)
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FIGURE 3. The geometric relationship of the distance between three
intuitionistic fuzzy sets.

According to the side length relationship of the triangle.
0<dnv@A,B)<land0 <dy(A,C) <1

and

V () + vp)

+ et — ua()? + (e ) — vp(x)?

> /(W& (i) + VE () (16)
JWa(x) +va(x)) is  the  length  of OB,

V(e() — up()? + (uc(xi) — vp(xi))> is the length
of BC, and , /(p% (xi) + U%(xi)) is the length of OC.
So

Vet — s + (et — vp(x)?

> Jd )+ v2e) — () + i) (D)

SO
(a(xi) — wB(x))* + (Va(xi) — vB(x;))*
1A + U3 () + 130 + vax)
_ (At = ()’ + (i) — ve (i)’
n3G0) + vi) + nE G 4+ vix)
According to the properties of inequality
(ma(xi) — mp(x))? + (va(xi) — vp(x;))?
HA () + Ui + ua) + i) +2 x (1 — K)?
(a(x) — e () + (alx) — ve(x))?
HAG) + Ui () + pnd ) + vE) + 2 x (1 — K)?
(19)

(18)

So that proves dy (A, B) < dy(A, B).
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It can be proved by the same way that the new distance
still satisfies the P4 when these three hesitance index are
not equal. So the distance proposed in this paper is an intu-
itive distance between IFSs A and B since it satisfies the
Definition 3.

E. NORMALIZATION OF DISTANCE
Distance between IFSs are used to indicate the difference
degree between the information carried by IFSs, improper
normalization of distance will lead to opposite decision
results. Most of the existing distance functions are normalized
by the maximum distance between two fuzzy sets, although
this can guarantee that the maximum distance obtained will
not be greater than 1, sometimes the measurement result is
unreasonable because the scaling factor is too large. Exces-
sive normalization will make the result smaller, which will
reduce the sensitivity of distance in measuring the differ-
ence between intuitionistic fuzzy sets. The new method is
normalized by the sum of the squares of all the parameters
in the two fuzzy sets, because ,ui (x) + vi(x,-) + nj(x,-) +
,ulz;(xi) + Ué(xi) + né(xi) can be less than 1, this means that
the normalization factor plays the role of the amplification
distance in this case, but this amplification is reasonable.
Take IFSs A = {(x,0.3,0.3)} and B = {{x, 1,0)} as an
example, the maximum Euclidean distance between A and
other intuitionistic fuzzy sets is 0.86 while B’s is 2. The
distribution range of the distance that IFS A can obtain is
much smaller than IFS B, It is not appropriate to use the
same criteria to define the threshold of similarity. Based on
the above analysis, two reasons for using the new normal-
ization method are summarized. First, the values of the three
parameters can reflect the ambiguity of the set, and the greater
the ambiguity of an intuitionistic fuzzy set, the easier it is for
the set to be similar to other intuitionistic fuzzy sets. so the
difference between the two intuitionistic fuzzy sets is not
only related to the difference of the parameter values, but
also depends on the ambiguity of each fuzzy set. In addition,
When the three parameters are relatively small, the numerical
difference of the parameters is relatively small. If the distance
is normalized by the classical method, the distance measure is
easier to get similar results, so the distribution of the distance
obtained is not reasonable enough.

IV. EXAMPLES AND APPLICATIONS
The numerical examples and applications are used to illus-
trate that the distance proposed in this paper can effectively
measure the similarity between IFSs.

A. EXAMPLES

Example 1: Suppose A and B are two intuitionistic fuzzy
setson X = {x}. A = {(x,,1 —®)},B = {(x,0 — 0.1,
1.1 — @)}, and « gradually increase from 0.1 to 1.

When the hesitant index in the fuzzy set is equal to 0, the
only difference between the new distance and the Euclidean
distance is the normalized method they used. Use these two
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TABLE 1. The results of example 1.

Euclidean distance

Q

New distance
0.1048
0.1155
0.1260
0.1313
0.1400
0.1400
0.1313
0.1260
0.1155
0.1048

—OOO000000d
ookt —
COOO0o00Ood
—_— e i

TABLE 2. The support factor of intuitionistic fuzzy sets.

0.2 0.3 0.4 0.5 06 07 08 09 10
S(A) 0.8 06 -04 -02 0 02 04 06 08 1
B) -1 -08  -06 -04 -02 0 02 04 06 08
SEA) 0.8 0.6 0.4 0.2 0 02 04 06 08 1
S(B) 1 0.8 0.6 0.4 0.2 0 02 04 06 08

distance functions to measure the difference between the IFSs
A and B, it is proved by comparing the results that the new
normalization method can make the distance value have a
more reasonable distribution range. The results obtained by
different methods are shown in the Tab. 1. With the increase
of «, the score function of the two IFS also change corre-
spondingly, the score function of IFSs A and B are shown in
the Tab. 2.

It is obvious that the distance is a fixed value while the IFSs
have changed, this phenomenon is the collision of similarity
which is referred above, and similarity collision has negative
influence on decision making. The fact that similar collisions
are easy to occur shows that Euclidean distance is not sen-
sitive to measure differences. On the other hand, the result
obtained by the new distance changes with the increase of «.
when « is equal to 0.5, the ambiguities of the two IFSs
are relatively high, and the distance of A and B reaches
the maximum point. This is because the new normalization
method allows the change of the parameter value to affect the
distance result, then the sensitivity of the distance measure
is improved. The relationship between these distances and
the score function of IFSs is analyzed below. When A is
less than 0.5, with the increase of A, the distance and score
function between two IFSs are gradually increasing, while
|S4(x)| and |Sp(x)| are gradually decreasing, which means the
ambiguity of the two IFSs also becomes higher, this shows
that the variation trend of the results obtained by the new
distance is similar to the variation trend of the ambiguity of
the IFSs. Because the more uncertain the intuitionistic fuzzy
set is, the more similar it is to other intuitionistic fuzzy sets.
Since the new distance would be affected by the ambiguity
of the intuitionistic fuzzy set, so the measurement result is
more reasonable. It has been proved that the new normaliza-
tion method is reasonable and effective without considering
the hesitance index, the next section would be focused on
comparing the differences in the handling hesitance index
between different distances.

Example 2:  Suppose A, B and C are three intuition-
istic fuzzy sets on X = {x}. A = {(x,0.5,0.9},B =
{(x,0.1,0.2)}, C = {(x, , 0)}, and & change gradually from
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FIGURE 4. The results of Example 4.1. (a) Comparison of two distances.
(b) |IS| of two intuitionistic fuzzy sets.

TABLE 3. The results of d(A, C).

a  dy(A,C) de(A,C) du,(A,C) dwx(A,C) dn(AC)
0.500 0.866 0.500 0.500 0.707

0.0

0.1 0.500 0.781 0.500 0.475 0.681
0.2 0.500 0.700 0.500 0.450 0.651
0.3 0.500 0.624 0.500 0.425 0.618
0.4 0.500 0.557 0.500 0.400 0.586
0.5 0.500 0.500 0.500 0.375 0.559
0.6 0.500 0.458 0.500 0.400 0.542
0.7 0.500 0.436 0.500 0.425 0.538
0.8 0.500 0.436 0.500 0.450 0.545
0.9 0.500 0.458 0.500 0.475 0.559
1.0 0.500 0.500 0.500 0.500 0.577

TABLE 4. The results of d(B, C).

e} dH B,C dE B,C dHa B,C dWX B,C dN B,C)
0.1 0.200 0.200 0.200 0.150 0.242
0.2 0.200 0.173 0.200 0.175 0.222
0.3 0.200 0.200 0.200 0.200 0.267
0.4 0.300 0.265 0.300 0.275 0.363
0.5 0.400 0.346 0.400 0.350 0.480
0.6 0.500 0.436 0.500 0.425 0.599
0.7 0.600 0.529 0.600 0.500 0.707
0.8 0.700 0.624 0.700 0.575 0.799
0.9 0.800 0.721 0.800 0.650 0.891
1.0 0.900 0.818 0.900 0.725 0.933

0to 1. the results of d(A, C) and d(B, C) obtained by different
methods are shown in the Tab. 3 and Tab. 4.

It can be seen from Fig. 5 that the results obtained by these
five measurement methods are quite different. Although the
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FIGURE 5. The comparison results between different distance measures.
(a) The distance between A and C. (b) The distance between B and C.

hesitance index of the IFS A is equal to 0, but pus(x;)) =
va(xi) = 0.5, whether A belongs to B or can not be judged
based on this IFS, so the ambiguity of IFSs A is relatively
high. The ambiguity of the IFS C changes with the increase
of «, therefore the similarity between IFSs A and C should
also be changed. But the result obtained by Hamming dis-
tance and Hausdorff’s distance is a fixed value, and the result
obtained by Wang and Xin’s distance is symmetric with
respect to « = 1.5, it is obvious these results are unrea-
sonable. The range of results obtained by Euclidean distance
is relatively wide, when « is relatively small, the distance
between the IFSs will obviously change even if the param-
eters are only slightly changed. When « is relatively large,
the results obtained by Euclidean distance is the smallest,
which is due to the normalization method it uses, the result
shows that Euclidean distance is a little bit more sensitive to
the difference between values. The distance obtained by the
new method can not only change correspondingly with the
increase of «, but also the distribution of distance values is
relatively uniform. Therefore, the distance proposed in this
paper has good sensitivity. The distances between B and C
obtained by different methods are almost equal. This example
illustrates that the new distance can effectively measure the
similarity between IFSs.

VOLUME 7, 2019

B. APPLICATIONS

Intuitionistic fuzzy sets are widely used to deal with uncertain
information, in order to prove the effectiveness of the new
distance in practical application, we would presents the appli-
cation of IFSs in pattern recognition and medical diagnosis.

1) PATTERN RECOGNITION

Assume that there are four patterns A1, A2, A3 and A4 denoted
by IFSs in the universe of discourse X = {x1, x2, x3, x4}. The
patterns are denoted as follows:

A1 ={(x1,0.3,0.5),(x2, 0.4, 0.5), (x3, 0.2, 0.6), (x4, 0.6, 0.2)}
Ax={(x1,0.5,0.4),(x2, 0.2, 0.3, (x3, 0.0, 0.8), (x4, 0.8, 0.2)}
As={(x1,0.4,0.3),(x2, 0.6, 0.2), (x3, 0.0, 0.7), (x4, 0.5, 0.1)}
As={(x1,0.5,0.4),(x2, 0.3,0.5), (x3, 0.2, 0.8), (x4, 0.5, 0.2)}

It is aimed to classify an unknown pattern represented by an
IFSs B into one of the patterns A1, Ay, A3 or A4, The IFS B is
shown as follows:

B = {{x1,0.4,0.3), (x2,0.3,0.4), (x3,0.1,0.7),
(x4,0.7,0.2)}.

The results obtained by different distances are shown in the
Tab. 5. Because the four known patterns are very similar,
so the measurement method should be sensitive enough in
order to correctly identify the pattern of B. Based on anal-
ysis in Tab. 5, it can be seen that that Hamming distance
and Hausdorff distance can only roughly measure similarity,
and it is easy to fail in pattern recognition. Although the
distance values obtained by different methods are different,
the results obtained from other measures are the same except
Hamming distance, the unrecognized pattern B should be
classified into pattern A,. This pattern recognition example
illustrates that the new distance can effectively measure the
difference between IFSs. at the same time, it can measure the
difference between intuitionistic fuzzy sets more reasonably
and sensitively.

TABLE 5. Comparison of different distance measures.

distance measure d(Aq,B) d(A, B) d(As, B) d(A4, B)
dr 0.200 0.200 0.175 0.175
di 0.142 0.137 0.194 0.166
dHa 0.125 0.100 0.150 0.125
dw x 0.113 0.094 0.131 0.106
d 0.225 0.221 0.298 0.229

2) MEDICAL DIAGNOSIS

[65]-[69] Suppose four patients Jack, Bob, Joe, Bill in a
hospital, let P = {Jack, Bob, Joe, Bill}. Their symptoms are
represented as S = {Temperature, Headache, Stomach pain,
Cough, Chest pain}. Let the set of Diagnosis be D ={Viral
fever, Malaria, Typhoid, Stomach problem, Chest problem}.
The intuitionistic fuzzy relation P — S is given as in Tab. 6,
and the intuitionistic fuzzy relation S — D is given as in
Tab. 7. In Tab. 8, the distance degree between patients is pre-
sented. In Tab. 9, the diagnosis results for this case obtained
by different methods have been presented.
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TABLE 6. Symptoms characteristic for the patients.

Temperature  Headache  Stomach pain Cough Chest-pain
ac
Bob (0,0.8) (0.4,0.4) (0.6, 0.1) (0.1,0.7) (0.1, 0.8)
Joe (0.8, 0.1) (0.8, 0.1) (0, 0.6) (0.2,0.7) (0,0.5)
Bill (0.6,0.1) (0.5,04) (0.3,04) (0.7,0.2) (0.3,0.4)

TABLE 7. Symptoms characteristic for the diagnoses,Spain stands for
Stomach pain, Cpain stands for Chest-pain.

Temperature  Headache Spain Cough Cpain
Viral Fever i().AEL 0.0) (03,03 i().], 0.7) 0.4, i%.3i i(i.i, 0.7)
Malaria (0.7, 0.0) (0.2,0.6) (0.0,0.9) (0.7,0.0) (0.1,0.8)
Typhoid (0.3,0.3) (0.6,0.1) (0.2,0.7) (0.2,0.6) (0.1,0.9)
Stomach (0.1,0.7) (0.2,0.4) (0.8,0.00 (0.2,0.7) (0.2,0.7)
Chest (0.1,0.8) (0.0,0.8) (0.2,0.8) (0.2,0.8) (0.8,0.1)
TABLE 8. The results measured by the proposed distance measure.
Viral Fever Malaria Typhoid Stomach Chest
ac . . . . .
Bob 0.6011 0.7534 0.4612 0.1789 0.5786
Joe 0.4392 0.5395 0.3583 0.6527 0.6959
Bill 0.3364 0.382 0.5156 0.5914 0.6458

TABLE 9. Results obtained by different methods. Stopro stands for
Stomach problem, VF stands for Viral Fever.

The result Jack Bob Joe Bill
InT65] Malaria Stopro Typhoid Malaria
In [66] Malaria Stopro Malaria Malaria
In [67] Malaria Stopro Typhoid VF
In [68] VF Stopro Typhoid Malaria
In [70] Malaria Stopro Typhoid VF
In [69] Malaria Stopro Typhoid Malaria

Our result Malaria Stopro Typhoid VF

According to the results shown in the Tab. 9, Jack suffers
from Malaria, Bob suffers from Stomach problem, and Joe
suffers from Typhoid. Four out of seven methods indicate that
Bill suffers from Malaria, and other methods indicate that Bill
suffers from Viral Fever. It is hard to tell whether Bill suffers
from Malaria or Viral Fever, because the symptoms of the two
diseases are similar. The proposed distance provides the same
results obtained in [67] and [70].

V. CONCLUSION

A new distance of IFSs is proposed by this paper, which not
only considers the numerical difference between IFSs, but
also the characteristics of the fuzziness information carried
by IFSs. The proposed distance satisfies all the property
requirements of intuitive distance. In addition, the square sum
of the parameters is used to normalize the distance. This work
indicated that the information carried by the hesitation index
cannot be ignored, and the normalization method used for the
distance also affects the rationality of the results. Intuition-
istic fuzzy sets can better measure the degree of ambiguity
because of the hesitance index. In order to better solve the
problem of intuitionistic fuzzy sets, the characteristics of the
three parameters and their relations should be reasonably
analyzed. In the future, we would like to generalize the new
distance and apply it to areas that describe vagueness and
uncertainty.
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