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ABSTRACT Due to the rapid development of communication technologies, the requirement of mobile video
streaming services is extremely increased in recent years. However, the bandwidth limitation of the wireless
network often causes video impairments, such as compression artifacts and rebuffering event, when users
are watching online videos. Hence, this problem often causes the reduction of quality of experience (QoE).
Predicting the QoE can provide a reference to improve resource allocation strategies, accordingly providing
users with a higher quality of video streaming services. In order to predict the impact of video impairment,
continuous prediction for the QoE in wireless video streaming is proposed. The input of the predicted model
consists of three vectors that characterize frame quality, the state of rebuffering events, and memory effect,
respectively, while the output consists of continuous predicted the QoE. The predicted model uses a block-
structured nonlinear Hammerstein-Wiener model. The experimental results confirm that our proposed model
can effectively predict the continuous QoE for wireless video streaming.

INDEX TERMS Quality of experience (QoE), continuous prediction, wireless video streaming, bitrate drop,
rebuffering event.

I. INTRODUCTION
With the rapid development of communication technologies,
mobile video has gradually become mainstream business of
streaming media for various communication operators and
content providers. Users expect to be able to view high-
quality video anytime and anywhere through mobile devices,
such as phones and tablets. Due to the dynamic variation
characteristics of wireless channel, the network throughput
is apt to change and difficult to predict, which causes events
such as dynamic changes in video bitrate and interruption of
video playing, affecting the subjective experience of users.
In order to improve the competitiveness of communication
operators and content providers in mobile video services and
to measure the performance of mobile video services, it is
necessary to monitor video quality for end-users, to predict
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the video quality, and to provide a reference for evaluating
performance of bitrate control strategies in real time.

In the course of video playing, due to the too little data
in the buffer, the video will be paused and wait for new data
to fill the receiving buffer, which is called refuffering event.
Ghadiyaram et al. [1] had shown that frequent rebuffering
events (RE) can cause viewers to abandon watching videos
on mobile devices. In addition, compared with video playing
clarity, end users are more sensitive to the fluency of videos,
therefore ensuring smooth playout of videos can effectively
enhance user experience.

In order to adapt to the dynamic changes of network band-
width in real time, many state-of-the-art techniques have been
developed. In Refs. [2]–[4], HTTP-based adaptive streaming
(HAS) is proposed, which divides streaming videos into small
video clips, encodes each small video clip into different
bitrates and resolutions and expresses it in various quality
levels; then select an appropriate bitrate for any video clip
according to the estimated network condition or buffer capac-
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ity, try to avoid the occurrence of rebuffering events, and
ensure video playing fluently. Since HAS relies on transfer
control protocol (TCP), in order to ensure reliable transmis-
sion of data packets, TCP numbers each data packet, which
can ensure terminal to receive data packets orderly. The above
adaptive protocol attempts to make video playing fluently
by reducing frequency and times of rebuffering, and reduce
the incidence of low-quality videos at the same time. But
it causes frequent switch of video quality of the terminal,
thereby significantly affecting quality of experience (QoE)
[5]–[7]. In the applications of streaming video, QoE of end-
users is the ultimate standard for measuring video quality.
Accurate and real-time prediction of QoE can help network
optimize resource allocation strategies to balance resource
allocation and user satisfaction in unstable wireless network
conditions.

In order to study the impact of low bitrate, rate change
and RE on QoE of mobile terminals, this paper considers
continuous prediction for QoE as a time series prediction
problem, and then analyzes factors affecting continuous sub-
jective QoE, and adopts frame quality (FQ), characteristics
of RE and human memory effects (ME) which are related to
subjective QoE perception to establish a predictive model for
mobile terminal QoE, implementing accurate prediction of
user experience and providing a reference for online evalua-
tion of video stream control strategy performance.

The remainder of this paper is arranged as follows.
In Section II, the related research of the proposed method
is introduced. Section III analyzes the factors influencing on
QoE. Section IV proposes QoE prediction model. We evalu-
ate the performances of the prediction model in section V and
conclude our work in Section VI.

II. RELATED RESEARCH
The goal of studying QoE is to design a model that can
accurately and automatically perceive subjective experience
of users, and further effectively solve the problem of resource
allocation, thereby ensuring visual satisfaction of users. The
existing QoE models can be divided into QoE retrospective
predictionmodels andQoE continuous predictionmodels [8].

QoE retrospective models measure overall QoE of videos
by only one score, and use Video Quality Assessment (VQA)
method to calculate video quality. According to the depen-
dence on the original video, VQA method is divided into full
reference (FR) [9]–[11], reduced reference (RR) [12]–[14]
and none reference (NR) [15]–[17] VQA model.

Even if different video content is encoded with the same
bitrate, different quality of videos are still produced, and
most of existing QoE retrospective models do not consider
the interaction between video quality and RE. In order
to solve the above problems, for video streaming media,
Duanmu et al. [18] proposed a QoE prediction method based
on HTTP adaptive stream (Streaming QoE Index, SQI) by
studying subjective response of humans to video compression
coding, initial buffering and video buffering during videos
playing.

The above VQA methods finally measure video qual-
ity or quality degradation degree by only one score. Although
it has high consistency with subjective perception, it cannot
describe the situation of video quality variation affected by
events such as rebuffering and bitrate changing during video
playing.

In Ref. [19]–[21], the effects of bitrate changing and RE
on video quality and QoE have been studied during video
playing online, and a continuous QoE prediction model is
proposed. Aiming at the influence of bitrate changes on
QoE during video playing online, Chen et al. [19] proposed
a dynamic system model based on Hammerstein-Wiener,
which is used to predict subjective quality of bitrate adap-
tive video. In order to study the impact of RE on QoE,
Bampis et al. [20] created a new video database with both
RE and bitrate changes, and tested by existing objective
VQA methods. Bampis et al. [21] proposed a continuous
QoE prediction model based on Nonlinear Autoregressive
Neural Network with Exogenous Variables (NARX). This
continuous QoE prediction model takes an objective measure
of perceptual video quality, rebufferring-aware information,
and a QoE memory descriptor as three QoE-aware inputs.
The dynamic neural network NARX with one input layer,
one hidden layer which has 8 hidden nodes, and one output
layer is used as the prediction model and is trained by the
Levenberg-Marquardt algorithm to predict QoE.

Considering that Hammerstein-Wiener model can better
reflect the characteristics of human memory, this paper uses
the model, taking frame quality assessment model, which has
high correlation with subjective QoE, characteristics of RE
and human memory effect as inputs to establish a continuous
QoE prediction model.

III. ANALYSIS OF FACTORS INFLUENCING ON QoE
The analysis of continuous subjective QoE helps to under-
stand the impact of various events (e.g., the duration and
frequency of stalls caused by rebuffering event) on QoE
during video playing. Especially in the case of changeable
network bandwidth, the analysis of continuous subjective
QoE can provide a reference for the design of quality-aware
video stream bitrate switching algorithm, so as to adjust the
duration, number and position of stalls according to QoE
prediction to maximize the experience of mobile users during
video transmission. Therefore, it is necessary to analyze the
influence of bitrate changes, stall events and various subjec-
tive memory effect on continuous subjective QoE.
Effect of Bitrate and Its Variation on Continuous Sub-

jective QoE: Due to the dynamic characteristic of wireless
network, bitrate will inevitably change during video transmis-
sion. Bampis et al. [21] showed that bitrate variation affects
subjective perception of terminal video quality.

Human visual system (HVS), which is very sensitive to
edge regions of images, has orientation selectivitymechanism
for visual content extraction [22]. It can effectively extract
image structure and conduct scene perception and under-
standing. At present, the orientation selectivity mechanism
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has become one of the standard models for visual signal
representation in primary visual cortex (PVC). Wu et al. [22]
showed that when HVS perceives images, it stimulates differ-
ent arrangement of excitation or inhibition of visual cortical
neurons, thereby generating different orientation selectivity
visual patterns (OSVP) to understand the image.

For image F , its OSVP is defined as an arrangement of
the spatial correlation between its central pixel and adjacent
pixels as

P(x|X ) = A(3(x|x1),3(x|x2), · · · ,3(x|xn)) (1)

where x is the central pixel, xi is an adjacent pixel, and
X = x1, x2, . . . , xn.3(x|xi) is the spatial correlation between
x and xi.
The correlation based synaptic plasticity rule indicates that

visual cortical neurons with similar preferred orientations
have higher connection probabilities and are more likely to
exhibit an excitatory response. Therefore, the interaction type
between visual cortical neurons depends on their preferred
orientations. In section III, we uses the difference between
the center pixel x and the adjacent pixel xi to indicate ori-
entation similarity and defines a threshold of similarity. If
the difference is less than the threshold, they have similar
preferred orientation, otherwise, they have different preferred
orientations.

Define the gradient orientation of the pixel x ∈ F as its
orientation

θ (x) = arctan
Gv(x)
Gh(x)

(2)

fh =
1
3

 1 0 −1
1 0 −1
1 0 −1

 , fv =
1
3

 1 1 1
0 0 0
1 1 1

 (3)

where Gh = F ∗ fh, Gv = F ∗ fv, fh is the vertical orientation
of Prewitt filter, fv is the horizontal orientation of Prewitt
filter, and ∗ represents the convolution operation. According
to the orientation similarity between the central pixel x and
the adjacent pixel xi, 3(x|xi) can be defined as

3(x|xi) =

{
+ if |θ(x)− θ (xi)| < T
− others

(4)

where ‘‘+’’ indicates an excitatory interaction, ‘‘-’’ indicates
an inhibitory interaction, and T is a similarity threshold,
below which the two pixels are considered to have simi-
lar orientations. The subjective visual masking experiment
reveals that if the orientations are the same, the masking
effect between adjacent gratings is stronger, and the masking
effect is weakened as the orientation difference increases.
When the orientation difference is greater than the threshold
12◦, the masking effect becomes marginal. Considering the
positive and negative property of orientation difference, T is
set to 6◦ [22].
The OSVP mode between the center pixel and the sur-

rounding pixels is obtained by the equations (1) ∼ (4).
As shown in Fig. 1, OSVP between the center pixel and

surrounding pixels of 8 neighborhood is P(x |X ) = {+ −
−−−−−+}.

FIGURE 1. OSVP between the center pixel and surrounding pixels of 8
neighborhood.

In the 8 neighborhood, there are 8 pixels around the center
pixel, so there are 28 possibilities for OSVP mode. Since
pixels with the same number of excitation states in OSVP
display the same visual information [22], for example, both
{− + + + + + ++} and {+ − + + + + ++} have 7 exci-
tation states which mostly exist in ordered regions (such as
uniformly structured sky).Therefore, in order to reduce the
amount of calculation, these OSVP types which have the
same number of excitation states are combined, and the input
image is mapped into an OSVP-based histogram (OSVPH),
as shown in equation (5). Thus, there are 9OSVPH states with
the same number of excitation states in 8 neighborhood.

HIS(k) =
M∑
i=1

w(xi)δ(P(xi),Pk ) (5)

δ(P(xi),Pk ) =

{
1 if P(xi) = Pk

0 else
(6)

whereHIS(k) represents the k th histogram value for the k-bin,
M represents the pixel number of the image, Pk represents
the k th OSVP arrangement vector and w(xi) is the weighting
factor. Since pixels having larger luminance variation are
more attractive to human, the weighting factor w(xi) of the
pixel xi is directly related to the luminance variation

w(xi) = var(xi) (7)

where var(xi) is local variance of pixel xi. According to
Eq. (5), pixels having the same OSVP type are combined,
and the input image is mapped to an OSVP-based histogram.
Although there are 9 OSVP states with the same number of
excitation states in 8 neighborhood, pixels with 7 excitation
states and pixels with 8 excitation states both exist in the
ordered region. Therefore, pixels with 7 excitation states are
combined with pixels with 8 excitation states.

Thus, each frame of a video is mapped into an OSVPH,
which has 8 bins by extracting OSVP types of each pixel
which presents visual information. Fig. 2 shows OSVPH
distribution of the first frame of the original video and four
mobile videos with different bitrates (R1 < R2 < R3 < R4).
Moorthy et al. [23] showed that, in subjective video quality
experiments, higher bitrate brings better subjective QoE, and
when bitrate gradually increases, larger bitrate brings better
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FIGURE 2. OSVPH of the first frame in original video and four videos with
different bitrate.

subjective QoE. As it can be seen from Fig. 2, the refer-
ence frame has the highest OSVPH distribution value in the
eight bins, and as the bitrate increases, OSVPH distribution
value of each bin increases and approaches the OSVPH of
the reference frame. Therefore, OSVPH can be used as the
spatial domain feature of bitrate changing video to measure
quality of its frames. In summary, quality of bitrate changing
frames extracted by OSVPH method can be used to measure
the impact of bitrate change on continuous subjective QoE.
Therefore, frame quality (FQ) is extracted frame by frame
using OSVPH, and the extracted FQ is taken as one of the
inputs of the prediction model.
Impact of Rebuffering Event on Continuous Subjective

QoE: Rebuffering event can cause stalls during the video
playing, which often affects QoE [24]. In order to study the
effect of RE on subjective QoE, this paper analyzes the RE
effect on subjective QoE by analyzing characteristics of stalls
such as number, duration and position of stalls.

A. NUMBER OF STALLS
In order to analyze the influence of number of stalls on QoE,
in this paper, subjective QoE of videos with initial delay
and different number of stalls in LIVE mobile stall video
database II is studied, without considering duration of stalls,
as shown in Fig. 3.

Consider the duration of each stall is medium (5-9 sec-
onds). Fig. 3(a) shows a continuous subjective QoE of videos
with long initial delay and few stalls (x-lfs) and videos with
long initial delay andmultiple stalls (x-lms); Fig. 3(b) shows a
continuous subjective QoE of videos with a short initial delay
and few stalls (x-sfs) and videos with a short initial delay
and multiple stalls (x-sms). From Fig. 3, while the number of
stalls increases, QoE tends to become smaller even if video
quality returns to an acceptable level after stall occurrence.
This shows that number of stalls seriously affects QoE.

B. DURATION OF STALLS
In order to analyze the influence of duration of stalls
on continuous subjective QoE, assuming that initial delay

FIGURE 3. Subjective QoE of videos with initial delay and different
number of stalls.

and number of stalls are constant, QoE of videos with
short/medium/long stalls in the LIVE mobile stall video
database II is studied, as shown in Fig. 4. Fig. 4(a) shows a
continuous subjective QoE of videos with short initial delay
and medium/long stalls(x-sms and x-sls); Fig. 4(b) shows a
continuous subjective QoE of videos with short initial delay
and short/medium stalls(x-sss and x-sms); Fig. 4(c) shows a
continuous subjective QoE of videos with long initial delay
and medium/long stalls(x-lms and x-lls); Fig. 4(d) shows a
continuous subjective QoE of videos with long initial delay
and short/medium stalls(x-lss and x-lms). From Fig. 4, QoE
of videos that resumes playing after a medium/long duration
of stall is lower than QoE of resumed videos after a short stall.
This shows that duration of stalls also has a serious impact
on QoE, and long-term stall will reduce subjective QoE after
video recovery.

C. POSITION OF STALLS
The position at which stall occurs is at the beginning, mid-
dle or end of videos, as shown in Fig. 5.

In order to study the influence of stall positions on QoE,
assuming that stall duration and initial delay are fixed,
the continuous subjective QoE of videos with stalls occurring
at different positions in the LIVE mobile stall video database
II are compared, as shown in Fig. 6. Fig. 6(a)-(f) show con-
tinuous subjective QoE of videos in which stalls occur at the
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FIGURE 4. Subjective QoE distribution of videos with different duration
of stalls.

beginning, middle, end, beginning and middle, middle and
end, beginning and middle and end positions, respectively.

FIGURE 5. Positions at which stalls occur.

In order to observe the influence of stall positions on con-
tinuous subjective QoE better, the Dynamic Time Warping
(DTW) [25] method is used to normalize the continuous
subjective QoE of videos with different stall positions and
the corresponding reference video in Fig. 6. The continu-
ous subjective QoE distribution before and after the DTW
is shown in Fig. 7, and DTW distance from the reference
video is shown in Table 1. The DTW method is a similarity
measurement between two time series. The smaller the DTW
is, the greater the likelihood that the two time series are
similar is. It can be seen from Fig. 6, Fig. 7 and Table 1 that
whether the stalls occur at the beginning, the middle or the
end, it will cause a decrease in QoE, especially when multiple
consecutive stalls occur, QoE will sharply decrease no matter
where it occurs. What’s more, stalls have a greater impact on
QoE when it occurs in the middle or the end.

In summary, video stalls caused by RE have a great influ-
ence on continuous subjective QoE. In particular, frequent or
long-duration RE have a severe adverse effect on subjective
QoE. Therefore, in this paper, we use state of RE as one of
the inputs of the prediction model.

D. EFFECT OF MEMORY EFFECT ON CONTINUOUS
SUBJECTIVE QOE
Since people are ultimate observers of videos, while people
are watching videos, they are inevitably affected by memory
effect (ME) such as recency effect, primacy effect and hys-
teresis effect.

1) RECENCY EFFECT
In social cognitive psychology, when people remember a
series of things, ME on the end part is better than other
parts, which is called recency effect [26]. Taking stalling
event as an example, from Fig. 7 and Table 1, the continuous
subjective QoE of videos with stalls at the end is lower than
which has stalls at other positions, and it has a larger DTW
distance from the continuous subjective QoE of reference
videos. This shows that due to the influence of recency effect,
stalls occurring at the end of videos impacts the continuous
subjective QoEmore seriously than that occurring at the other
positions.

2) PRIMACY EFFECT
Primacy effect refers to the influence of ‘‘first impression’’ on
subsequent cognition of objects in the process of one’s social
cognition [27]. Taking stalls as an example in Table 1, DTW
distance between the continuous QoE of videos with stalls at
the beginning and that of the reference video is larger than
videos with stalls at the middle. Therefore, stalls that occur
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FIGURE 6. Subjective QoE of reference video and videos with different stall positions.

at the beginning has a greater influence on the continuous
QoE than that occurs at the middle. It can be seen that due to
primacy effect, the impact of stalls occurring at the beginning
of videos on continuous QoE cannot be ignored.

3) HYSTERESIS EFFECT
Seshadrinathan and Bovik [28] showed that, in the process of
observing videos, there is a hysteresis effect on continuous
subjective QoE, which means that due to the occurrence
of events such as rebuffering or bitrate reduction, observers
respond sharply to the degradation of video quality, and

give a lower score for this part of videos and do not have
obvious reaction to the improved video quality after these
events. Dramatic degradation of video quality during video
playing gives observers a bad impression, and even that video
quality returns to an acceptable level for observers after these
events, the bad impression still retains in their memory, which
leads to a lower score for videos with rebuffering or bitrate
reduction event.

Therefore, from the above analysis that the continuous
subjective QoE will be affected by the unpleasant memory
such as recency effect, primacy effect, and hysteresis effect.
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FIGURE 7. Subjective QoE of reference video and videos with different stall positions before/after DTW.

TABLE 1. The DTW of videos with stalls occuring at different position. The influence of these effects on continuous subjective QoE
should be considered when designing continuous QoE pre-
diction model.

IV. QoE PREDICTION MODEL
Considering Hammerstein-Wiener (HM) model can simulate
memory effect such as hysteresis effect, a block-structured
nonlinear HW model is used as the prediction model and the
input parameters, output parameters, and prediction model
structure are as follows.
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A. INPUT PARAMETER
Considering the influence of bitrate and its variation, RE and
ME on continuous subjective QoE, in this paper, we use FQ
vector, RE state vector and ME vector as the inputs of the
prediction model.

1) FQ: Frame quality is calculated frame by frame by using
OSVPH to form a FQ vector;

2) RE: This paper defines a Boolean continuous time vari-
able RE1 that describes video playing state at time t, taking
RE1 = 1 during rebuffering events occur and RE1 = 0
at other time. This input captures the information related
to RE.

3) ME: the ratio of the duration from the impairment event
(rebuffering or bitrate drop) occuring to the end of the video
to the total duration of the video.

B. OUTPUT PARAMETER
The output parameter is the predicted value of continuous
subjective QoE, but in model training phase, in order to get
better model parameters, subjective QoE is used as the output
parameter.

C. PREDICTION MODEL
The HW model consists of two static nonlinear modules and
one dynamic linear module. The dynamic linear module can
be represented by a transfer function with np poles and nz
zeros. Two static nonlinear modules describe the nonlinear
relationship between the inputs and continuous subjective
QoE. The structure of the Multiple Input Single Output
(MISO) HW model is shown in Fig. 8.

FIGURE 8. The diagram of the MISO HW model.

In Fig. 8, f (t) represents the nonlinear input module func-
tion, g(v) represents a nonlinear output module function and
h(u) represents the dynamic linear module function. In this
paper, a sigmoid function is used to describe the above
two nonlinear module functions, and an Infinite Impulse
Response (IIR) filter that characterizes long-term ME is used
to describe the linear module functions. u(t) is the output of
the nonlinear input module, v(t) is the output of the dynamic
linear module, y(t) is the output of the nonlinear output
module, and z-transformation of the dynamic linear module
h(u) is H (z). u(t), H (z), y(t) and f (t) are shown as

u(t) = f (x1(t))+ f (x2(t))+ f (x3(t)) (8)

H (z) =
b0 + b1z−1 + · · · + bmz−m

1− a1z−1 − · · · − anz−n
(9)

y(t) = g(v(t)) = γ3 + γ4
1

1+exp(-γ1v(t)+ γ2))
(10)

f (t) = β3 + β4
1

1+ exp(−β1xi(t)+ β2)
(11)

where x1(t) represents FQ vector, x2(t) represents RE state
vector, x3(t) representsME vector, t represents frame number,
a = [a1, . . . , an]T and b = [b1, . . . , bm]T represent parame-
ter vector and γ = [γ1, γ2, γ3, γ4] and β = [β1, β2, β3, β4]
represent the parameters of the sigmoid function.

V. THE PERFORMANCE EVALUATION OF THE
PREDICTION MODEL
A. INTRODUCTION TO THE TEST VIDEO DATABASE
To test performance of the prediction model, LIVE-Netflix
mobile VQA database [21] built by Image and video engi-
neering laboratory in the university of Texas at Austin is used
as test videos. The database consists of 14 original reference
videos and 112 distorted videos at 1080p (1920×1080) reso-
lution. The video library provides 8 playout patterns for each
original reference video as follows. In pattern 0, the bitrate is
fixed at 500 kbps and there is no RE; in pattern 1, the bitrate
is 250 kbps, and there is a RE with a duration of 8s at the
position of the 28th second, after it, the bitrate is restored to
250 kbps; in pattern 2, the bitrate is 160 kbps and there is no
RE; in pattern 3, the bitrate is 195 kbps, and there is a RE
with a duration of 4s at the position of the 30th second, after
it, the bitrate is restored to 195 kbps; in pattern 4, the initial
bitrate is 250 kbps, then reduced to 66 kbps at the position
of the 30th second, and finally restored to 250 kbps at the
position of the 40th second; in pattern 5, the initial bitrate
is 250 kbps, two RE of 6.66 seconds respectively occur at
the position of the 20th and the 30th second, the bitrate is
restored to 250 kbps after each impairment event; in pattern
6, the initial bitrate is 250 kbps, and a RE of 8.33 seconds
occurs at the position of the 20th second, then the bitrate is
reduced to 160 kbps, and restored to 250 kbps after about
10 seconds; in pattern 7, the initial bitrate is 250 kbps, then
reduced to 100 kbps at the position of the 20th second and
restored to 250 kbps after 20 seconds. The events that cause
video distortion in each mode are shown in Table 2.

B. CROSS-VALIDATION
In order to obtain the best parameters, during the process
of training and testing, videos are firstly divided into con-

TABLE 2. Type of impairment event in each video mode.
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tent independent training subsets and test subsets, wherein
training subset accounts for 80% and test subset accounts for
20%. The training data is then further divided into validation
subsets. The independence of video contents ensures that
subjective prejudice on different video contents is eliminated
during training and testing.

The cross-validation strategy used in this paper is as fol-
lows. First, numbering all the videos, let i = 1, 2, . . . ,N ,
forming a database containing N videos. Second, the i-th
video is randomly selected as the test time series. In order
to avoid the influence of same content and playout pattern,
we exclude all other videos having either the same con-
tent or the same playout pattern as the test video in the training
set. Then, the training set is further divided into a training
subset and a validation set. This step is repeated r times to
ensure adequate data splitting and covering. Subsequently,
we evaluate the parameter configuration of the model based
on root mean square error (RMSE) and select the model
parameters that produce the minimum RMSE as the model
parameters which will be used in the test phase. In this
experiment, np = nz = 6.

C. PERFORMANCE COMPARISON
This paper uses RMSE, Outage Rate (OR) [21] and DTW
[20] to evaluate the performance of the prediction model.
RMSE captures the overall signal fidelity; OR measures the
frequency of times when the predicted value falls outside the
95% confidence interval, and the larger the value is, the lower
the prediction accuracy is [21]; DTW reflects the similarity
between two time series, the smaller the value is, the greater
the similarity possibility of two time series is [20].

We compare the performance of proposed model in three
types where the input parameter of the first type is only
FQ, the input parameters of the second type are FQ and
RE, and the input parameters of the third type are FQ, RE,
and ME. Among them, we adopt OSVPH as FQ assessment
method. Comparison results of OR, DTW, and RMSE are
shown in Table 3. From Table 3, the performance of the
prediction model with three inputs consisted of FQ, RE and
ME is significantly better than other models.

In this paper, FR image quality assessment (IQA) methods
PSNR, SSIM [29] and MS-SSIM [30], RR IQA methods
STRRED [13] and OSVPH, NR IQA method NIQE [31] are
used as assessment method for FQ. In this paper, taking FQ,
RE and ME as inputs, RMSE, OR, and DTW are used to
compare the median performance of the prediction model by
different FQ assessment methods. The results of the com-

TABLE 3. Median Performance comparison of three different input
parameter models in LIVE-NFLX database.

parison are shown in Table 4, where the best performance is
marked with red.

In order to compare the performance of prediction models
using different FQ assessment methods, we use F-test method
[32] to estimate the statistical significance of the proposed
model in comparison to the state-of-the-art FQ assessment
methods conducted on LIVE-Netflix mobile VQA database.
Ftest is performed by computing the squared ratio of RMSE
values of a metric A and a metric B, which is defined as
equation (12).

Ftest =
(RMSEA)2

(RMSEB)2
(12)

Table 5 shows the performance of prediction model using
different FQ assessment methods. ‘‘1’’ indicates that perfor-
mance of the prediction model with FQ assessment method
on column vector is superior to that with FQ assessment
method on row vector in statistical results (95% certainty);
’’0’’ indicates that performance of the prediction model with
FQ assessment method on column vector is equivalent to
that with FQ assessment method on row vector in statistical
results (95% certainty); ‘‘−1’’ indicates that performance of
the prediction model with FQ assessment method on row
vector as input is superior to that with FQ evaluation method
on column vector in statistical results (95% certainty).

From Table 4 and Table 5, the performance of the model
using OSVPH as FQ assessment method is relatively good,
which is better than the model with PSNR, SSIM and
MS_SSIM as FQ assessment method, and is comparative
to the performance of the model with NIQE and STRRED

TABLE 4. Comparison of median performance of prediction model using
different video FQ assessment methods.

TABLE 5. Statistical performance comparison of RMSE of prediction
model using different fq assessment methods.
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FIGURE 9. The comparison between the predicted and the ground truth QoE in different playout
pattern. (a) pattern 0 (RMSE = 0.0004; OR = 0; DTW = 0.7554). (b) pattern 1(RMSE = 0.0113; OR = 0;
DTW = 9.9168). (c) pattern 2 (RMSE = 0.0026; OR = 0.2755; DTW = 4.6064). (d) pattern 3 (RMSE =

0.0244; OR = 2.5641; DTW = 9.7173). (e) pattern 4 (RMSE = 0.0349; OR = 0; DTW = 12.2094). (f)
pattern 5 (RMSE = 0.0870; OR = 8.9219; DTW = 54.8420). (g) pattern 6 (RMSE = 0.0139; OR = 0.8000;
DTW = 11.9976). (h) pattern 7 (RMSE = 0.0291; OR = 8.6758; DTW = 21.0805).

TABLE 6. Performance comparison of different prediction models.

as FQ assessment method.In this paper, we compare the
performance of the proposed model with the NARX model
[20] and GH model [18], the results of RMSE, OR and DTW
are shown in Table 6. The best performance is marked in red.

TABLE 7. Statistical results of RMSE performance for different prediction
models.

The statistical performance of different prediction models are
shown in Table 7. From Table 6 and Table 7, the performance
of the proposed model is better than other models.
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In this paper, we use the proposed model to test different
pattern of videos and show the predicted QoE in 95% con-
fidence interval (CI) and the ground truth in Fig. 9. Fig. 9
(b)-(g) show that the proposed model can accurately predict
the effect of rebuffering event on subjective QoE. Fig. 9(f)
shows that the proposed model can effectively predict where
there are two rebuffering events, and Fig. 9 (e)-(h) show that
the model can capture bitrate drop accurately.

VI. CONCLUSION
In order to predict the impact of video impairment events
such as bitrate drop and rebuffering on QoE, we have pro-
posed a continuous QoE prediction model. The inputs of
the prediction model consist of frame quality, rebuffering
event state, and the vector characterizing memory effect,
the output of the proposed model is predicted QoE. The pro-
posed model uses a block-structured nonlinear Hammerstein-
Wiener model. Experimental results tested on the LIVE-
Netflix mobile video database show that the predicted results
of the proposed model is well consistent with subjective QoE,
and can accurately predict subjective QoE, which can provide
a reference for the performance evaluation of wirelss video
streaming control strategy.
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