IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 29, 2019, accepted May 12, 2019, date of publication May 28, 2019, date of current version June 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919498

Resolving Logical Contradictions in Description
Logic Ontologies Based on Integer Linear
Programming

QIU JI“', KHAOULA BOUTOUHAMI?*3, AND GUILIN QI?3

!'School of Modern Posts & Institute of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
3Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing 211189, China

Corresponding author: Khaoula Boutouhami (kboutouhami @ gmail.com)

This work was supported in part by the National Science Foundation of China under Grant 61602259, in part by the Research Foundation
for Advanced Talents of Nanjing University of Posts and Telecommunications under Grant NY216022, in part by the National Key R&D
Program of China under Grant 2018YFC0830200, in part by the National Natural Science Foundation of China Key Project under Grant
U1736204, in part by the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant 16KJB520033, and in
part by the National Engineering Laboratory for Logistics Information Technology, YuanTong Express Co., Ltd.

ABSTRACT When resolving logical contradictions in ontologies, Reiter’s hitting set tree algorithm is often
applied to satisfy the minimal change principle. To improve the efficiency, the researchers have proposed
various algorithms by using a scoring function, defining new semantics or applying some heuristic strategies.
However, these algorithms either sacrifice minimal change or are designed for less expressive ontologies like
DL-Lite. In this paper, we propose a mathematic approach based on integer linear programming, which is an
optimization problem of maximizing or minimizing a linear objective function, to deal with DL ontologies.
Specifically, we define the integer linear programming-based model to resolve logical contradictions.
To realize the model, we propose one algorithm to find a cardinality-minimal solution and two algorithms
dealing with weighted ontologies. Our experiments are conducted over 70 real-life and artificial ontologies
to compare our algorithms with those hitting set tree-based ones. Through the experiments, the prominent
efficiency and effectiveness have been exhibited by our algorithms. They usually take about 0.4 s to find
a solution while others spend more than 100 s in many cases. The experimental results also show that the
first two algorithms could find the cardinality-minimal solutions and those with a minimal sum of weights,
respectively.

INDEX TERMS Logical contradictions, inconsistency handling, ontology repair, semantic web, integer

linear programming.

I. INTRODUCTION

In the Semantic Web, ontologies provide shared and precisely
defined terms and play a key role in the formal represen-
tation of knowledge [1], [2]. Since building ontologies is
an error-prone effort and ontologies often evolve over time,
logical contradictions are always unavoidable in many appli-
cation scenarios like ontology construction, ontology revision
and ontology mapping [3]-[6]. Generally, logical contradic-
tions consist of inconsistency and incoherence. An ontology
is inconsistent iff it has no model, namely it is inconsistent

The associate editor coordinating the review of this manuscript and
approving it for publication was Wajahat Ali Khan.

in the first-order sense. An ontology is incoherent iff there
exists some unsatisfiable concept which is interpreted as an
empty set. Usually, incoherence occurs in terminologies of
ontologies and inconsistency is caused by adding instances
of concepts or relations to an incoherent ontology. Since the
conclusions derived from an inconsistent ontology using the
standard reasoning may be completely meaningless, deal-
ing with logical contradictions becomes an important and
meaningful task.

When resolving logical contradictions, it is always desired
that the proposed approaches satisfy the minimal change
principle. A commonly used approach (e.g., [7]-[9]) to
reach this goal is utilizing Reiter’s Hitting Set Tree (HST)

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

71500

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3481-5016

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

IEEE Access

algorithm [10]. It first computes a set of or all of the minimal
sets of axioms that preserve the incoherence or inconsistency
and then construct a HST to find a minimal set of axioms for
removing. Since it is very expensive to expand all branches
in a HST, the researchers provide algorithms to reduce the
search space by using scoring function or considering weights
(e.g., [5]). Other algorithms define new semantics (e.g., [11])
to avoid computing minimal sets of axioms, or applying
some heuristic strategies to find a solution that may not be
minimal (e.g., [12], [13]). However, these algorithms either
sacrifice the minimal change principle or are designed for less
expressive ontologies like DL-Lite.

In this paper, we propose a mathematic approach based on
integer linear programming (ILP), which is an optimization
problem of maximizing or minimizing a linear objective
function. The ILP-based models have been used for many
tasks in the Semantic Web such as fuzzy ontology reasoning
(e.g. [14], [15]), ontology matching (e.g. [16], [17]) and
knowledge base embeddings (e.g. [18]), because it is very
effective in solving problems with complex constraints. To
be specific, we first define the ILP-based model to resolve
logical contradictions. To realize the model, we then pro-
pose one algorithm to find a cardinality-minimal solution
and two algorithms dealing with weighted ontologies. To
see the performance, a comprehensive evaluation has been
conducted over 70 ontologies which are real-life ontologies
or artificial ones constructed by our generator. We compare
our algorithms with those HST-based ones w.r.t. the effi-
ciency and effectiveness. Through the experimental results,
it is revealed that our algorithms have shown their promi-
nent efficiency and effectiveness. They often took around
0.4 seconds to find a solution while others spent more than
100 seconds in many cases. The results also show that
the first two algorithms could find the cardinality-minimal
solutions and those with minimal sum of weights respec-
tively. Besides, all found solutions have been verified to
be correct.

In summary, our
contributions:

contains the following

paper

1) We provide a general model to resolve logical contra-
dictions based on integer linear programming.

2) We propose one algorithm to find a cardinality-minimal
solution and two algorithms to keep the information of
weights as much as possible.

3) An extensive evaluation is conducted over 70 ontolo-

gies to see the performance of our algorithms w.r.t. the
effectiveness and efficiency.

The rest of this paper is organized as follows: Section II
provides a preliminary introduction and Section III presents
our proposed approach by introducing the model and three
algorithms. The experiment preparing and evaluation results
are reported in Section IV and Section V separately.
Finally, we conclude the paper and provide future work in
Section VIIL.

VOLUME 7, 2019

Il. PRELIMINARIES
In this section, we provide a brief introduction to Description
Logics (DLs) and the key notions of logical contradictions

and integer linear programming. More details can be found
in [19]-[21].

A. DESCRIPTION LOGICS

In DLs, there are three kinds of entities: concepts represent-
ing sets of individuals, roles representing binary relations
between the individuals and individual names representing
single individuals in the domain. A DL ontology O = (7, A)
consists of a finite set 7 (TBox) of terminology axioms and
a set A (ABox) of individual axioms. A TBox includes
concept axioms and role axioms. Concept axioms have the
form C £ D where C and D are (possibly complex) concept
descriptions.1 Role axioms are expressions of the form RCS,
where R and S are role descriptions. An ABox contains
concept assertions of the form C(a) and role assertions of the
form R(a, b), where C is a concept, R is a role, a and b are
individual names.

The semantics of DLs is defined via a model-theoretic
semantics, which explicates the relationship between the lan-
guage syntax and the model of a domain: An interpretation
T = (AT, .T) consists of a non-empty domain set AT and
an interpretation function L, which maps from concepts and
roles to subsets of the domain and binary relations on the
domain respectively. An interpretation Z satisfies a concept
axiom C C D (a concept assertion C(a)) if cfcpt (aIeCI,
respectively). It satisfies a role axiom R C S (a role assertion
R(a, b)) if RT < ST ((a%, bT) € RZ, respectively). An inter-
pretation 7 is called a model of an ontology, iff it satisfies each
axiom in the ontology. A named concept C in an ontology O is
unsatisfiable iff, for each model Z of O, CZ = . An ontology
is incoherent, iff there exists an unsatisfiable named concept
in it. An ontology is inconsistent iff it has no model. We use
the general concept of logical contradictions to indicate the
unsatisfiability, incoherence or inconsistency.

B. LOGICAL CONTRADICTIONS IN DESCRIPTION LOGICS
Usually, minimal sets of axioms for explaining logical con-
tradictions are often required to be computed first and then
a solution of axioms needs to be found such that removing
these axioms can resolve the contradictions. In the following,
we provide the key notations that are useful to explain or
resolve logical contradictions.

Definition 1 ((MUPS) [22]): Let C be an unsatisfiable
concept in an ontology O. An ontology O'CO is a mini-
mal unsatisfiability-preserving sub-ontology (MUPS) of O
w.r.t. C if C is unsatisfiable in O" and satisfiable in every
sub-ontology 0" C O'.

A MUPS of O w.r.t. C is a minimal sub-ontology of O
in which C is unsatisfiable. MUPSs are useful for relating

A complex concept is a concept that is formed by some atomic concepts
and constructors such as conjunction 1 and disjunction LI.

71501

IEEE Access

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

sets of axioms to the unsatisfiability of specific concepts. For
relating sets of axioms to the incoherence of an ontology in
general, a minimal incoherence-preserving sub-ontology is
defined.

Definition 2 ((MIPS) [22]): Let O be an incoherent ontol-
ogy. An ontology O’ CO is a minimal incoherence-preserving
sub-ontology (MIPS) of O if O is incoherent and every
sub-ontology O”CO' is coherent.

A MIPS of O is a minimal incoherent sub-ontology of O.
Note that a MIPS must be a MUPS, but not vice versa.

Definition 3 ((MIS) [23]): An ontology O' C O is a
minimal inconsistent sub-ontology (MIS) of O, if O’ is incon-
sistent and every sub-ontology O” C O’ is consistent.

To conclude, a logical contradiction of an ontology can
be a MUPS, MIPS or MIS. Practical algorithms to calculate
MUPS, MIPS and MIS of a given ontology can be found
in [24]. For convenience, we use a conflict to indicate a
MUPS, MIPS or MIS. In general, resolving the given logical
contradictions in an ontology is to compute a solution based
on the corresponding conflicts such that removing the axioms
in the solution could break each conflict. Breaking a conflict
means removing at least one axiom from the conflict. Such a
solution is also called a diagnosis [6].

C. INTEGER LINEAR PROGRAMMING

Linear programming is used to obtain the most optimal solu-
tion for a problem with given constraints. A linear program
is an optimization problem of maximizing or minimizing a
linear objective function of variables that are subject to a set
of constraints expressed as linear equations or inequations.
When an optimization problem can be modeled as a linear
program whose variables are forced to be integers, then the
program is called integer linear programming (ILP).?

In this paper, we use the pure 0-1 ILP. Given n boolean
variables and m linear constraints, the problem of 0-1 ILP is
to find an assignment of either 0 or 1 to the variables such that
all constraints are satisfied. A 0-1 ILP optimization problem
can be stated in the following general form:

n
Minimize /Maximize 7 = ex! = Z Wjxj (1a)
j=1
subject to Ax” > b’ (1b)
and x; € {0, 1} j=1,...,n (1c)

Here, x = (x1, ..., x,) represents the set of decision variables
to be determined and each element x; can have value 0 or
l.c = (Wi,...,wp)and b = (by, ..., b,) are vectors of
coefficients and each element of b is an integer. Aisam X n
matrix of coefficients. The values for the coefficients will be
determined by specific application scenarios.

The objective function (la) describes a criterion (or a
measure) that we wish to minimize (e.g., cost) or maxi-
mize (e.g., profit). The limitations that restrict our choices
for decision variables are described using mathematical

2https://en.Wikipedia.org/wiki/Integer_linear_programming

71502

constraints (1b). In many practical problems, people’s deci-
sions are often restricted by the limitations like resource
limitation and physical, strategic or economical constraints.
It is noted that, the complexity of solving an ILP problem is
NP-complete and it depends on the number of variables [25].

Ill. THE ILP-BASED APPROACH
In this section, we define the model of resolving logical
contradictions and also provide specific algorithms.

A. MODEL FOR RESOLVING LOGICAL CONTRADICTIONS
To satisfy the minimal change principle, we define an incision
function below. This is inspired by the incision function given
in [5] to revise an ontology.

Definition 4 ((Incision Function)): Let O be an ontology
and CONF (O) be a set of conflicts in O. An incision function
o for O is a function 22 — 20 such that:

(i) o(CONF(0)) S U onreconr(o) conf';
@ii) if conf eCONF (O), then conf No (CONF (0)) # @.

The incision function for O selects a set of axioms to break
every conflict. The first condition ensures that the selected
axioms (i.e. axioms in o (CONF(0O))) belong to the union
of all of the given conflicts. Namely, we do not remove
any axiom that does not belong to any conflict. The second
condition shows that 6 (CONF (0O)) must contain at least one
axiom from each conflict. This ensures every conflict could
be broken. With the two conditions, once the axioms in
o (CONF (0)) are removed from O, all contradictions in the
given set CONF (O) will not exist any more.

Similar to the work in [5], we define minimal incision
function to select the minimal set of axioms for removing.

Definition 5 (Minimal Incision Function): Let O be an
ontology and CONF (O) be a set of conflicts in O. An incision
function o for O is minimal if there is no other incision
function o’ for O such that ¢’ (CONF(0)) C c(CONF(0)).

The minimal incision functions may contain different num-
ber of axioms. To make the number of selected axioms mini-
mal, a cardinality-minimal incision function is defined.

Definition 6 (Cardinality-Minimal Incision Function):
Let O be an ontology and CONF(O) be a set of conflicts
in O. An incision function o for O is cardinality-minimal
if there is no other incision function ¢’ for O such that
|o’(CONF(0))| < |6 (CONF(0))|.

Clearly, a cardinality-minimal incision function is always
a minimal incision function.

To find a specific incision function, we apply 0-1 ILP by
the following definition.

Definition 7 (ILP Model): Let CONF (O) = {conf, confa,
...,conf,} be a set of conflicts in an ontology O
and S,,ion = {axy, axa, ..., ax,} include all distinct axioms
in the conflicts. For each axiom ax; (j = 1, ..., n) in Suion,
a binary variable x; is associated, whose value can be 0 or 1.
The problem of resolving logical contradictions in CONF (O)
is to find an assignment to all variables which can be modeled

VOLUME 7, 2019

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

IEEE Access

Algorithm 1: The ILP-Based Algorithm - Flat Case

Data: An ontology O and a set of conflicts CONF (O)
Result: A solution of axioms

1 begin

2 cC:=0

3 Sunion = UconfeCONF(O) conf

4 X = {xj|axj € Sunion, J =1, ..., [Sunion}
5 7= ijeX Xj

6 for conf e CONF (0O) do

7 Xeonf = {xjlax; € conf, x; € X}

8 Ci = (ijganf xj) >1

9 C :=CU{c;}

10 Sussi = ILP_Solver(z, C, min)

11 o1(CONF(0)) := {axj|(xj = 1) € Sussi}
12 return o1 (CONF(0))

13 end

by the following ILP.

n
Minimize 7z = Z Wixj (2a)
Jj=1

n
subject to c; : Za,-j)qi >1, i=1,...,m. (2b)

j=1
Here, w; and a;; are coefficients to be determined by specific
algorithms given in next section. Normally, a;; has value 1 if
ax; € conf;, and 0 otherwise. If an axiom in a conflict is not
removable for some reason, its corresponding variable will be

set to be O directly.

In Definition 7, each conflict corresponds to a constraint
which ensures at least one axiom should be removed from
each conflict. Once all coefficients have been determined,
a traditional ILP solver could be applied to find an assignment
to all variables under the given constraints. In this work,
we use the commercial linear programming tool Cplex which
is an optimization software developed by IBM ILOG.?

B. ALGORITHMS FOR RESOLVING LOGICAL
CONTRADICTIONS

Since the coefficients in Definition 7 have not been deter-
mined, no specific incision function can be defined up to now.
In the following, we propose three algorithms to resolve log-
ical contradictions by computing specific incision functions.

1) ILP-BASED ALGORITHM FOR RESOLVING LOGICAL
CONTRADICTIONS - FLAT CASE
The first algorithm (see Algorithm 1) takes an ontology and a
set of conflicts as inputs and outputs a solution with selected
axioms for removing.

In the algorithm, all distinct axioms in the conflicts are
obtained each of which is associated with a binary variable

3 https://www.ibm.com/analytics/cplex-optimizer

VOLUME 7, 2019

(see lines 3 and 4). To construct the objective function, all
axioms are regarded as the same important and thus 1 is
assigned to the coefficients in the function (see Line 5). After
that, all constraints can be constructed by assuming all axioms
are removable (see lines from 6 to 9). Namely, once an axiom
axj is contained in a conflict conf;, its variable x; should
appear in the corresponding constraint. Afterwards, the func-
tion ILP_Solver(z, C, min) is invoked to generate an optimal
assignment (see Line 10), where the parameter min indicates
minimizing the objective function. The returned assignment
Sassi 18 the first one found by the ILP solver. Based on this
assignment, we can find those axioms whose corresponding
variables have value 1 to form a final solution o1 (CONF (O))
(see Line 11). Note that, if the set of conflicts includes all
MIPS or MIS in O, then removing the axioms in the final
solution makes O coherent or consistent respectively.

An example is given below for better understanding
Algorithm 1.

Example 1: Suppose we have an ontology O =
{ai, ap, a3, a4, as, ag, a7, ag, ag, ajp} and the set of all MIPS
in O: CONF (O) = {conf1, confa, confs, confs, confs}, where
confi = {ai, az, az}, confo = {ai, az, as}, confs = {ai, az},
confy = {az, as, ag}, confs = {a7, ag}. We can obtain S,jpn=
{a1, az, a3, aa, as, as, a7, ag} and associate a variable to each
axiom in the set. The objective function and constraints can
be constructed as below:

Z=X1+x2+ X3+ x4+ x5+ x6+x7+ X8
cr s xp+x+x3>1

2 i x1+x+xs>1

3 x1+x73>1

cs t xp+xs+x>1

cs » x7+xg>1

By applying ILP_Solver(z, C, min), we can find an assign-
ment consisting of x; = 1, x7 = 1 and O for other variables
and then obtain the final solution o1 (CONF (0)) = {a», a7}.
We can see that a, breaks three conflicts (i.e., confi, conf, and
confy) and a7 breaks the two remaining conflicts. Namely,
removing the axioms in the solution could resolve all given
contradictions.

Proposition 1: Algorithm 1 computes a cardinality-
minimal incision function o7j.

Proof: We first prove o7 is an incision function accord-
ing to the two conditions given in Definition 4.

(i) According to Algorithm 1, we know that Sz is
an assignment of 0 or 1 to all variables in X and each
variable has a corresponding axiom in Syin. Clearly,
{axj|(xj = 1) € Sussi} S Sunion- Namely, o1(CONF (0)) C
Ueconreconr o)y conf -

(ii) For a conflict conf € CONF(0O), Algorithm 1 con-
structs a constraint (Zx-eXm, > x;) > 1 (see Line 8) which
should be satisfied by the found assignment S,g;. It means
that at least one variable in Xy, has been assigned to

71503

IEEE Access

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

Algorithm 2: The ILP-Based Algorithm - Weighted Case
Data: A weighted ontology O and a set of conflicts

CONF(0)
Result: A solution of axioms

1 begin

2 cC:=0

3 Sunion = UconfECONF(O) conf

4 X = {xjlaxj € Sunion, j =1, ..., |Sunion|}
s | 2= Lgex Wi

6 | for confcCONF(O)do

. Xeonf = {xjlax; € conf, xj € X}

8 Ci = (U exoy) 2 1

9 C = C U{c;}

10 | Sagi := ILP_Solver(z, C, min)

1 02(CONF(0)) := {axj|(xj =1) € Sussi}
12 return o»(CONF (0))

13 end

be 1 according to S,;. Thus, at least one axiom in conf
should be included in {axj|(x; = 1) € Sus}). Namely,
confNo1(CONF (0)) # .

Second, we prove o7 1is cardinality-minimal. In
Algorithm 1, the objective function actually computes the
number of variables with value 1. As each variable corre-
sponds to an axiom in Syuion, the optimization purpose of
minimizing z under the given constraints is to find a minimal
number of axioms for breaking all given conflicts. It also
means to find a cardinality-minimal solution o1 (CONF (0)).

Therefore, o is a cardinality-minimal incision function.
O

2) ILP-BASED ALGORITHM FOR RESOLVING LOGICAL
CONTRADICTIONS - WEIGHTED CASE

To deal with the ontologies with weights, we intend to resolve
logical contradictions by deleting axioms as minimal as pos-
sible and keeping information of weights as much as possible.
Assume each axiom ax; has a weight w; € (0, 1]. A straight-
forward way to make use of weights in an ILP program is to
modify the objective function in Algorithm 1 to the following

function:
.= Z Wi Xi
xieX

Algorithm 2 presents the weighted case, where the weights
can be used as the coefficients in the objective function (see
Line 5). Since all axioms are also considered as remov-
able, the constraints are constructed in a similar way as
Algorithm 1. It is noted that, as a variable can only have value
0 or 1, the optimization objective is actually minimizing the
sum of weights for those axioms in a final solution.

Proposition 2: Algorithm 2 computes a minimal incision
function o7.

Proof: We can prove o> is an incision function in a

similar way as Proposition 1. Now, we prove o7 is a minimal

71504

incision function. Suppose we can find another incision
function o’ to resolve the contradictions in CONF(O) such
that ¢’(CONF(0O)) C 02(CONF(0)). We then obtain
2axieo (CONFO) Wi < 2avicor(CONF(0y) Wi- This contra-
dicts with the optimization objective which is to minimize
ine x wi.x; (namely minimize the sum of weights for those
axioms in the final solution). Therefore, ¢’ does not exist and
o, is a minimal incision function.

a

3) ILP-BASED ALGORITHM FOR RESOLVING LOGICAL
CONTRADICTIONS-WEIGHTED CASE

WITH THRESHOLD

In many application cases like ontology mapping repair [16]
and uncertain reasoning in possibilistic logic [21], it is desired
to keep those axioms with more important or higher weights
by using a threshold. Namely, only the axioms with the
weights that are no more than the threshold could be removed.
Thus, we propose Algorithm 3 to take the threshold into
consideration.

In this algorithm, the objective function is constructed in
the same way as Algorithm 2 (see Line 6). Before construct-
ing the constraints, we need to know which axioms are remov-
able and obtain the corresponding variables X,emovapie (see the
lines from 7 to 9). As we would like to keep those axioms
with weights above a threshold, all other axioms are regarded
as removable. In such cases, we will fail to find a solution to
resolve all given contradictions if there exists a conflict conf
such that X, has no overlapping with X,emovapie. It means
all axioms in conf are not removable and this conflict cannot
be broken. If this happens, an empty set will be returned (see
lines from 11 to 13). Otherwise, a constraint could be success-
fully constructed for the removable axioms in a conflict (see
Line 14). Namely, all other variables have been determined
to have value 0.

In order to avoid the case of failing to find any solu-
tion by Algorithm 3, choosing an appropriate threshold is
critical. The assignment of this value must ensure that the
minimum value of the weights associated to the axioms
in each conflict should be no more than «. In this way,
we can ensure that at least one axiom in each conflict
is removable. Such a threshold can be formally defined
as below.

Definition 8 (Effective Threshold): Given an ontology O
and a set of conflicts CONF(O), Synion 1s used to indicate
the union of all given conflicts. An effective threshold o
for resolving the given conflicts should satisfy the following
condition for any conf; € CONF(O):

a > min({w; | ax; € conf;}).

Definition 8 means a threshold is effective if it is no less
than each minimal weight in a conflict. In another word,
if the threshold is less than the minimal weight in a conflict,
it means that all axioms in this conflict cannot be deleted and
we fail to resolve this conflict.

VOLUME 7, 2019

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

IEEE Access

Algorithm 3: The ILP-Based Algorithm
Case With Threshold

- Weighted

Data: A weighted ontology O, a set of conflicts
CONF (0) and a threshold o
Result: A solution of axioms
1 begin
Cc:=9
Xremovable =9
Sunion :=Ueonf cconr (o) conf
Xail = {xj|axj € Sunion> J =1, ..., |Sunion|}
zi= ZXjEXa[[Wwj.Xj
for ax; € Sypion do
if w; < o then
L Xremovable = Xremovable Y {x/}

o X NN A W N

10 for conf € CONF(0) do

11 Xeons = {xjlax;j € conf, x;j € Xa)
12 if Xconf eremovable = () then

13 | return ¢/

14 Ci = (ije(Xconj ﬂXremowzble) xl) 2 l
15 | C:=CU{c}

16 Sassi := ILP_Solver(z, C, min)

17 | 03(CONF(0)) = {axj|(xj = 1) € Saysi}
18 return o3(CONF (0))

19 end

To find such a threshold, we could use the minmax measure
to find its lowest bound:

o = max

(fw | w = min({w; | ax; € ch)})
ceCONF(0)

Namely, « is the maximal value among all weights that are
minimal in a conflict.

Example 2: Let us consider again the ontology from Exam-
ple 1. Suppose a weight is attached to each axiom in the
conflicts as follows:

wi = 0.11, wy =0.55, w3 =0.19, wy = 0.77,

ws = 0.30, we =0.80, wy =0.95, wg = 0.68.

Then we can determine the lowest bound of « by applying the
minmax measure:

a = max({min({0.11, 0.55, 0.19}), min({0.11.0.95}),
min({0.11, 0.55, 0.77}), min({0.55, 0.30, 0.80}),
min({0.95, 0.68})})

= max({0.11, 0.30, 0.68})
= 0.68

Proposition 3: Algorithm 3 computes an incision function
o3 if the input « is an effective threshold.
Proof: According to the definition of an incision func-
tion, we prove that o3 satisfies the two conditions in the
following.

VOLUME 7, 2019

(i) Since S, is an assignment to assign 0 or 1 to all
variables in X,;; and each variable has a corresponding axiom
in Synion, it is clear that {ax;j|(x; = 1) € Susi} S Sunion-
Namely, 03(CONF(0)) C Uconf€CONF(O) conf .

(i) As an effective threshold is no less than the minimal
weight in any conflict, it means at least one axiom with the
minimal weight in a conflict is removable and the corre-
sponding variable should be contained in X;emovaple- Namely,
for conf € CONF(0), we have Xconr () Xremovavie # 9.
Since the constraint (3 (x,,c M Xumosaie)) = 1 MUSt be
satisfied, at least one variable in Xcons () Xremovabie could
be associated with value 1 by the solver. Thus, at least one
axiom in conf will be included in o3(CONF (O)) and we have
conf No3(CONF (0)) # D. O

IV. EXPERIMENT PREPARING

This section introduces the experimental settings, real-life
data sets and artificial data sets respectively. All proposed
algorithms have been implemented with OWL API* which is
widely used in ontology-based applications. The implementa-
tion, data sets and the experimental results can be downloaded
from a website.’

A. EXPERIMENTAL SETTINGS

Our evaluation is performed on a laptop with 2.4 GHz Intel(R)
Core(TM)2 Duo CPU and 8.0 GB of RAM using 64 bit
operating system Windows 7. The maximum heap space is
set to 4 GB and a time limit of 1000 seconds is set to compute
MUPS for an unsatisfiable concept® or compute a solution to
resolve the given contradictions for practical consideration.
We use the relevance-based ontology debugging algorithm
given in [26] to compute MUPS.

To better see the performance of our algorithms, we com-
pare them with the traditional ones using the hitting set
tree (HST) algorithm to satisfy the minimal change princi-
ple. For simplicity, the following abbreviations are used to
indicate all algorithms mentioned in this section.

o Algl: Algorithm 1 - flat case.

o Alg2: Algorithm 2 - weighted case.

o Alg3: Algorithm 3 - weighted case with threshold.

o Hst: HST algorithm.

o HstScore: HST algorithm plus scoring function [5].

o HstSwoop: HST algorithm considering weights [8].

o HstWeight: HST algorithm plus weights [5].

Hst applies the HST algorithm directly on all given con-
flicts. HstSwoop finds a solution with minimal sum of
weights by modifying the HST algorithm to use the weights
of axioms. It is implemented in SWOOP [27] and we update
it for being compatible with the new version of OWL APIL
HstScore applies the HST algorithm to the sets of axioms

4http://owlapi.sourceforge.net/

5 https://github.com/qiuji123/ilpConflicts

6Although our approach can be applied to deal with incoherence or
inconsistency, we only focus on the incoherence since it is similar to deal
with the latter by changing the input conflicts.

71505

IEEE Access

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

each of which contains the axioms with the highest score’ in

a conflict. HstWeight applies the HST algorithm to the sets
each of which contains the axioms with the lowest weight in
a conflict.

B. REAL-LIFE DATA SETS

In order to test Algl, we select 6 real-life incoherent
ontologies containing relatively more MUPS from the data
set given in [24]. Among them, ontologies CHEM-A and
miniTambis, marked as O,, and O,¢ separately, are often
used for ontology debugging or repair tasks. Ontology
km1500 (marked as O,3) was originally generated by using
the ontology learning algorithms. This ontology contains
1375 unsatisfiable concepts many of which have more than
200 MUPS. Other ontologies were constructed by merg-
ing two source ontologies and a mapping between them,
namely ontologies AROMA-cmt-cocus, LogMapLt-cocus-
crs_dr and MaasMatch-cmt-sigkdd (marked as O,;, O,4
and O,s respectively) containing highly overlapping MUPS.
Such an ontology has quite a lot unsatisfiable concepts and
each concept may have more than 100 MUPS.

To test our algorithms considering weights, we use the
real-life ontologies provided by OAEI (Ontology Align-
ment Evaluation Initiative) in 2018 since the axioms in
a mapping are often associated with weights. OAEI is a
well-known activity in ontology matching area to provide
a platform for comparing various ontology matching sys-
tems and we use the ontologies provided by the confer-
ence track.® In this track, there are 16 source ontologies
and 12 systems to provide matching results. We merge a
mapping with the corresponding source ontologies by trans-
lating it to ontology axioms. We then keep those consistent
but incoherent merged ontologies with mappings generated
by the systems KEPLER, Lily, SANOM and XMap due to
different weights associated to the correspondences in a
generated mapping. These merged ontologies have similar
structure of MUPS and thus we randomly select 9 ontolo-
gies. As the source ontoloiges are always regarded as more
reliable than their mappings, the weight 1.0 is associated to
the axioms in the source ontoloiges. Additionally, we asso-
ciate a random weight in (0, 1] to each axiom in O3
(i.e., km1500-5000) for testing the scalability of the com-
pared algorithms.

C. ARTIFICIAL DATA SETS

We also provide artificial incoherent ontologies to exhibit
various relations among MUPS. Figure 1 presents four typ-
ical solution patterns with different relations of MUPS. For
convenience, the four patterns are marked as Pattern1, Pat-
tern2, Pattern3 and Pattern4 separately. We explain how
to generate ontologies in the following while the specific
information about the generated ontologies can be found in

7A score of an axiom means the frequency that the axiom appears in all
given conflicts.
8 http://oaei.ontologymatching.org/2018/results/conference/index.html

71506

[coooO00]||[cococo0a]||[ccocoal]||[co0o®0 O]
[Co@OoO0]||[cococo0a]||[ccocoa]||[c0oo0 @]
[C@00O]||[c@eocoo]||[cecoa]||[c@00 @]
[CO0O0O0@]||/[0c@oco00]||[c@ecod]||[c@00 @]
[0co0o0®O]|l|[c0c0c@o]||[c@ecoo]||[c@00 O]
Pattern1 Pattern2 Pattern3 Pattern4

FIGURE 1. The patterns of solutions in the incoherent ontologies
constructed by our generator.

Section V. In Figure 1, the circles indicate logical axioms
and a rectangle presents a MUPS. The circles with numbers
indicate those axioms that may appear in a solution satisfying
the minimal change principle. Those circles with the same
number indicate the same axiom and other circles represent
mutually different ones. Since our algorithms are independent
on the MUPS patterns, we use a basic and commonly used
pattern to generate MUPS. Namely, a concept is unsatisfiable
if it is a subclass of two disjoint concepts [28].

Specifically, Pattern1 can be used to construct iso-
lated MUPS, namely no axioms are shared by any two
MUPS in an ontology. Our generator starts with an empty
ontology and creates new concepts and axioms when
constructing a new MUPS. Other patterns are used to
generate overlapping MUPS with a desired number of
axioms in a cardinality-minimal solution. For example,
if a user prefers to generate a set of MUPS containing a
cardinality-minimal solution S, then |S| is the desired number
of axioms. For convenience, we use cardMin to indicate such
a number.

We generate the overlapping MUPS with Pattern2, Pat-
tern3 or Pattern4 in a similar way. Namely, to generate m
overlapping MUPS with cardMin = »n, we need to construct
n groups of MUPS such that the number of MUPS in all
groups equals to m and the MUPS in the same group shares
one axiom. It is noted that, the MUPS in any two groups gen-
erated by Pattern2 have no overlapping. The only difference
between Pattern2 and Pattern3 is that Pattern3 requires
that there is one MUPS containing the shared axioms from
two groups. For Pattern4, there are two special groups of
MUPS (marked as G; and G»). If G| contains more MUPS
than Go, it is also required to have another axiom shared
by |G1| — 1 MUPS in G; and one MUPS in G;. In this
way, there exists a MUPS containing one axiom with the
highest score and another axiom that should be included in
a cardinality-minimal solution.

V. EXPERIMENTAL RESULTS

In this section, we provide an exhaustive evaluation of our
proposed algorithms with respect to efficiency and effec-
tiveness. The effectiveness measures the number of removed
axioms and the correctness of solutions. Specifically, we first
compare the algorithms without considering weights based
on artificial ontologies with isolated MUPS and then ontolo-
gies with overlapping MUPS. Afterwards, we compare
other algorithms based on the real-life ontologies with
weights.

VOLUME 7, 2019

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

IEEE Access

1000000 = n Pr

100000

10000

1000 = ——Algl
| e,

HstScore

Time (ms)

10

1

10 1 12 13 14 15 16 17 18 19 20
Number of MUPS (size of a MUPS=3)

1000000 . s s s B B

100000
10000

1000 | p=—" ——Algl

nd —#-Hst

Time (ms)

100

10 HstScore

1
10 1 12 13 14 15 16 17 18 19 20
Number of MUPS (size of a MUPS=4)

1000000 =8 o~ o o~ o~ o~ -
100000

10000

1000 ——Algl
100 —#-Hst

Time (ms)

10 HstScore

10 1 12 13 14 15 16 17 18 19 20
Number of MUPS (size of a MUPS=5)

FIGURE 2. The time to find one solution for different number of MUPS
with pattern1.

A. RESULTS OF ONTOLOGIES WITH ISOLATED MUPS

This experiment is mainly used to see the performance of
the algorithms without using weights, i.e., Alg1l, Hst and
HstScore, by varying the number of MUPS and the size of a
MUPS. Figure 2 illustrates the experimental results based on
the ontologies generated with Pattern1. In each sub-figure,
all MUPS in the ontologies have the same number of axioms.
Namely, there are 3, 4 and 5 axioms in a MUPS for the
ontologies in the three sub-figures respectively.

From the figure we can observe that, Alg 1 obviously out-
performs other algorithms. No matter how the number of
MUPS varies or the size of a MUPS changes, the efficiency
of our algorithm keeps stable. It often spent no more than
0.4 seconds to find a solution for the given logical contra-
dictions. As for Hst and HstScore, they have similar per-
formance as expected. It is because the test ontologies only
contain isolated MUPS (i.e., no axioms are shared by any two
MUPS) and all axioms in the MUPS of an ontology have
the same scores that equal to the number of MUPS. Thus,
the HST algorithm will be applied to the same sets of axioms
and both algorithms perform similarly. Comparing the three
sub-figures in Figure 2, Hst and HstScore cannot deal with
the ontologies with more than 18, 14 and 13 isolated MUPS
when the size of a MUPS is 3, 4 and 5 separately. It shows
that the efficiency of the two algorithms is largely influenced
by both the number of MUPS and the size of a MUPS. They
spent more than 100 seconds in many cases to find a solution.

As for the effectiveness, these algorithms remove the same
number of axioms because the MUPS in an ontology do
not share any axioms. Take the ontology with 13 isolated
MUPS and 4 axioms in a MUPS as an example. Each of
the algorithms removes 13 axioms for breaking the given

VOLUME 7, 2019

1000000 / - 1000000
100000 100000
10000 Td-i

1000 1000
100 00 | ST
10 10
1 1

e 10 m 12 13 1 20 25 30 35 2
Number of MUPS with Pattern2 (cardMin=12)

10000

Time (ms)
Time (ms)

Cardinality-minimum values (#MUPS=20, Pattern2)

——Algl —B-Hst —HstScore ——Algl —B-Hst —HstScore
1000000 - 1000000
100000 100000
Z 10000 Z 10000
E E
3 1000 3 1000
£ —— £ —_— ="
£ 100 E 100
10 - - o~ e
1 1
25 30 35 40 50 80 3 4 5 6 7
Number of MUPS with Pattern3 (cardMin=12) Cardinality-minimum values (#MUPS=30, Patternd)
—+—Algl —m-Hst —-Hs(Score ——Algl ~B-Hst —+—HstScore

FIGURE 3. The time to find a solution for ontologies with overlapping
MUPS.

MUPS. To check the correctness of a solution for a set of
conflicts, we need to know whether there is an overlapping
between a solution and each conflict or not. Once a conflict
does not contain any axiom in the solution, the conflict cannot
be broken and the solution fails to resolve all given contradic-
tions. In this way, all found solutions have been verified to be
correct.

B. RESULTS OF ONTOLOGIES WITH OVERLAPPING MUPS
To better observe the difference of the algorithms to be com-
pared, this experiment is performed on overlapping MUPS
generated by different solution patterns (see Figure 3), where
each MUPS contains 5 axioms.

From the figure we can see that, the efficiency of Alg1 is
still very high and stable. That is, each solution was found
within 0.5 seconds which were mainly used to create the
ILP-based model. We can also see that Hst and HstScore
may handle those MUPS when cardMin is less than 14 in
many cases. For those ontologies that both algorithms could
deal with, HstScore is much more efficient. HstScore often
took no more than 0.1 seconds to finish the process while
Hst spent more than 10 seconds. This can be explained by
the sets of axioms where the HST algorithm is applied to.
Since the MUPS in an ontology in Figure 3 have overlapping,
the search space for the HST algorithm in HstScore has been
largely reduced. In overall, the efficiency of both HST-based
algorithms is largely influenced by the minimal depth of the
branches. For Hst, the number of MUPS and the size of a
MUPS are also main reasons to influence its efficiency.

As for the effectiveness, Algl is able to find a
cardinality-minimal solution for an ontology as expected. Hst
could also compute such kind of solutions since it traverses
all branches of a HST and all cardinality-minimal solutions
are included. For HstScore, it can find a cardinality-minimal
solution for an ontology constructed with all patterns except
Pattern4. Namely, for an ontology constructed with Pat-
tern4, HstScore always removes one more axiom than other
two algorithms. This can be explained by the solution pattern
itself (see Pattern4 in Figure 1). In this pattern, removing the

71507

IEEE Access

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

TABLE 1. The experimental results for real-life ontologies.

TABLE 2. The experimental results for ontologies with weights.

[} O] | uC MUPS # Removed Axioms Time (ms)

’ ‘ ‘ All/Sel. | Num ‘ Algl| Hst| HstScore | Algl| Hst| HstScore ‘
O,1| 535 | 62/6 382 | 4 4 6 | 287 | 339 255
O,o| 114 | 37/37 412 1 1 1 299 | 23 116
O,3| 5000] 1375/10 1620 | 8 - 18 | 460 | TO 2010
Orq| 234 | 51/6 225 2 2 8 | 431 | 65 80
O.,5| 379 | 55/6 309 | 3 3 5 335 | 124 102
Or¢| 173 | 30/30 28 | 3 3 3 275 | 18 22

axioms with number 1 and 2 is enough to resolve the given
contradictions. Such a cardinality-minimal solution can be
found by Alg1 and Hst. However, HstScore removes one
more axiom, namely the axiom with number 3, because its
score is the highest in the second MUPS.

Table 1 presents the experimental results for real-life
ontologies, where “TO" means time out and “-" indicates
unknown. The number of MUPS in the fourth column indi-
cates the number of all distinct MUPS found for the selected
unsatisfiable concepts within limited time. According to this
table, similar conclusions could be obtained as those for our
artificial data sets. It should be noted that, highly overlapping
MUPS are contained in these ontologies. The result of O,3
proves again that the minimal depth of the branches in a HST
is the main factor to influence the efficiency of HstScore, not
the number of MUPS. For this ontology, HstScore only spent
about 2 seconds to find a solution while Hst cannot finish the
process within the limited time (i.e., 1000 seconds).

C. RESULTS OF ONTOLOGIES WITH WEIGHTS

This experiment is used to see the performance of four algo-
rithms considering weights, i.e., Alg2, Alg3, HstSwoop and
HstWeight. We also give the results by applying Hst to see
the size of the cardinality-minimal solutions. See Table 2 for
more details, where the sum of weights means the sum of
weights of axioms in a solution and “TO" means time out.

From the table we can first observe that, A|g2 and
HstSwoop have the same performance regarding the effec-
tiveness. They can always find a solution with the minimal
sum of weights. For instance, the sum of weights is 2.58
for Alg2 and HstSwoop while no less than 3.00 for other
algorithms when dealing with ontology O,,». Alg2 owes to
the usage of the objective function. To find the solution with
the minimal sum of weights, Alg2 may remove more axioms
than Hst. Take O, as an example. Alg2 selected 3 axioms
while Hst only chose 2 axioms, and the sum of weights is 1.02
and 2.00 respectively. Second, « in the fifth column indicates
the minimal effective threshold determined by the minmax
measure. From these thresholds we know that the axioms in
most of the merged ontologies have higher weights. As for the
correctness, all solutions have been checked and are correct.
It verifies that using minmax measure could ensure Alg3 is
able to find a solution.

As for the efficiency, HstWeight performs slightly better
than ours since each extracted subset often contains one or
two axioms and the search space has been reduced largely.
Hst and HstSwoop achieved good performance for those

71508

[¢) |O]'] UC | MUPS Algorithm Solution Time
Num| Sum | (ms)

Alg2 2 1.75 267

Alg3(a = 0.98) 3 2.48 200

Om1 529 | 5 17 | HstSwoop 2 1.75 20
HstWeight 3 2.48 4

Hst 2 2.00 10

Alg2 3 2.58 169

Alg3(a = 0.98) 4 3.30 246

Opmo | 433] 14 37 | HstSwoop 3 2.58 50
HstWeight 4 3.30 4

Hst 3 3.00 10

Alg2 2 1.52 306

Alg3(a = 0.80) 2 1.52 416

Om3 877 | 17 685 | HstSwoop 2 1.52 20
HstWeight 3 231 14

Hst 2 1.52 56

Alg2 3 1.02 202

Alg3(a = 0.39) 3 1.02 275

Omg | 861 | 32 167 | HstSwoop 3 1.02 10
HstWeight 4 1.38 6

Hst 2 2.00 12

Alg2 T 031 233

Alg3(a = 0.31) 1 0.31 166

Oms | 359 | 32 3 | HstSwoop 1 0.31 0
HstWeight 2 0.55 2

Hst 1 1.00 3

Alg2 2 1.95 190

Alg3(a = 0.95) 3 2.67 279

Ome | 449 | 7 7 | HstSwoop 2 1.95 10
HstWeight 3 2.67 10

Hst 2 1.95 2

Alg2 1 0.91 220

Alg3(a = 0.91) 1 0.91 150

Opr | 357 18 24 | HstSwoop 1 0.91 0
HstWeight 1 0.91 0

Hst 1 1.00 2

Alg2 1 0.68 239

Alg3(a = 0.51) 2 1.03 200

Oms 450 | 3 10 | HstSwoop 1 0.68 10
HstWeight 2 1.03 0

Hst 1 0.68 2

Alg2 2 1.66 180

Alg3(ax = 0.68) 4 2.50 140

Omo 544 | 9 8 HstSwoop 2 1.66 0
HstWeight 5 3.08 0

Hst 2 1.66 2

Alg2 11 2.37 442

Alg3(a = 0.67) 12 2.85 786

O3 5000, 10 1620 | HstSwoop - - TO
HstWeight 26 5.87 84

Hst - - TO

ontologies with highly overlapping MUPS. For example, O3
contains 685 MUPS while its solutions only include two or
three axioms. For such ontologies, the HST-based algorithms
are very efficient and can finish the process within 0.05 sec-
onds. However, Hst and HstSwoop cannot deal with the
ontologies once there are too many MUPS. This can be seen
from the results of O,3.

VI. RELATED WORK
We compare our work with a range of existing works on
resolving logical contradictions.

To resolve logical contradictions, Reiter’s Hitting Set
Tree (HST) algorithm [10] is often used to satisfy the minimal
change principle. The works given in [7], [8], and [29] apply
the HST algorithm to the minimal unsatisfiability-preserving
subsets for resolving incoherence. The work given in [9]
applies the HST algorithm to the minimal inconsistent subsets

VOLUME 7, 2019

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

IEEE Access

for resolving inconsistency. The work in [8] proposes various
strategies to compute weights for axioms and then modifies
the HST algorithm to find a solution with minimal sum of
weights. This algorithm is much more efficient than Hst
because the normal optimality criteria of the minimal path
length has been replaced by the minimal path rank and there
may exist quite a lot paths that could be early terminated. This
algorithm corresponds to HstSwoop in our experiments. The
work in [30] provides a graph-based algorithm to compute
conflicts and then apply the HST algorithm to find solutions.

To improve the efficiency of the HST-based algorithms,
some works provide algorithms to reduce the search space
and satisfy other kinds of minimal change definitions. Such
an algorithm first extracts a subset from each conflict and
then applies the HST algorithm to those subsets. The typical
work is given in [5] which proposed two algorithms to deal
with the ontology revision problem. One algorithm makes
use of the scoring function to choose those axioms with the
highest score from each contradiction. The other exploits
the weights to select those axioms with the lowest weight.
The two algorithms correspond to HstScore and HstWeight.
However, the efficiency of these algorithms is still a problem
if the extracted subsets are not small enough.

To further improve the efficiency, the researchers propose
heuristic strategies to find an approximately minimal solu-
tion, or adopt new semantics to avoid constructing a HST.
The algorithm given in [31] removes one axiom with the
highest score from the MIPS and then choose another one
from the left MIPS. This process is repeated until no MIPS
left. Obviously, the solution consisting of all removed axioms
could not be minimal. The work in [30] also provides a scor-
ing function to select axioms for revising an ontology. There
are several works that deal with inconsistency or incoherence
for the tasks of ontology learning [12], [23] and ontology
versions [13]. They do not compute conflicts, but prevent an
axiom being added to a coherent or consistent ontology when
the axiom causing (potential) incoherence or inconsistency.
The paper of [11] provides an efficient algorithm through
replacing the standard semantics in characterising the stan-
dard inference tasks of DL Lite with an alternative semantics
called type semantics. In such a case, the computation of
conflicts and their minimal hitting sets can be avoided. We
did not compare our algorithms with this algorithm because
it only works for DL-Lite ontologies while our algorithms can
deal with any DL expressivity.

VIl. CONCLUSIONS AND FUTURE WORK

In this paper, we first defined the ILP-based model to resolve
logical contradictions and then provided three algorithms to
realize the model. In specific, Alg1 assumes all axioms in
an ontology have the same importance and the optimization
objective is defined as minimizing the sum of all variables.
Alg2 assumes the axioms may have different importance
and each axiom in an ontology is associated with a weight.
In its objective function, each variable takes the weight of
an axiom as a coefficient. To keep the axioms with important

VOLUME 7, 2019

weights, we proposed Alg3 to only remove those axioms with
weights no more than a threshold. We used minmax measure
to compute a minimal effective threshold to ensure a solution
could be found. Besides, we proved that Alg1 computes a
cardinality-minimal incision function, Alg2 computes a min-
imal one and Alg3 computes an incision function.

According to the experimental results, it can be obviously
revealed that our algorithms have excellent efficiency. They
can finish each process of finding a solution within 0.5 sec-
onds while those HST algorithms spent more than 100 sec-
onds in many cases. HstScore and HstWeight could perform
very well if the subsets where the HST algorithm is applied
to contain very few axioms and the search space becomes
very small. As for the effectiveness, Algl and Hst could
always find those cardinality-minimal solutions. Although
both Alg2 and HstSwoop could find a solution with minimal
sum of weights, Alg2 performs much better with respect to
the efficiency. All found solutions have been verified to be
correct.

In the future, we plan to apply the ILP-based model to
ontology debugging and diagnosing tasks in DL ontologies
or knowledge graphs [6], [18], [32]. Since a hitting set tree is
often constructed when finding all conflicts for an unsatisfi-
able concept or an incoherent ontology, the ILP-based model
may be used to largely reduce the computation cost. Besides,
the model could also be used to measure the inconsistency
or incoherence for showing the number of solutions with
various cardinality [33], [34]. Finally, we plan to provide a
user-friendly graphical interface by integrating our proposed
algorithms into RaDON [35], which is a tool to debug and
repair inconsistent or incoherent ontologies.

REFERENCES

[1]1 A.Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, and
1. Horrocks, “Ontology-based end-user visual query formulation: Why,
what, who, how, and which?”’ Universal Access Inf. Soc., vol. 16, no. 2,
pp. 435467, 2017.

[2] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jiménez-Ruiz, M. Giese,
M. G. Skjeveland, D. Hovland, R. Schlatte, S. Brandt, H. Lie, and
1. Horrocks, “OptiqueVQS: A visual query system over ontologies for
industry,” Semantic Web, vol. 9, no. 5, pp. 627-660, 2018.

[3] I. G. Husein, B. Sitohang, S. Akbar, and F. N. Azizah, “Comparisons of
diagnosis in mapping repair systems,” in Proc. Int. Conf. Data Softw. Eng.,
Oct. 2017, pp. 1-6.

[4] D.Lembo, R. Rosati, V. Santarelli, D. F. Savo, and E. Thorstensen, “Map-
ping repair in ontology-based data access evolving systems,” in Proc.
1JCAI, Melbourne, VIC, Australia, 2017, pp. 1160-1166.

[5]1 G.Qi, P. Haase, Z. Huang, Q. Ji,J. Z. Pan, and J. Volker, ““A kernel revision
operator for terminologies—Algorithms and evaluation,” in Proc. ISWC,
Karlsruhe, Germany, 2008, pp. 419-434.

[6] J.Du, “Ranking diagnoses for inconsistent knowledge graphs by represen-

tation learning,” in Proc. JIST, Awaji, Japan, 2018, pp. 52-67.

S. Schlobach, “Diagnosing terminologies,” in Proc. AAAI Pittsburgh, PA,

USA, Jul. 2005, pp. 670-675.

A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau, ‘‘Repairing unsatis-

fiable concepts in OWL ontologies,”” in Proc. ESWC, Budva, Montenegro,

2006, pp. 170-184.

J. Du and G. Qi, “Tractable computation of representative ABox repairs

in description logic ontologies,” in Proc. KSEM, Chongqing, China, 2015,

pp- 28-39.

[10] R. Reiter, “A theory of diagnosis from first principles,” Artif. Intell.,

vol. 32, no. 1, pp. 57-95, 1987.

[7

—

[8

—

[9

—

71509

IEEE Access

Q. Ji et al.: Resolving Logical Contradictions in Description Logic Ontologies

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Z.Zhuang et al., “DL-Lite contraction and revision,” J. Artif. Intell. Res.,
vol. 56, no. 1, pp. 329-378, 2016.

J. Volker and M. Niepert, ““Statistical schema induction,” in Proc. ESWC,
Heraklion, Greece, 2010, pp. 124-138.

L. Bayoudhi, N. Sassi, and W. Jaziri, “How to repair inconsistency in
OWL 2 DL ontology versions?”” Data Knowl. Eng., vol. 116, pp. 138-158,
Jul. 2018.

U. Straccia and F. Bobillo, “Mixed integer programming, general concept
inclusions and fuzzy description logics,” Mathware Soft Comput., vol. 14,
no. 3, pp. 247-259, 2007.

F. Bobillo and U. Straccia, “Reducing the size of the optimization problems
in fuzzy ontology reasoning,” in Proc. URSW ISWC, Bethlehem, PA, USA,
2015, pp. 54-59.

M. Niepert, C. Meilicke, and H. Stuckenschmidt, “A probabilistic-logical
framework for ontology matching,” in Proc. AAAI, Atlanta, GA, USA,
2010, pp. 1413-1418.

J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt, “Lever-
aging terminological structure for object reconciliation,” in Proc. ESWC,
Heraklion, Greece, 2010, pp. 334-348.

Q. Wang, B. Wang, and L. Guo, “Knowledge base completion using
embeddings and rules,” in Proc. IJCAI, Buenos Aires, Argentina, 2015,
pp. 1859-1866.

A. Bate, B. Motik, B. C. Grau, D. T. Cucala, F. Simancik, and I. Horrocks,
“Consequence-based reasoning for description logics with disjunctions
and number restrictions,” J. Artif. Intell. Res., vol. 63, pp. 625-690,
Nov. 2018.

X. Zhang, J. Van den Bussche, and F. Picalausa, “On the satisfiability
problem for SPARQL patterns,” J. Artif. Intell. Res., vol. 56, pp. 403-428,
Jul. 2016.

G. Qi, Q. Ji, J. Z. Pan, and J. Du, “Extending description logics with
uncertainty reasoning in possibilistic logic,” Int. J. Intell. Syst., vol. 26,
no. 4, pp. 353-381, 2011.

S. Schlobach and R. Cornet, “Non-standard reasoning services for the
debugging of description logic terminologies,” in Proc. IJCAI, Acapulco,
Mexico, 2003, pp. 355-362.

71510

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]
(32]
(33]
(34]

(35]

P. Haase and J. Volker, “Ontology learning and reasoning—Dealing with
uncertainty and inconsistency,” in Proc. URSW, 2008, pp. 366-384.

Q. Ji, Z. Gao, Z. Huang, and M. Zhu, “Measuring effectiveness of
ontology debugging systems,” Knowl.-Based Syst., vol. 71, pp. 169-186,
Nov. 2014.

R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations. New York, NY, USA: Springer, 1972,
pp. 85-103.

Q. Ji, G. Qi, and P. Haase, “A relevance-directed algorithm for finding
justifications of DL entailments,” in Proc. ASWC, Shanghai, China, 2009,
pp- 306-320.

A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. Hendler, “Swoop:
A Web ontology editing browser,” J. Web Semantics, vol. 4, no. 2,
pp. 144-153, 2006.

Q. Ji, Z. Gao, Z. Huang, and M. Zhu, ““‘An efficient approach to debugging
ontologies based on patterns,” in Proc. JIST, Hangzhou, China, 2011,
pp. 425-433.

J. Du, G. Qi, J. Z. Pan, and Y.-D. Shen, “A decomposition-based approach
to OWL DL ontology diagnosis,” in Proc. ICTAI, Boca Raton, FL, USA,
Nov. 2011, pp. 659-664.

X. Fu, G. Qi, Y. Zhang, and Z. Zhou, “Graph-based approaches to
debugging and revision of terminologies in DL-Lite,” Knowl.-Based Syst.,
vol. 100, pp. 1-12, May 2016.

S. Schlobach, “Debugging and semantic clarification by pinpointing,” in
Proc. ESWC, Heraklion, Greece, 2005, pp. 226-240.

J. Du, K. Qi, and Y. Shen, “Knowledge graph embedding with logical
consistency,” in Proc. CCL, Changsha, China, 2018, pp. 123-135.

M. Thimm, “On the expressivity of inconsistency measures,” Artif. Intell.,
vol. 234, pp. 120-151, May 2016.

H. Gao, J. Shi, G. Qi, and M. Wang, “Triple context-based knowledge
graph embedding,” IEEE Access, vol. 6, pp. 58978-58989, 2018.

Q. Ji, P. Haase, G. Qi, P. Hitzler, and S. Stadtmiiller, ““‘RaDON—Repair
and diagnosis in ontology networks,” in Proc. ESWC, Heraklion, Greece,
2009, pp. 863-867.

VOLUME 7, 2019

	INTRODUCTION
	PRELIMINARIES
	DESCRIPTION LOGICS
	LOGICAL CONTRADICTIONS IN DESCRIPTION LOGICS
	INTEGER LINEAR PROGRAMMING

	THE ILP-BASED APPROACH
	MODEL FOR RESOLVING LOGICAL CONTRADICTIONS
	ALGORITHMS FOR RESOLVING LOGICAL CONTRADICTIONS
	ILP-BASED ALGORITHM FOR RESOLVING LOGICAL CONTRADICTIONS - FLAT CASE
	ILP-BASED ALGORITHM FOR RESOLVING LOGICAL CONTRADICTIONS - WEIGHTED CASE
	ILP-BASED ALGORITHM FOR RESOLVING LOGICAL CONTRADICTIONS-WEIGHTED CASE WITH THRESHOLD

	EXPERIMENT PREPARING
	EXPERIMENTAL SETTINGS
	REAL-LIFE DATA SETS
	ARTIFICIAL DATA SETS

	EXPERIMENTAL RESULTS
	RESULTS OF ONTOLOGIES WITH ISOLATED MUPS
	RESULTS OF ONTOLOGIES WITH OVERLAPPING MUPS
	RESULTS OF ONTOLOGIES WITH WEIGHTS

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

