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ABSTRACT Deep convolutional neural networks (DCNNs) have become one of the most popular
approaches to many visual processing tasks. The majority of existing works on the accelerating DCNNs
focus on high performance while neglecting the hardware resource utilization, like on-chip memory
and DSP. In this paper, we propose a resources-efficient and configurable DCNN accelerator. A four-
level processing-element (PE)-array-based structure is presented to realize high parallelism calculation of
convolutional operation, and a new storage pattern named hybrid stationary (HS) is proposed to take full
advantage of the used on-chip memory footprint and limited off-chip memory bandwidth. Moreover, roofline
model is adopted to explore the design space of the given hardware resources. The proposed architecture
achieves 113 G-ops/s at 100 MHz and consumes 784 DSP48 modules and 211.5 Block RAM modules on
ZYNQ-7 ZC706 evaluation board. To the best of our knowledge, the proposed accelerator is the only imple-
mented system on FGPA platform that can achieve multiple advantages: high-performanced, configurable,
and efficient in power and resources utilization. It shows significant utilization improvement compared with
the other available architectures.

INDEX TERMS Deep convolutional neural networks, resources-efficient, configurable, accelerator.

I. INTRODUCTION
Deep Convolutional Neural Networks (DCNNs) have been
successfully applied in various modern AI applications
from object detection, image classification [1]–[4], scene
understanding to natural language processing [5]. However,
the high computational complexity of those available DCNNs
brings huge challenges to the embedded hardware designers.
Recently, DCNNs have been accelerated on computational
platforms including Graphical Processing Unit (GPU), Field
Programmable Gate Array (FPGA) and Application Spe-
cific Integrated Circuit (ASIC). The hardware and power
consumption of GPU are too high for embedded devices.
ASICs can efficiently reduce DCNNs’ power consumption
and improve hardware utilization, but it has significant fab-
rication cost and limited flexibility. FPGA accelerators have
the advantages of low power consumption, high configura-
bility and reasonable price. These advantages make FPGA
attractive for DCNN implementations on embedded systems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Junxiu Liu.

Many DCNN accelerators have been proposed [6]–[25].
However, while pursuing higher performance, most of FPGA
accelerators do not pay attention to hardware cost, especially
like DSP and on-chip memory resource. Zhang et al. [6] and
Motamedi et al. [14] identify the best system performance
with roofline model based on the peak performance and off-
chip memory traffic provided by the hardware platform.With
roofline model, the parallelism of convolution is explored and
the optimal tiling parameters are obtained. Zheng et al. [7]
introduce an accelerator, named Caffeine, with uniformed
convolutional matrix-multiplication for convolutional lay-
ers and fully connected layers by High Level Synthesis.
Rahman et al. [8] introduce an architecture ICAN, which is
a 3D neuron array architecture. Those accelerators [6]–[8],
[14], [18] consume a large number of DSPs or specialized
processing elements (PEs) and on-chip memory to enhance
performance.

A few works focus on the utilization of DPS resources,
such as [9], [15], and [16]. However, they do not make much
efforts to reduce on-chip memory usage. Moini et al. [9]
take most of on-chip memory to load the necessary data only
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once and store it on on-chip memory. NullHop, proposed by
Aimar et al. [15], exploits the sparsity of neuron activations
in DCNNs to accelerate the computation. Snowflake, pre-
sented by Gokhale et al. [16], is a scalable accelerator that is
designed to always perform at near-peak hardware utilization.
NullHop and Snowflake costs 1280 kB and 768 kB on-chip
memory for feature map and kernel data, respectively. When
on-chip memory is limited, optimizing the tiling strategy and
data storage on chip has great significance.

Storage pattern is often exploited to minimize the energy
cost of data transfers between off-chip and on-chip mem-
ory. Output stationary storage pattern is adopted through
the whole network in [6], [9], and [14]–[16], while input
stationary storage pattern is employed in [8] and weight
stationary storage pattern is used in [7]. All the works above
choose only one storage pattern for all convolutional layers
to decrease data transfers. In fact, there is always an optimal
storage pattern for different layers. Therefore, storage pattern
in each layer should be configurable in an energy-efficient
DCNN accelerator.

In this paper, we present a resources-efficient and con-
figurable DCNN accelerator. The accelerator allows high
utilization of the used computing and storage resources across
kernel sizes ranging from 1 × 1 to 11 × 11 and various
kernel strides. We design a four-level structure based on a
14 × 14 PE array, which is different from 16 × 16 PE
array [10]. We improve the PE utilization by simply adjusting
the PE array size to 14 × 14. Different from to the four-
level structure in [10], we place weight register (WREG)
and partial sum register (PREG) in second level and simplify
output register (OREG) in the fourth level. A new storage
pattern, called hybrid stationary (HS), reconfigures the data
storage pattern in on-chipmemory to reduce off-chipmemory
access and fully exploits limited off-chip bandwidth. In order
to improve the performance, roofline model is applied to
explore the design space of the proposed accelerator to find
the optimal tiling parameter combination. A two-step strategy
is proposed to improve the performance and the efficiency of
resource utilization. The first step is to find the optimal tiling
parameter combination of each storage pattern and the second
step is to select the storage pattern.

In the following: Section II provides a DCNN’s prelimi-
nary and tiling methodology; Section III presents HS storage
pattern and corresponding resources-efficient architecture;
Section IV shows the experimental results and comparison
with other accelerators; Section V concludes this paper.

II. PRELIMINARY
A. DEEP CONVOLUTIONAL NEURAL NETWORKS
Figure 1 shows a typical convolutional layer in DCNN. It has
N×H×L input featuremaps (Imap) andM 3-D convolutional
kernels (K × K × N ). Each kernel is applied to all the Imap
with a 3-D convolution operation and the R×C output feature
maps (Omap) are generated.

AlexNet, a well-know DCNN, has been accelerated in
many researches [6], [7]–[12], and [16]. AlexNet is always

FIGURE 1. Illustration of a convolutional layer.

TABLE 1. Parameters of each convolutional layers.

FIGURE 2. Tiling methodology in convolutional layer.

used as a benchmark to test configurability because of its var-
ious kernel sizes and convolution strides. Like other DCNN
models, AlexNet consists of four types of layer: convolu-
tional layers, pooling layers, activation function layers and
fully-connected layers. Our research concentrates on how to
accelerate the convolutional layers because it dominates the
runtime of up to 90.7% [26].

The parameters of each of AlexNet’s convolutional layers
are listed in Table 1. AlexNet has five convolutional layers
with convolution strides ranging from 1 to 4 and kernel sizes
ranging from 3 × 3 to 11 × 11. The last four rows of the
table list the total number of kernel weight, Imap, Omap,
and Multiply-and-Accumulate (MAC) for each layer. There
are more than 665 million MAC operations totally in five
convolutional layers.

B. TILING METHODOLOGY
In general, hardware resources in embedded system, such as
DSP and on-chip memory, are very limited. Therefore, it is
difficult to compute and save an entire convolutional layer
simultaneously. The tiling methodology is a common method
to resolve the problem of the limited on-chip resources.
Figure 2 shows a tiling strategy in a convolutional layer.
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FIGURE 3. Output-oriented mapping architecture (a) and (b) Convolution on a 2× 2 PE array in the case
Th = Tl = 3, K = 2, and S = 1. (c) S = 4, IREG broadcasts significant pixels to ISREG. (d) R = 7 and S = 1,
IREG broadcasts four pixels to ISREG.

Each tiling convolution operation is that Tm 3-D kernel
(K ×K ×Tn) convolves on Tn×Th×Tl Imap and generates
Tm× Tr × Tc partial sum (Psum) or Omap.

III. ARCHITECTURE DESIGN AND ACCELERATION
STRATEGY
A. CONVOLUTION MAPPING STRUCTURE
In this part, we first introduce a mappingmethod called Paral-
lel Output Oriented Mapping (POOM), which was designed
to improve PE utilization in large stride case and irregular
map size case [10]. Then, we give a four-level convolution
mapping structure based on PE array, which takes advantage
of the design of POOM for large stride case but not for
irregular map size case.

1) POOM
Each PE computes one output pixel by accumulation.
As shown in Figure 3 (a), a 2 × 2 kernel convolves
a 3 × 3 Imap with stride 1 on a given 2 × 2 PE array.
In Figure 3 (b), the PE1,1 performs O1,1 = I1,1 × W1 +

I1,2 ×W2 + I2,2 ×W4 + I2,1 ×W3 with 4 cycles. In cycle 1,
the 2 × 2 PE array loads pixel data {I1,1, I1,2, I2,1, I2,2} of
Imap and the first kernel weight W1 to generate product.
In cycle 2, the PEs load pixel data {I1,2, I1,3, I2,2, I2,3} and
the second weight W2 to accumulate product. In cycle 3,
the PEs load pixel data {I2,2, I2,3, I3,2, I3,3} and the fourth
weight W4 to accumulate product. In cycle 4, the PEs load
pixel data {I2,1, I2,2, I3,1, I3,2} and the third weight W3 to
accumulate product. Since the Imap are stored in Imap array
register (IREG) and the whole Imap shift in S-shape during
convolution, it is convenient to bring needed pixels into PEs
at each cycle. In a large stride case [10], such as when
stride = 4, one input pixel in IREG is broadcasted to six-
teen pixels in Imap share array register (ISREG), as shown
in Figure 3 (c). The different weights of sixteen output chan-
nels are also transferred to WREG, and Omap of sixteen

output channels are generated.WhenOmap’s size (R) is equal
to 7 × 7 and kernel stride is equal to 1, like the ‘‘conv5_x’’
layer of ResNet [4], one input pixel in IREG is broadcasted
to four pixels in ISREG and Omap of four channels are
generated at the same time, as shown in Figure 3 (d).

2) CONVOLUTIONAL STRUCTURE
In this work, the size of PE array is cut from 16 × 16 to
14 × 14, which can reduce design complexity and remain a
good PE utilization in irregular map size case. Compared to
16 × 16, the 14 × 14 PE array is more suitable for modern
DCNNs, like AlexNet or VGG. That is because the row and
column number of feature maps in modern DCNN are mostly
a multiple of 14 and our tiling Omap will fit for the PE array
leaving few PEs idle. If the PE array size is larger than
14 × 14, the computation of tiling Omap on the margin of
the whole Omap will not make full use of all PEs, causing
low PE usage. On AlexNet, our PE utilization is 86% of layer
3 ∼ 5 while 84% of that in [10], 68% of layer 1 and 93%
of layer 2. On VGG-16, our PE utilization are 100% of all
convolutional layers.

Figure 4 shows the four-level structure of ConvCore. The
first level is two IREGs which take pixels from Input data
Buffer (InBuf) in ping-pong mode. The second level consists
of PREG, WREG and ISREG. ISREG andWREG are placed
to improve PE utilization ratio. PREG is designed for Psum
data and bias data in the subsequent convolution operation.
The third level is a PE array. The fourth level is OREG. The
MAC block consists of PREG, WREG, OREG and PE array.
The following example illustrates how it works: Tm = 1,
Tn = 1, Th = Tl = 15, Tr = Tc = 14, K = 2, S = 1.
Cycle 1: The Imap of Tn = 1 reaches to IREG; Cycle 2: IREG
broadcasts corresponding pixels to ISREG and shifts left,
meanwhile Weight Buffer (WBuf) broadcasts the first weight
to WREG. Cycle 3∼6: PE array performs the multiply-and-
accumulate operation on the pixels and the weight. Cycle 7:
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FIGURE 4. Four-level structure of ConvCore.

FIGURE 5. Pipelining design.

OREG receives output pixels from PEs. Finally, Omap are
stored to Output data Buffer (OutBuf). If Tn ≥ 1, the Psum
are kept in PE until Tn loop finishes.

3) PIPELINING DESIGN
The four-level structure is built on a basic idea of paral-
lelization, in which double IREGs operate in a ping-pong
manner to prepare data for convolution computation. It is
noted that loading Imap into IREG, loading Psum into PREG
and outputting Omap from OREG usually take more than
one clock cycle due to the limited on-chip network band-
width. However, only IREG need to load Imap continuously.
PREG and OREG are designed with one register array while
IREG are two-fold. WREG can load weight in one clock
cycle because all PEs receive the same weights at the same
moment or the on-chip network bandwidth supports simulta-
neous sixteen weights when stride is 4. Therefore, the transfer
time of WREG is overlapped with convolution computation
time, which means it takes no extra clocks to preload.

Figure 5 gives an example that demonstrates how convo-
lution of a tiling block runs: Tm = 2, Tn = 3. IREG1 and
IREG2 alternately load Imap of different channels from
InBuf. Once IREG1 finishes loading data, PE array performs
calculation; meanwhile IREG2 prepares data of next channel.
After Omap of a channel is generated and stored in OREG,
OREG writes Omap to OutBuf while IREG1 loads Imap
again.

The run time Ttiling of one tiling convolution operation is
given as follows.

Ttiling

= (d
Th
4
ed
Tl
8
e+max(d

Th
4
ed
Tl
8
e,K×K )×Tn)×Tm+ Tpipeline

(1)

where dTh4 ed
Tl
8 e gives the number of transfer cycle

from InBuf to IREG in Convolution Core (ConvCore).
max(dTh4 ed

Tl
8 e,K × K )× Tn stands for the number of clock

cycle for convolution of Tn input channels and is decided
by the max time of between loading data and convolu-
tion operation. When kernel size is very small (K ≤ 2),
it takes longer to load data from InBuf to IREG than con-
volution operation because of limited on-chip bandwidth.
Tpipeline denotes the number of transfer cycle using pipeline.

B. STORAGE PATTERN
There are some works not only focusing on high performance
but also on reducing the usage of on-chip memory, like [10],
[12], [19], and [20]. They are implemented on ASIC platform
and consume less than 300k of on-chip memory for convolu-
tional data (Imap, Omap, Psum and weight). To our knowl-
edge, no FGPA-based accelerator running large scale DCNN
has considered optimizing the on-chip memory efficiency.
Limiting the use of on-chip memory results in increased
data transfer between on-chip memory and off-chip memory.
According to Tu et al. [10], hybrid data reuse is an advanced
data reuse model to reduce off-chip memory access. In this
work, this method has been improved to make it suitable
for increasing the on-chip memory efficiency. The on-chip
memory here consists of WBuf, InBuf, Partial sum Buffer
(PBuf) and OutBuf. They store only two tiling data, one for
the current tiling convolution operation and the other for the
next tiling convolution operation. The total number of off-
chip memory access can be handled by equations as follows.

Atotal = αinβin + αwghtβwght + αoutβout (2)

where αin, αwght , αout and βin, βwght , βout denote the
trip counts and tiling data size of Imap, weight and Omap
(or Psum), respectively. αin, αwght , αout are determined by
storage pattern and will be given in below. βin, βwght , βout
are calculated by equations as follows.

βin = Tn× 4d
Th
4
e8d

Tl
8
e

βwght = NMACTmTnKK

βout = NMACTm× 4d
Tr
4
e8d

Tc
8
e

(3)

where NMAC represents the number of MAC block,
4dTh4 e8d

Tl
8 e and 4dTr4 e8d

Tc
8 e are the number of transfer

data.
Let us consider one convolutional layer. There are

M output channels and N input channels in the given con-
volutional layer. The row and column of Omap are denoted
by R and C . K and S are the kernel size and convolution
stride. A complete data operation of the convolutional layer
can be expressed by the combination of the patterns given
in Figure 6. The first three loops (a, b and c) show three tiling
techniques which determines storage pattern on chip. The
fourth loop (d) demonstrates the convolution of tiling data on
chip.
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1) OUTPUT STATIONARY
The first common storage pattern is called output sta-
tionary (OS), which minimizes the output data access to
off-chip memory. OS pattern has three stages: 1) all
the tiling Imap in the same spatial position of different
channel (N ) and related weight are sequentially loaded into
InBuf and WBuf; 2) the corresponding Psum are updated
and kept within OBuf for reuse; and 3) the tiling Omap are
generated and written to off-chip memory. OS keeps Psum
in OutBuf and does not writes Psum to off-chip memory
until Omap are generated and written to off-chip memory.
As shown in Figure 6 (a), the stage 1 and 2 correspond
to innermost loop N . The trip counts can be expressed as
follows. 

αin = d
M

NMACTm
e
N
Tn

H
Th

L
Tl

αwght =
M

NMACTm
N
Tn

R
Tr

C
Tc

αout =
M

NMACTm
R
Tr

C
Tc

(4)

2) INPUT STATIONARY
Input stationary (IS) storage pattern minimizes the input data
access to off-chip memory. IS pattern also has three stages:
1) the tiling Imap are loaded and kept within InBuf for reuse,
and the related weight are sequentially loaded into WBuf
while the related Psum are loaded in PBuf if necessary; 2) the
corresponding Psum in the same spatial position of different
channel (M ) are computed and written to off-chip memory;
3) the tiling Omap are generated and written to off-chip mem-
ory. Note that each tiling Imap will be loaded only once from
off-chipmemory. In Figure 6 (b), the stage 1 and 2 correspond
to innermost loop M . The trip counts can be expressed in
equations.

αin =
N
Tn

H
Th

L
Tl

αwght =
M

NMACTm
N
Tn

R
Tr

C
Tc

αout =


2(
N
Tn
− 1)

M
NMACTm

R
Tr

C
Tc
, Tn < N

M
NMACTm

R
Tr

C
Tc
, Tn = N

(5)

3) WEIGHT STATIONARY
Weight stationary (WS) storage pattern decreases the weight
accesses to off-chip memory. WS pattern has four stages:
1) the tiling weights are loaded and kept within WBuf for
reuse, and relevant tiling Imap are loaded in InBuf while the
related Psum are loaded in PBuf if necessary; 2) the corre-
sponding Psum are updated and written to off-chip memory;
3) all the Psum in the different spatial position (R × C) of
same channel are generated and written to off-chip memory;
4) all the tiling Omap are generated and written to off-chip
memory. Note that each tilingweight will be loaded only once

FIGURE 6. Parallelization schemes in tiling methodology. (a) OS storage
pattern. (b) IS storage pattern. (c) WS storage pattern. (d) Convolution of
tiling data.

from off-chip memory. Three stage are the explanation of the
innermost two loops R and C in Figure 6 (c). The trip counts
can be expressed as follows.

αin = d
M

NMACTm
e
N
Tn

H
Th

L
Tl

αwght =
M

NMACTm
N
Tn

αout =


2(
N
Tn
− 1)

M
NMACTm

R
Tr

C
Tc
, Tn < N

M
NMACTm

R
Tr

C
Tc
, Tn = N

(6)

4) HYBRID STATIONARY
Hybrid stationary (HS) storage pattern combines OS, IS and
WS and selects the optimal pattern among them for each
layer. Given a system based on the used DSP and on-chip
memory resources with limited off-chip memory bandwidth,
we propose a two-step strategy, which yields the best perfor-
mance and the least off-chip memory accesses. We find the
optimum tiling parameter combinations {Tr,Tc,Tm,Tn} for
three storage patterns and then choose the best one. In step 1,
given a DCNN layer, all combinations of tiling parameters
{Tr,Tc,Tm,Tn} are explored to find the optimal one that
has the best performance and the least off-chip memory
accesses for each storage pattern. In step 2, if the three sets
of parameters have the same performance, the storage pattern
whose parameter brings the lowest off-chip memory accesses
will be chosen. Otherwise, the parameters that have the best
performance and the corresponding storage pattern will be
selected. The next subsection will introduce in detail how
to determine the optimum tiling parameters {Tr,Tc,Tm,Tn}
and storage pattern.

C. DESIGN SPACE EXPLORATION
In this subsection, we first introduce the roofline model and
then explain how to select tiling parameters. Our scheme is to
achieve the best performance and the least off-chip memory
accesses on the used DSP and on-chip memory resources and
the limited off-chip bandwidth.
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FIGURE 7. Roofline model.

1) ROOFLINE MODEL
To find the optimal parameters of mapping a DCNN into our
accelerator, we adopt the well-known roofline model [27] for
quantifying the impact of insufficient bandwidth on perfor-
mance. The roofline model, as shown in Figure 7, is devel-
oped to relate attainable performance to off-chip memory
bandwidth and the peak performance provided by the hard-
ware platform. When the operational intensity is on the right
side of the boundary, the performance will be computation-
limited; otherwise, it is bandwidth-limited. Equation (7) for-
mulates the attainable performance on a specific hardware
platform.

Attainable Performance=min

{
Peak Performance
Operational Intensity×BW

(7)

where BW stands for off-chip memory bandwidth.

a: PEAK PERFORMANCE
The proposed convolution mapping structure has been
explained in the subsection III.A. Given a specific tiling
parameter combination {Tr,Tc,Tm,Tn}, the computational
performance (or peak computation in the roofline model)
of this convolution mapping structure can be calculated
by Equation (8).

Peak Performance =
total number of operations
number of execution cycles

=
2×R×C×M×N×K×K

1
NMAC
d
M
Tm
e×d

N
Tn
e×d

R
Tr
e×d

C
Tc
e×Ttiling

(8)

where Ttiling is the run time of one tiling convolution operation
and is given in Equation (1).

b: OPERATIONAL INTENSITY
Operational intensity is used to describe the computa-
tion operations per byte of off-chip memory traffic. Data
reuse optimization will decrease the total number of off-
chip memory accesses, thus increase the operational inten-
sity. The operational intensity of the loop unrolling shown

in Figure 6 can be calculated by Equation (9).

Operational Intensity=
total number of operations

total amount of external data access

=
2×R×C×M×N×K×K

αinβin+αwghtβwght+αoutβout
(9)

2) TILING PARAMETERS
Loop unrolling can be applied to increase the utilization
of computing resources in FPGA devices. Unrolling along
different loop dimensions results in different implementation
variables. Without limitation of on-chip memory resources,
the space of all legal tiling parameters for architecture we
propose are illustrated in Equation (10). The size of PE array
is 14×14, therefore Tr and Tc can not be more than 14.

0 < Tm ≤ M
0 < Tn ≤ N
0 < Tr ≤ min(R, 14)
0 < Tc ≤ min(C, 14)

(10)

The on-chip memory, WBuf, InBuf, PBuf and OutBuf,
store two tiling data for pipelining. Taking into account the
effect of the used on-chip memory, the space of all legal tiling
parameters is also limited by Equation (11).

0 < TnThTl ≤
1
2
Size(InBuf )

0 < NMACTmTnKK ≤
1
2
Size(WBuf )

0 < NMACTmTrTc ≤
1
2
Size(OutBuf )

(11)

3) DESIGN SPACE EXPLORATION
Asmentioned above, given a specific data storage pattern and
tiling parameter tuple {Tr,Tc,Tm,Tn}, the peak performance
and operational intensity of the architecture can be calculated.
Enumerating all possible storage patterns and tiling parame-
ter combinations will generate a series of performance and
operational intensity pairs.

Figure 8(a)∼8(c) depict all legal solutions of three data
storage patterns for layer 3 of the AlexNet in roofline model.
The ‘‘x’’ axis denotes the operational intensity (ops/byte)
and the ‘‘y’’ axis denotes the performance (G-ops/sec). The
slope of the line between any point and the origin point
(0, 0) denotes the minimal bandwidth requirement for this
implementation. For example, in Figure 8(a), the minimal
bandwidth requirement of the implementation of the point D
is equal to the slope of the line D’. The flatter slope, the less
bandwidth requirement and the off-chip memory accesses.
Step 1 (Parameters): In each data storage pattern of a

layer, we explore the architecture-supported design space.
And a set of tiling parameter combinations with the highest
performance can be collected. If this set only has one imple-
mentation combination, then this combination will be the
optimal result of design space exploration of this data storage
pattern of this layer. However, if there are several counterparts
within this set, the one with the highest operation intensity
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FIGURE 8. Design space of architecture-supported designs. (a) Output Stationary. (b) Input Stationary. (c) Weight Stationary.

value will be picked because this implementation requires the
least off-chip memory accesses. For example, in Figure 8(a),
the point A and D have the same highest performance and the
point A is selected.
Step 2 (Storage Pattern): From step 1 we get the opti-

mal tiling parameter combinations for three storage patterns.
In this step, the best storage pattern will be chosen. If there are
one storage pattern with a highest performance, this storage
pattern will be selected. If two or three storage patterns
share the same highest performance, we will choose the
one with the highest operation intensity value. For example,
in Figure 8, the point A, B and C of three storage patterns
share the same highest performance and finally the point A
of OS pattern is selected.

D. PROPOSED ACCELERATOR
The main controller of the entire system is the ARM proces-
sor on the Processing System (PS) side. As shown in Figure 9,
the ARM processor transfers the tiling operation instructions
to the Instruction Memory block via an AXI Direct Memory
Access (DMA). These instructions consist of convolution
parameters, data transfer configurations and off-chip memory
address references. The convolution parameters are used by
Convolution (Conv) Controller to control the tiling convolu-
tion operation and data transfer between the on-chip memory
and the Convolution Core (ConvCore). The data transfer
configurations are used to configure the data access to off-
chip memory for tiling data (all or some of input data, output
data and kernel weight). The off-chip memory address ref-
erences are applied to off-chip memory address generation.
The convolutional layer is subdivided into tiling convolution
operations and each instruction only contains configuration
information about the tiling operation.

On the PS side, ARM processor provides config-
uration instructions based on different layer charac-
teristics and the parameters of outermost four loops
in Figure 6 (a)∼Figure 6 (c). On the Programmable Logic
(PL) side, the Top-Level Controller block is a state machine
that controls the four loops in Figure 6 (d). The Top-
Level Controller block reads instructions from the Instruc-
tion Memory block, then coordinates the Transfer (Tran)

FIGURE 9. The proposed DCNN accelerator with 4 MACs.

Controller block and the Conv Controller block. The Conv
Controller block controls the current tiling computations,
while the Tran Controller block is responsible for the data
preparation of the next tiling convolution.

The total on-chip memory for convolution data, called
Data Buffer, consists of InBuf, WBuf, PBuf and OutBuf.
To eliminate data loading and reading latency, all buffer can
work in the ‘‘ping-pong’’ mode to exchange data with the
Memory Interface Generator (MIG) and the ConvCore block.
In design with 4 MACs, the InBuf size is 64 kB and four
MACs share the same InBuf. The WBuf size and OutBuf
size are 128 kB, and each MAC has 32 kB. Each MAC has
36 kB PBuf (32 kB for partial sum and 4 kB for bias) and
the total PBuf size is 144 kB. The ConvCore is made up
of four MACs, and each MAC contains 14 × 14 PEs. Four
MACs share the same Imap but different weights to generate
Omap of different channels. To get high data transferring
rate between off-chip memory and on-chip memory, MIG is
chosen. It can provide a bandwidth of 5.4GB/s at 100MHz in
our experiment.

IV. EXPERIMENTAL RESULT
A. IMPLEMENTATION
The accelerators with 1 MAC to 4 MACs described above
are implemented with Verilog-HDL language. To validate
these accelerators, we implemented them on the Xilinx
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TABLE 2. Resource utilization of the entire system.

TABLE 3. RAM utilization details.

Zynq XC7Z045 device, respectively. The actual performance
results are attained on Mentor ModelSim simulator and the
theoretical performance results are from Matlab.

The implementation results show that the accelerator using
1 MAC, 2MACs and 3 MACs can run at the max clock
frequency of 163.64 MHz, 145.45 MHz and 112.5 MHz,
respectively. These accelerators can support kernel size rang-
ing from 1× 1 to 11× 11, kernel stride 1/2/4. Since high con-
figurability needs too much wiring resources for multiplexers
and results in fail implementation for high congestion during
routing design process, the kernel configuration of stride 2 is
not supported in the accelerator with 4MACs. The accelerator
containing 4 MACs can run at a frequency of 100 MHz.

Table 2 shows the required resources of the entire sys-
tem with 1∼4 MACs. The design with 4 MACs costs
784 DSP48 modules and 68.18% LUT resources of the
device, and its ConvCore block requires 46.42% LUT
resources. The on-chip memory Block RAM (BRAM) uti-
lization details are shown at Table 3. At 4-MACs design,
160 BRAM modules are used for Data Buffer, and others
are used for FIFO, Instruction Memory and DMA. The data
precision is 16-bit fixed point.

B. EXPERIMENT RESULT AND ANALYSIS
We measure the proposed accelerator’s performance on a
benchmark suite consisting of AlexNet [1], VGG-16 [2] and
ResNet-34 [4]. We choose AlexNet and VGG-16, which
are entirely made up of conventional layers, because both
models are widely used in other accelerators [6], [7]–[12],
[16], [18], [21]–[25] for testing performance. ResNet-34 is
selected due to its special residual modules. For bet-
ter comparison, the performance results below of four
designs using 1∼4 MACs are tested at the frequency
of 100 MHz. We employ the two-step strategy introduced in
the Section III.C to get the optimal parameter combination
{Tr,Tc,Tm,Tn} and storage pattern for four designs.

1) ALEXNET
Table 4 shows layer-wise storage pattern with the optimal
parameter combination and performance for AlexNet among

designs using 1∼4 MACs. It is worth noted that the tiling
parameter combination {Tr,Tc,Tm,Tn} stands for oneMAC.
That is to say, 4 MACs employ channel parameters Tm and
Tn and generate 4Tm output channels at the same time but
use Tn input channels since all MACs share the same IREG.
Table 4 shows four designs have same parameter combination
but different storage patterns for each layer except layer 1.
When exploring design space in a layer on one of four
designs, it’s interesting that the optimal parameter combina-
tions with the highest performance are the same among three
storage patterns. In all cases of 1∼4 MACs, since the PE
utilization of layer 1, layer 2 and layer 3∼5 are 68%, 93% and
86%, respectively, the performance of layer 1 is the lowest
while the layer 2 achieves the highest performance. In layer 1,
because the stride S = 4, the minimum tiling output channel
Tm of each MAC is equal to 16. And at 4 MACs, each tiling
operation generates 64 tiling output channels. Considering
the output channel M = 96, there are 64 tiling output
channels in the first tiling operation but only 32 tiling output
channels in the second tiling operation. At 3 MACs, there are
48 tiling output channels in both tiling operations. Therefore,
in layer 1, the average performance of 4 MACs is similar to
that of 3 MACs.

Figure 10 shows the off-chip memory access on AlexNet
with optimal parameters but different storage patterns across
design with 1∼4 MACs. In the first layer, WS can reduce
much more off-chip memory access than OS and IS because
of the large kernel size of 11x11. As the number of MAC
decreases, the total number of off-chip memory access per
layer goes up.

2) VGG-16
Table 5 shows layer-wise parameter combination and perfor-
mance for VGG-16. Four designs have the same parameter
combinations except layer 1. In layer 1, the tiling output chan-
nel Tm is 16 for 3 MACs and 4 MACs, while 32 for 1 MAC
and 2MACs. The reason is that the output channelM = 64 is
divided by 4 (4MACs) to get 16 and is divided by 2 (2MACs)
to get 32. The tiling output channel Tm of layer 1 is not 64 for
1 MAC because of the limited capacity of OutBuf. From
Equation (1), we can see that performance drops with Tn.
Therefore, low performance in layer 1 comes from the small
input channel number N , equaling to 3. Different from
VGG-16, small N does not affect performance in layer 1 of
AlexNet greatly, since its kernel size is 11 × 11 and the first
term of dTh4 ed

Tl
8 e can be ignored comparing with the second

part ofmax(dTh4 ed
Tl
8 e,K×K )×Tn. For the same kernel size,

the performance results of layer 2∼13 of VGG-16 are higher
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TABLE 4. Layer-wise parameter and performance on AlexNet.

TABLE 5. Layer-wise parameter and performance on VGG-16.

than that of layer 3∼5 of AlexNet because of the different PE
utilization ratios, 100% of VGG-16 and 86.22% of AlexNet.

3) RESNET-34
Table 6 gives layer-wise and module-wise parameter com-
bination and performance for ResNet-34. Table 6 does not
contain the performance of the design with 4 MACs since
the design deletes the configuration of kernel stride 2 to
prevent from congestion on routing design process. The first
layer of ResNet-34 are conventional layer and the rest are the
bottleneck modules. Each ‘‘conv_x’’ module in the table has
a bottleneck module replicated multiple times. ‘‘conv_x/2’’
stands for the convolution operation with a stride of 2. There
are two reasons why high performance is attained in layer 1.
On one hand, the kernel size is so large (7 × 7) that perfor-
mance is not even affected by small N . On the other hand,
PE utilization achieves 100%, because the kernel stride is 2
and each 14×14 PE array generates four 7 × 7 Omap of
different output channels simultaneously. It is shown that
performance of the remaining layers is lower than that of
layer 1 since the kernel sizes of the remaining layers are
all 3 × 3.
Ratios of the total off-chip memory access of single sta-

tionary storage pattern and of HS storage pattern are defined
for comparison in Figure 11. It is shown that HS saves off-
chipmemory access by 0.33×∼1.89× over single stationary
storage pattern in most cases on AlexNet, 0.02×∼0.72× on
VGG-16 and 0.09 × ∼1.41 × on ResNet-34.

C. PERFORMANCE COMPARISON
Table 7 provides a summary of the implementation result
and comparison with prior DCNN accelerators. Perf./DSP
and Perf./power are defined for the mean share of each

FIGURE 10. Layer-wise off-chip memory access on AlexNet.

FIGURE 11. Total off-chip memory access analysis. (a) AlexNet.
(b) VGG-16. (c) ResNet-34.

DSP48 block and for energy efficiency, respectively. Both are
used for fair comparison with other works using a different
number of resources.

Large amounts of BRAM resources will be needed if all
data are loaded only once without tiling technique. To achieve
that goal, the accelerator in [9] consumes all on-chip memory
and a part of distributed memory. Compared with the design
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TABLE 6. Layer-wise and module-wise parameter and performance on ResNet-34.

TABLE 7. Comparison with other designs.

in [9], the design with 2 MACs here achieves a speedup
of 2.02 × with almost the same DSP resources, 24% BRAM
resources and a little more off-chip memory access. Com-
pared to [9], our accelerators have higher DSP and power
efficiency.

The architecture named NullHop in [15] is designed for
the ASIC platform and has been implemented in FPGA. They
only presented the resources of the NullHop block in paper.
Although NullHop’s 17.2 G-ops/s is slow due to its limited
DSP resources (128) and low frequency (60MHz), it is able
to achieve a good DSP efficiency of 0.134 and low power
consumption of 27.4 because of its zero-skipping pipeline
and high MAC utilization. And NullHop has great efficiency
of 471 G-ops/s on 28 nm ASIC platform. On VGG-16
benchmark, our design with 4 MACs has a slightly higher
DSP efficiency of 0.144 than that of NullHop.

Snowflake in [16] attains 120.3 G-ops/s running
at 150 MHz. Compared to our work, it has higher DSP
efficiency but consumes more power. The hardware con-
volution engine (HWCE) presented in [25] is implemented
on the same Zynq device as Snowflake. Its second layer
performs at 130 G-ops/s while our design with 4 MACs
has similar performance at 130.38 G-ops/s with lower DSP
consumption. Therefore, our design has higher performance
and DSP efficiency than HWCE. The accelerator in [18] sup-
ports dynamic-precision data quantization (16/8/4-bit) and
obtains 187.8 G-OPS/S on 16-bit precision, costing 780 DSP
and 486 BRAM. Although better performance and power
efficiency are achieved, it can only support limited kernel
sizes like 3 × 3, 5 × 5 and 7 × 7 and kernel stride 1.
The accelerator in [23] is a bit-width adaptive acceler-

ator which can adapt to the DCNN layers with various

bit-width requirements in a same network. A DSP can per-
form a multiply-accumulate operation adaptive to one 16-
bit × 16-bit, or two 8-bit × 8-bit, or three 4-bit × 4-bit.
The implementation of accelerator in [23] are based on the
adaptive data width ranging from 4-bit to 9-bit. Therefore,
it attains a high performance of 337.73 G-ops/s and a high
DSP ratio of 0.197.

There are lots of works implemented on ASIC plat-
form, such as accelerator in [10] with performance
of 194.4 G-ops/s, processor in [24] with 368.4 G-ops/s
and accelerator in [15] achieving 471 G-ops/s. Compared
to FPGA platform, higher performance and lower power
consumption can be realized on ASIC platform. Both designs
in [10] and [24] are implemented with the TSMC 65-nm
technology and have energy efficiency of 406.2 G-ops/s/W
and 2.27 T-ops/s/W, respectively. The design in [15] is
implemented with GF 28-nm and its energy efficiency
is 3.042 T-ops/s/W. They achieve a great performance and
energy efficiency.

The accelerators we propose apply roofline model to
explore all design space to find the best performance
with the used hardware resources. With the optimal tiling
parameters and storage pattern, the design with 4 MACs
achieves 100.7 G-OPS/S on AlexNet and 113.28 G-OPS/S
on VGG-16. It has a DSP ratio of 0.144 and energy efficiency
of 19.18 G-ops/s/w on VGG-16.

V. CONCLUSION
In this paper, we propose a resources-efficient and con-
figurable accelerator, which can efficiently process a wide
range of DCNN. The accelerator applies hybrid stationary
storage pattern to improve the data reuse and to minimize
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off-chip memory access. To get the best performance,
roofline model is employed to explore the design space with
the used limited resource in system. The accelerator is imple-
mented on a ZYNQ-7 ZC706 evaluation board and the design
with 4 MACs costs 784 DSP48 modules and 211.5 BRAM
modules. It achieves average performance of 100.7 G-OPS/S
on AlexNet and 113.28 G-OPS/S on VGG-16 running at the
frequency of 100 MHz and consumes power of 5.905 watts.
In the future, we will explore to extend the accelerator to run
the complete flow of DCNN on embedded systems.
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