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ABSTRACT Accurate and timely prediction of remaining useful life (RUL) of a machine enables the
machine to have an appropriate operation and maintenance decision. Data-driven RUL prediction methods
are more attractive to researchers because they can be deployed quicker and cheaper compared to other
approaches. The existing deep neural network (DNN) models proposed for the applications of RUL
prediction are mostly single-path and top-down propagation. In order to improve the prognostic accuracy
of the network, this paper proposes a directed acyclic graph (DAG) network that combines long short term
memory (LSTM) and a convolutional neural network (CNN) to predict the RUL. Different from the existing
prediction models combined with CNN and LSTM, the method proposed in this paper combines CNN and
LSTM organically instead of just using CNN for feature extraction. Moreover, when a single timestamp
is used as an input, padding the signals in the same training batch would affect the prediction ability of
the developed model. To overcome this drawback, the proposed method generates a short-term sequence
by sliding the time window (TW) with one step size. In addition, based on the degradation mechanism,
the piece-wise RUL function is used instead of the traditional linear function. In the experimental test,
the turbofan engine degradation simulation dataset provided by NASA is used to validate the proposed RUL
prediction model. By comparing with the existing methods using the same dataset, it can be concluded that
the prediction method proposed in this paper has better prediction capability.

INDEX TERMS Remaining useful life prediction, long-short-term memory network, convolutional neural

networks, turbofan engine.

I. INTRODUCTION

The prognostics and health management (PHM) of the
mechanical equipment has received much attention, and
the prediction of remaining useful life (RUL) is the
core of the PHM [1], [2]. By predicting the RUL of
the machine, it is possible to adjust the mechanical operation
and propose a maintenance strategy in a targeted manner [3].
There are three types of methods for predicting the RUL of
mechanical equipment: model-based prognostics, data-driven
prognostics, and hybrid approaches. Model-based prediction
uses a physical understanding (physical model) of the system
to predict the RUL. It can be further divided into micro-
level models [4] and macro-level models [5] based on the
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modeling physics. Micro-level models, also known as dam-
age propagation models, need to consider assumptions
and simplifications in uncertainty management, which can
impose significant limitations on the method. A macro-level
model is a simplified representation of the system. It defines
the relationship between input variables, state variables, and
system output. Data-driven prognostics typically use pattern
recognition and machine learning techniques to detect the
state of the system [6]. A data-driven method is suitable for
applications in the complex system, as it does not require
a comprehensive understanding of the system. Modeling
strategies for data-driven prediction methods can be of two
types: 1) modeling cumulative damage and then inferring the
damage threshold, 2) learning the RUL directly from the data.

The classical data-driven prediction methods usually use
a stochastic model to describe the degradation process
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of the system. Considering it is difficult to calculate the
closed-form solution due to the state-dependent model,
Li et al. [7] proposed a general expression of age and
state-dependent models to describe the system degradation
processes. As different operating conditions and health condi-
tions would lead to different degradation processes of the sys-
tem, it makes the RUL prediction difficult. In order to solve
this problem, a wiener-process-model (WPM)-based method
[8] for RUL prediction was proposed by considering unit-to-
unit variability. To predict the RUL of mechanical equipment
with complex system structure and harsh operating environ-
ment, Hu ef al. [9] combined the unscented Kalman filter
with a particle filter to replace the standard particle filter, and
used Markov chain Monte Carlo to improve the prediction
accuracy. Qian et al. [10] proposed a RUL prediction method
that combines enhanced phase space warping (PSW) with an
improved Paris crack propagation model. In their method,
PSW is enhanced by multidimensional autoregressive (AR)
models to improve accurate defect tracking and the Paris
crack growth model is modified by time segmentation algo-
rithm for real-time RUL prediction.

In the past decade, due to the rise of deep learning (DL),
data-driven prediction methods have focused more on the
use of flexible models such as various types of neural net-
works (NN). Yan et al. [11] combined deep denoising autoen-
coder (DDA) and regression operation and proposed a device
electrocardiogram (DECG) concept for predicting the RUL of
industrial equipment. Guo et al. [12] found that the accuracy
of predicting bearing RUL is greatly influenced by health
indicators, but existing signal extraction methods cannot meet
the requirements. Therefore, 6 new similarly related features
and 8 classical time-frequency features were combined to
form a feature set and the monotonicity and correlation met-
rics were used to select the most sensitive features. Finally,
the selected sensitive features were used as input to the recur-
rent neural network (RNN). The echo state networks (ESNs)
have also been commonly used for mechanical RUL predic-
tion. Rigamonti ef al. [13] resorted to ESNs to improve the
performance of individual ESN and used the improved ESN
for RUL prediction.

The main disadvantage of the data-driven method is that
it has a wider confidence interval than other methods, and
it requires a large amount of data for training. Moreover, it is
difficult to get run-to-failure data, especially for new systems,
because running a system to failure can be a lengthy and
rather expensive process. So the public databases are usually
used to verify the proposed model, such as battery dataset and
turbofan engine degradation simulation dataset provided by
the prognostics CoE at NASA Ames, FEMTO bearing dataset
provided by FEMTO-ST institute.

Reusable lithium-ion batteries (LIB) have become a core
component of the energy supply for most devices. Therefore,
it is necessary to predict the RUL of LIB [14]. Ren et al
combined the autoencoder with deep neural network (DNN)
to predict the RUL of LIB [15]. In order to solve the problem
that the battery capacity cannot be measured in operation,
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Liu and Chen [16] proposed a new method combining indi-
rect health index (HI) and multi-Gaussian process regres-
sion (GPR) model. Most existing LIB RUL prediction models
have been developed using offline training data. However,
the load current, temperature, and state of charge of the
electric lithium-ion battery vary with the working condi-
tions. In this case, a well-trained prediction model is not
suitable for practical applications. To address this prob-
lem, Zhang et al. [17] proposed a RUL prediction model
combining the Box—Cox transformation (BCT) and Monte
Carlo (MC) simulation. In their model, BCT transforms the
available capacity data and builds a linear model between the
transformed capacities and cycles. MC simulation generates
RUL prediction uncertainty.

Bearings are the core components of the mechanical equip-
ment and their RUL prediction is also necessary. There are
many applications for validating models using the FEMTO
bearing dataset [18]. In order to overcome the problem of
feature extraction methods separated from RUL prediction
models, Ren et al. [19] proposed a multi-scale dense gate
multiplexing unit network (MDGRU) to predict the RUL of
bearings. Ren et al. [20] proposed a new method based on
deep convolution neural network (DCNN) to predict RUL
of bearings. A new feature extraction method was presented
to obtain the spectrum-principal-energy-vector. To solve
the problem that the two stages are mutually independent,
Wang et al. [21] proposed a new model with stage correlation
for RUL prediction. Many other methods to predict bearing
RUL using various feature extraction methods and DL archi-
tectures have been reported [22], [23].

Aircraft PHM is one of the most important applica-
tions as any short-term faults in the equipment can have
a significant impact on safety operation of the aircrafts.
Khelif et al. [24] used support vector regression to model
the direct relationship among sensor values or HIs and
estimate the RUL directly from the sensor values with-
out estimating the degradation state or failure threshold.
Ordéiiez et al. [25] combined the auto-regressive integrated
moving average (ARIMA) model and support vector machine
algorithms to predict turbofan engine RUL. Many engine
RUL prediction models have been developed by establish-
ing a degradation model [26]-[28]. Among all methods for
engine RUL prediction, DNN-based methods account for
the majority. Zhang et al. [29] employed a multi-objective
evolutionary algorithm to evolve multiple DBNs simultane-
ously subject to accuracy and diversity as two conflicting
objectives. Li et al. [30] proposed a new deep CNN (DCNN)
prediction model to predict turbofan engine RUL. Long short
term memory (LSTM) [31], [32] is a kind of RNN, which can
solve the problem of gradient disappearance and explosion
in long sequence training. Wu et al. [33] used the vanilla
LSTM network to obtain good RUL prediction in the case
of complicated operations, model degradation and strong
noise. Ellefsen et al. [34] established a semi-supervised
model for RUL prediction to provide high RUL prediction
accuracy, even with reduced amounts of labeled training data.
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FIGURE 1. Framework of proposed DAG network.

Zhang et al. [35] combined transfer learning and Bi-
directional long short term memory (BLSTM) network for
RUL prediction. In their approach, the model can first be
trained by different but related datasets and then fine-tuned
by target dataset.

This paper proposes a DAG network based on LSTM
and CNN to improve the accuracy of the RUL prediction
of the machines. Moreover, a sliding time window (TW)
is used to extract data so that the input of the prediction
model has the same length of short-term time series. And
the piece-wise RUL function is applied instead of the tra-
ditional RUL function. The rest of the paper is organized
as follows: In Section 2, the methodology of the proposed
method is introduced. In Section 3, the validation dataset,
the preparation of the data, and the model evaluation method
are described. In Section 4, the validation results of the
proposed method using the validation database is reported.
Finally, Section 5 concludes the paper.

Il. METHODOLOGY

A. FRAMEWORK OF PROPOSED DAG NETWORK

This paper presents a DAG network combining CNN and
LSTM networks for estimating the RUL of mechanical equip-
ment. Although the combination of LSTM and CNN for RUL
prediction has been reported in the literature, the method
presented in this paper is different. Different from the DAG
structure presented in this paper, the existing prediction mod-
els of using both LSTM and CNN are all combined in a serial
manner. Hinchi and Tkiouat [36] used a combination of CNN
and LSTM networks, first applying CNN to extract signal fea-
tures and then input them into the LSTM network. However,
when the CNN is used as the feature extractor, the extracted
features have a great influence on the training of the LSTM
network, and the CNN cannot be corrected according to the
prediction error of the LSTM. To overcome this limitation,
the method presented in this paper places CNN and LSTM in
parallel into the DAG network. As shown in Fig. 1, the DAG
network contains two paths: LSTM path and CNN path.
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There is no correlation between the two paths, but the output
of both paths affect the RUL prediction. The constructed DAG
network is a holistic model that can correct each parameter
in the network according to the predicted error. The model
structure of the two paths can increase the stability and accu-
racy of the prediction, and the compact network structure
saves time and convenience in training. The collected data
is simply processed and input into the DAG network to train
the prediction network. The specific process is described
as follows:

1) Data preparation and model development: The first step
is to simply process the health-to-failure data as an
input to the DAG network. As shown in Fig.1, the sig-
nal has n features and the signal length is Ls cycles,
i.e., machine life span. The data is extracted by sliding
the time window (TW) with the length of #; cycles,
and the sliding step size is one cycle. The size of the
array extracted each time by TW is #; x n (length of
TW x numbers of features), and the number of arrays
is Ls-1; (life span—time window length). So now the
input data size is {#; x n}, the sampling size is Ls-1;,
and the output is the corresponding RUL [Ls-#;, Ls-1;-
1...1]. Then, the input data is transposed and cut into
m pieces (T, T»...T,,) along the column direction to
obtain the data size {n x (;/m)}xm. The processed
data is input into the two paths of the DAG network
and the obtained results will be summed and continue
to propagate forward.

2) Process of path 1: The data input to path 1 first goes
through a flatten layer, and the output data size is (n x
t;/m) x m. The output data of the flatten layer will be
entered as time series data into the LSTM 1 network
containing m cells. Let the LSTM 1 network contain u;
nodes. So the output data size of the LSTM 1 network
1S up X m.

3) Process of path 2: The data input to path 2 is convoluted
first. The convolution operation is set as follows: filter
size is [k1, k2], i.e., convolution kernel size, the number
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of kernels is ny, and stride of the filter is [s, s2]. The
output of the convolution will be used as the input to the
pooling layer. Pooling size is set to [p1, p2] and stride
is [ps1, ps2]. The data is finally processed through the
flatten layer. The output data size should be the same
as path 1.

4) Sum the outputs of two paths and continue to propagate
forward: The output vectors of the two paths will be
summed by elements-wise, which requires the output
of both paths to have the same dimension. The com-
bined data will be entered into the LSTM 2 network
with the number of nodes as up. The output of the
last cell of the LSTM 2 network will be input to a
fully connected layer. The output node of the fully
connected layer is one, which gives the value of the
estimated RUL.

5) Correct the DAG network based on training error
between the actual output and the ideal output.

6) Repeat Step 2) — 5) until the maximum number of
training epochs is reached.

7) Finally, the trained network is used to predict the RUL.

B. LSTM NETWOK

The long-short term memory (LSTM) network [37] is a spe-
cial recurrent neural network (RNN) proposed to solve the
problem of gradient dispersion of the RNN. Fig. 2 shows
the information transfer and update between the LSTM cells.
Compared with the RNN network, the cell state of the LSTM
has changed. It consists of a long-term state of C; and a short-
term state h;. The change in LSTM cell status relies on three
control gates: forget gate, input gate, and output gate.

el

Xy

FIGURE 2. Diagram of LSTM cell.

The forget gate f; is realized by (1), and its function is to
selectively forget the information of the previous LSTM cell
state.

f; = o(Ws - [hy—1, x,] + by) (1

where o (') is activation function sigmoid = 1/(1+ exp(-x)),
W is the weight matrix of the forgot gate, h;_1 is the short-
term state of previous LSTM cell, x; is the input of #-th LSTM
cell, and by is the bias vector of forgot gate.

The input gate consists of two parts, which are realized
by (2) and (3). The vector i, generated by (2) determines
which information in the short-term state h,_; is used to
update the new cell state. The C generated by (3) will be
added to the long-term cell state after being filtered by i;.

i; = o(Wi-[h—1,x/]+bp) @
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C, = tanh(W, - [h,_1, x;] + bc) (3)

where W; and W, are the weight matrix of the input gate,
b; and b, are the bias vector of input gate, and activation
function tanh = (exp(x)— exp(—x))/(exp(x)+exp(—x)).

Then update the long-term state of C; based on the output
of the forget gate and the input gate.

C=f®C_1+i,®C )

where ® is the element-wise multiplication, and C;_1 is the
long-term state of the previous LSTM cell.

The output gate also consists of two parts, which are real-
ized by (5) and (6).

o = o(Wo - [hy—1, x/] + bo) 5
ht =0 ® tanh(Ct) (6)

where W; is the weight matrix of the output gate and b; is
the bias vector of input gate.

C. 2D-CONVOLUTIONAL LAYER

Inspired by the visual center of a cat, the idea of convolutional
neural networks (CNN) [38] has gradually emerged after
several generations’ efforts. The CNN has achieved good
results in both speech analysis and image recognition, among
which the LeNet and the Alex-Net are widely known for their
super high image recognition accuracy. The weight-sharing
structure of CNN makes it more similar to biological neural
networks, reducing the complexity of the network model
and reducing the number of weights. Moreover, CNN can
use a 2-dimensional (2D) array as an input, thus avoiding
the complicated feature extraction and data reconstruction
process in the traditional recognition algorithms. The convo-
lutional layer is the core of the CNN that includes convolution
operations and activation operations.

The convolution operation is shown in Fig. 3. A slid-
ing convolutional filter moves vertically and horizontally to
extract data from 2D-input. The size of the filter should be
the same as the size of the convolution kernel. The filter size
in Fig. 3 is [3, 2], and the sliding step size for traversing
the input vertically and horizontally is [2, 2]. There are three
types of convolution kernels, corresponding to three feature
maps. One convolution operation is as follows: the result
matrix of the dot product of the convolution filter and the
convolution kernel is summed, and then a bias term is added.
With the translation of the convolution filter in the horizontal
and vertical directions, the convolution operation is repeated
to obtain a complete feature map.

The convolution operation and the activation operation can
be calculated by (7) and (8).

zZ = sum(k, ® xf;) + b, @)
Y* = o(Z") (®)
where Z7 is the output of convolution operations, n represents
the n-th feature maps, i and j correspond to the number of
steps of the convolution filter in the vertical and horizontal
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directions, sum(*) operation adds all the elements in *, k,, is
the convolution kernel matrix, xf;; is the filter matrix, by is
the bias term, and ¢( ) is an activation function.

D. POOLING LAYER
The main purpose of the pooling layer is to compress the input
by down sampling without affecting the input quality. On one
hand, the pooling operation can simplify the computational
complexity of the network by compressing the input. On the
other hand, feature compression is performed to extract the
main features. Fig. 4 shows the pooling layer operation,
where the input matrix dimension is [3, 3], pooling size is
[2, 2], and pooling sliding step size for traversing the input
vertically and horizontally is [1, 1]. There are many types
of pooling operations, such as average pooling, maximum
pooling, and overlapping pooling.

The average pooling operation and the maximum pooling
operation can be calculated by (9) and (10).

dl.;f = Ave_pooling(yf;) ©
dji = Max_pooling(yf;;) (10)

where dl’; is the output of pooling operation, n represents the
n-th feature maps, i and j correspond to the number of steps
of the pooling filter in the vertical and horizontal directions,
yfi; is the pooling filter matrix, Ave_pooling(*) operation
takes average over all the elements in *, and Max_pooling(*)
operation selects the maximum element in *.

E. FLATTEN LAYER AND FULLY CONNECTED LAYER
The role of the flatten layer is to flatten several 2D or 3D data.
The output is a flatten layer a one-dimensional vector. Fig. 5
shows the flatten operation, turning the data into one dimen-
sion in order to make it as an input to the fully connected
layer.

The fully connected layer connects all the nodes between
the adjacent layers, so that the features extracted from the
front can be integrated. Due to its fully connected nature,
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FIGURE 5. Flatten operation.
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FIGURE 6. A simplified diagram of the simulation engine in C-MAPSS [39].

the full connected layer usually has the largest amount of
parameters. The calculation process of the fully connected
layer can be expressed by (11).

H = ¢p(W¢es + by) (11

where Wy, is the weight matrix of the fully connected layer,
bg. is the bias vector, s is the inputs, and H is the output
matrix.

Ill. EXPERIMENTAL TEST

In this section, the C-MAPSS simulated turbofan engine
dataset is used to validate the proposed DAG prediction
model. The main contents of this section include: description
of the C-MAPSS database, sensors data selection, data nor-
malization, definition of piece-wise RUL function, and model
evaluation.

A. C-MAPSS DATASET DESCRIPTION

The degradation data of the turbofan engine used in this
paper was simulated by C-MAPSS developed by NASA [39].
A simplified diagram of the simulation engine is shown
in Fig. 6. The main components includes: fan, low pres-
sure compressor (LPC), high pressure compressor (HPC),
combustor, high pressure turbine (HPT), low pressure tur-
bine (LPT), and nozzle. C-MAPSS was developed on MAT-
LAB software and Simulink environments. It includes many
editable input parameters that allow the user to enter spe-
cific values, such as Fuel flow, Fan flow modifier, and Fan
pressure-ratio modifier, etc. The input to the C-MAPSS con-
tains 14 factors that affect the degradation of the turbofan
engine, and the output of the simulation model represents the
health condition of the turbofan engine.
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TABLE 1. 21 Sensor outputs of the simulation engine running.

Symbol Description Units Trend

1 T2 Total Temperature at fan inlet °R ~
2 T24 Total temperature at LPC outlet °R i
3 T30 Total temperature at HPC outlet °R i
4 T50 Total temperature LPT outlet °R 1
5 P2 Pressure at fan inlet psia ~
6 P15 Total pressure in bypass-duct psia ~
7 P30 Total pressure at HPC outlet psia 1
8 Nf Physical fan speed rpm i
9 Ne Physical core speed rpm T
10 Epr Engine pressure ratio - ~
11 Ps30 Static pressure at HPC outlet psia 1
12 Phi Ratio of fuel flow to Ps30 pps/psi l
13 NRf Corrected fan speed rpm i
14 NRc Corrected core speed rpm l
15 BPR Bypass ratio - 1
16 farB Burner fuel-air ratio -- ~
17 htBleed Bleed enthalpy - 1
18  NF dmd Demanded fan speed rpm ~
19 Pcﬁ*d Demanded corrected fan speed rpm ~
20 W31 HPT coolant bleed Ibm/s 1
21 W32 LPT coolant bleed lbm/s |

A description of the 21 simulation outputs of C-MAPSS is
shown in Table 1. The legend of column 5 ‘Trend’ represents
the degradation trend of the output, where 1 indicates that
the parameter is ascending with time, | indicates that the
parameter is descending with time, and ~ indicates that the
parameter is irregular with time. In this paper, 14 outputs with
regular trend [40] are selected as inputs to the DAG network.

The C-MAPSS dataset can be divided into four sub-
datasets according to different operating conditions and fault
modes. A description of four sub-datasets is given in Table 2.
Each sub-dataset contains training data, test data, and the
actual RUL corresponding to the test data. The training data
contains all the engine data from a certain health state to
the fault, while the test data is a piece of data before the
engine running fault. Moreover, the training and test data
respectively contain a certain number of engines with dif-
ferent initial health states. Due to the different initial health
states of the engines, the running cycles of different engines
in the same database are different. Taking the FD0O1 database
as an example, the test dataset contains 100 engines, with a
maximum running cycle of 303 and a minimum running cycle
of 31. In order to test all the engine in the test set, the sliding
window length is usually smaller than the minimum running
cycles in the test set. The data size obtained by the sliding TW
processing was 30 x 14, the training samples was 17731, and
the test sample size was 100.

B. DATA NORMALIZATION

According to Table 2, 14 out of 21 sensor outputs were
selected for RUL prediction, and the output value of
these 14 sensors ranged from a tens to thousands. Com-
monly used standardization methods: linear normaliza-
tion and z-score normalization can be realized according
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TABLE 2. Description of the C-MAPSS dataset.

Sub-datasets FD001 FD002  FD003 FD004
Engines in training set 100 260 100 249
Engines in test set 100 259 100 248
Max/min cycles for 362/128  378/128  525/145  543/128
training
Max/min cycles for test 303/31 367/21 475/38 486/19
Operating condition 1 6 1 6
Fault modes 1 1 2 2
TW length 30 21 36 18
Training samples 17731 48558 21120 56815
Test samples 100 259 100 248
to (12) and (13), respectively.
yi = (f —x9 /0 (12)
Yi = OF = Xgpin)/ Kinax = Xinin) (13)

where x{ is the i-th output of sensors ¢, X is the average
value of all outputs of sensor ¢, o¢ is the standard deviation
of all outputs of sensor c, xfnin is the minimum value of
sensor ¢ output, x5, is the maximum value of sensor ¢
output, and yf is the normalized data. The data normaliza-
tion processing method selected in this paper is the z-score

normalization.

C. RUL TARGET FUCTION

The RUL defines the time that the equipment can still operate.
Itis generally considered that the RUL decreases linearly with
time. However, in practical application, the degradation of
the equipment at the beginning of operation is not obvious.
As shown in Fig. 7(a), the signals have not significant trend
within the assumed health range of green. This paper applies
a piece-wise linear function to represent the RUL, as shown
in Fig. 7(b). According to [41] based on the CMAPSS dataset,
the largest RUL value in piece-wise linear function was
set to 125.

Amplitude
bbbl —Lwan

Time cycles

@

RUL
~ Fault
100 Healthy 1
80f ]
=} L ™~ 4
2 60

40 1
20¢ ~ |

125 — \(68,125)

20 40 60 80 100 150 140 160 180 200
Time cycles

(b)

FIGURE 7. Engine #1 in FDOO1 dataset: (a) normalized 14 signals as
inputs of DAG network and (b) piece-wise linear RUL function.
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D. MODEL EVALUATION

When using the trained model to predict the RUL, there is

a prediction error (h = RULPredict _ RULAtaly petween

the predicted RUL and the actual RUL. The model can be

evaluated by an evaluation method using the prediction errors.

Two commonly used evaluation methods [42] are described

as follow:

1) RMSE: For the evaluation of the RUL prediction

model, RMSE is a commonly used method with the
same penalties for early and late predictions.

RMSE = (14)

where A; is the prediction error, N is the test sample
size.

2) Score: The scoring function was first proposed at
the international conference on prognostics and health
management (PHMOS) to be used to evaluate the data
challenge model. Mathematical calculations can be
achieved by (15), which have different penalties for
early and late predictions.

Y e 1, hj<0
score =Y s, =144 (15)
= el —1, h;>0

Figure 8 compares the two evaluation methods. The sim-
ilarity between the two methods is that the closer the pre-
diction error is to 0, the smaller the output. The difference
between the two methods is that RMSE has the same penalties
for early and late predictions, while score is different.

IV. RESULTS AND ANALYSIS

A. PREDICTED FINAL RUL OF EACH TEST ENGINE

The proposed DAG network was used to predict the
RUL of the engine of the C-MAPSS datasets. Taking the
FDOO1 database as an example, the TW length was set
to 30, and the data size obtained after data cutting was
{14 x 3} x 10. The LSTM 1 cell node was set to 21, con-
taining 10 cells. The output of each cell was saved and input
to the next layer.

Score | |
RMSE| |

S 100

Value of score and RMSE

~

— _—

%50 40 30 =20 0 0 10 20 30 40 50

Error /i between prediction RUL and actual RUL

FIGURE 8. Comparison of two evaluation methods: Score and RMSE.
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FIGURE 9. Final RUL predicted for each engine by DAG network:
(a) FD0OO1 dataset, (b) FD002 dataset, (c) FD003 dataset, and
(d) FD004 dataset.

The size of the convolution kernel in path 2 was [3, 2], the
number of kernel was 3, and the sliding step size was [2, 2].
The pooling size was set to [1, 2] and stride was [1, 2]. The
cell node of LSTM 2 was set to 10, and the output mode was
‘last mode’, i.e., only the output of the last cell was saved.
Finally, a fully connected layer with an output node of 1 was
used. When the model was back propagated, ‘rmsprop’ was
used as the optimizer, the learning rate was set to 0.005, and
the mini-batch was set to 100. The sliding TW lengths of
different sub-datasets were different, as shown in Table 2.

The DAG network was trained with four sub-datasets in the
C-MAPSS dataset and tested with all test engines. The test
results of each test engine in the test set are shown in Fig. 9.
The 4 graphs correspond to 4 sub-datasets, the horizontal
axis is the number of engines, the vertical axis is the RUL,
the blue solid line in the graph represents the predicted
RUL, and the yellow dash-dotted line represents the actual
RUL. The number of test engines in datasets FD0OO1 and
FDO0O03 is less than the remaining two sub-datasets. Moreover,
it can be seen roughly from Fig. 9 that the coincidence degree
between the predicted RUL curve and the actual RUL curve
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in graphs (a) and (c) is better than graphs (b) and (d). This
observation can be further confirmed by Fig. 10.

Fig. 10 shows the test engines error distribution histogram
of the 4 test datasets, including the RMSE of each test dataset.
The horizontal axis represents the error between the predicted
RUL and the actual RUL. The vertical axis represents the
number of engines corresponding to the error region. It can
be seen from the figure that the error spans of FD0O1 and
D003 are smaller, and the corresponding RMSE values are
also lower. The prediction error distribution of FD0OO1 and
FDO0O03 is concentrated between [— 20, 20], and the predic-
tion errors of other two datasets are concentrated between
[— 40, 40]. According to Table 2, the datasets FD002 and
FD004 contain data of six working conditions. They are
more complicated than the other two datasets and the RUL
prediction challenge for these two datasets is even greater.
The reason why the prediction result of FD0O1 is slightly
better than FDOO3 is that there are two fault modes in FD003.

The prediction methods validated by the C-MAPSS dataset
in the past 4 years are presented in Table 3. The RMSE
and score of the different prediction methods are compared
in Table 4 and Table 5.

The second column in Table 4 is the year in which the
prediction method was proposed. It can be found that the pre-
diction results are gradually getting better as the new methods
are proposed. It can be seen from Table 4 that the RMSE
values of the 4 sub-datasets obtained by the proposed method
are the lowest of all methods in the table. Similarly, the scores
of the predicted RUL results are shown in Table 5. One can see
from Tale V that the proposed method has the lowest scores
except for in dataset FD0O03. It can be seen from Fig. 8 that the
lower the score and RMSE, the better the RUL prediction of
the model. The score of proposed method for FD003 dataset
is higher than several of the compared methods because there
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TABLE 3. The existing prediction methods validated by CMAPSS dataset.

Methods Description
MLP[43] Standard Multi-layer Perceptron algorithm
SVR[43] Standard Support Vector Regression algorithm
RVR[43] Standard Relevance Vector Regression algorithm
CNN[43] CNN with 2 convolution layers + 2 pooling layers +
fully connected layer
LSTM[44] Long Short-Term Memory+ feed forward neural
networks
ELM[29] Standard Extreme Learning Machines
DBNJ[29] Standard deep belief network
MODBNE[29] A MultiobjectiYe evolutiopfiry algorithm integrated
with the traditional DBN
e N
BLSTM[35] 2 Bi-directional LSTM layers + flatten layer+ fully
connected layer
RNNJ[30] 5 recurrent layers+ fully connected layer
DCNN[30] 5 convolution layers + ﬂle;t;z? layer + fully connected
BiLSTM[45] 2 bidirectional LSTM layers+2 fully connected layer

TABLE 4. Compare the prediction RMSE with other methods.

RMSE
Methods Years

FD001 FD002 FD003 FDO004

MLP[43] 2016 37.56 80.03 37.39 7737
SVR[43] 2016 20.96 42.0 21.05 4535
RVR[43] 2016 23.80 31.30 22.37 34.34
CNNJ[43] 2016 18.45 30.29 19.82 29.16
LSTM[44] 2017 16.14 24.49 16.18 28.17
ELM[29] 2017 17.27 37.28 18.47 30.96
DBN[29] 2017 15.21 27.12 14.71 29.88
MODBNE[29] 2017 15.04 25.05 12.51 28.66
BLSTM[35] 2018 14.26 21.7 16.33 259
RNN[30] 2018 13.44 24.03 13.36 24.02
DCNN[30] 2018 12.61 22.36 12.64 23.31
BiLSTM[45] 2018 13.65 23.18 13.74 24.86

Proposed method 2019 11.96 20.34 12.46 22.43

TABLE 5. Compare the prediction scores with other methods.

S
Methods core
FD001 FD002 FD003 FD004
MLP[43] 1.80x10*  7.80x10°  1.74x10*  5.62x10°
SVR[43] 1.38x10°  5.90x10°  1.60x10°  3.71x10°
RVR[43] 1.50x10°  1.74x10*  1.43x10°  2.65x10*
CNN[43] 1.20x10°  1.36x10*  1.60x10°  7.89x10°
LSTM[44] 3.38x107  4.45x10°  8.52x10°  5.55x10°
ELM[29] 523x10>  4.98x10°  5.74x10°  1.21x10°
DBNJ[29] 4.18x10°  9.03x10°  4.42x10*  7.95x10°
MODBNE[29] 3.34x10*  5.59x10°  4.22x10°  6.56x10°
RNN[30] 339x10  1.43x10*  3.47x10°  1.43x10*
DCNN[30] 274x10°  1.04x10*  2.84x10>  1.25x10*
BiLSTM[45] 2.95x10*  4.13x10°  3.17x10*  5.43x10°
Proposed method ~ 2.29x10>  2.73x10°  5.35x10>  3.37x10°

is one large late prediction in the 100 test engines. As can be
seen from Fig. 9(c) and Fig. 10(c), the RUL estimate of engine
#16 is a late prediction, and the prediction error is within the
range of 50-60, which is the reason for the larger score.

Fig. 11 shows the effect of the TW length on the prediction
results of the developed model. The figure shows the boxplot
of each engine final RUL prediction error and the RMSE
under different TW lengths. It can be seen from the figure that
as the length of the TW increases, the engine prediction
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FIGURE 11. Each engine prediction error boxplot and RMSE curves of
FDO0O01 dataset under different TW length.

error is increasingly concentrated near zero and the RMSE
also drops. It can be concluded that increasing the length of
the time window can enhance the prediction accuracy of the
model.

B. PREDICTED FULL LIFE CYCLES OF EACH TEST ENGINE
The previous section presents the results of using the model
to predict the final RUL of the each test engine. Next, this
section presents a complete prediction of the degradation
process for each test engine. Fig. 12 shows the predicted
degradation process and the actual degradation process for
the 4 randomly selected engines from all the 100 test engines.
During the test, the sliding TW was used to process the data.
The predicted RUL corresponds to the life of the last time
series in the TW. So the abscissa of the prediction curve
does not start from 0. And the length of the blank before the
prediction curve is equal to the length of the TW. The value
at the top of the graph is the RMSE of the predicted result
of the engine. Fig. 13-15 presents the predicted degradation
process of 4 engines for the other three sub-datasets. The
RUL prediction results of Fig. 12(c), (d), and Fig. 14(d) are
very good, especially for the prediction of the RUL at the last
cycle. Observing these three graphs, it can found that when
the remaining period of the test engine is large, the time cycle
span is also large. In contrast, it can be concluded by compar-
ing Figures 14(b) and (d) that the smaller the predicted RUL
and the time cycle span, the larger the prediction error. The
longer the engine runs, the more pronounced the degradation
of the engine. When the model is trained, the ‘memory’ of
the model for the late stage of degradation is deeper than the
early stage. So the predicted result is getting better and better
with time cycles. Both Fig. 13(a) and Fig. 14(c) show that
the prediction results in the later period of the time cycle are
better than the early stage.

The actual RUL in Fig. 12(b) and 13(c) is a straight line,
but the predicted RUL curve is different. The reason for this
may be that this paper replaces the original linear function
with a piecewise linear RUL function. So that it is possible for
the engine to have a degradation trend but the corresponding
RUL has not changed. Therefore, it can be inferred that the
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FIGURE 12. Predicted RUL of 4 engines in FDOO1 dataset: (a) engine # 46,
(b) engine # 65, (c) engine # 76, and (d) engine # 92.
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FIGURE 13. Predicted RUL of 4 engines in FD002 dataset: (a) engine # 9,
(b) engine # 45, (c) engine # 170, and (d) engine # 182.

<

engine in Fig. 12(b) is healthy in an earlier state, while the
engine in Fig. 13(c) is going to degrade. Fig. 15(b) can verify
the previous inference that the predicted RUL is maintained
at the early time cycle. And the predicted RUL has changed
when there is a degradation trend but the actual RUL has not
decreased.

Next, the prediction results of the three methods are com-
pared, where method 1 is LSTM only without WT processing,
method 2 is CNN only without data cutting, and method
3 is the proposed DAG network. Fig. 16 shows a boxplot
of the RMSE of all test engine prediction results for the
three methods. It can be seen from the figure that the RMSE
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FIGURE 15. Predicted RUL of 4 engines in FD004 dataset: (a) engine # 33,
(b) engine # 41, (c) engine # 135, and (d) engine # 183.

distribution region of the proposed method is lower and rel-
atively concentrated. Method 1 without TW processing has
the largest RMSE distribution span, which indicates that the
prediction of early time cycles is not good when the entire
time sequence is used as input.

Fig. 17 presents the distribution of all prediction engine
score for the three methods. Compared to RMSE, the score
distribution of each test engine is more dispersed. This is
because the score for each test engine is the cumulative of all
cycle errors of the engine. So the number of predicted cycles
of the test engine will affect the score. Observing the results
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FIGURE 17. Comparison of 3 methods in terms of scores box plot for
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TABLE 6. Comparison the training time of different methods.

Methods Model description Time
LSTM 2 LSTM layers +2 Fully 304,355
connected layers
2 Convolution layers + 2
CNN Pooling layers+ 2 Fully 81.84s
connected layers
The proposed method DAG network 138.17s

of all the 4 datasets, it is not difficult to find that the proposed
DAG method has the best prediction results.

The computational time can be reflected in the training
time of the diagnostic model. Therefore, the training time
is an important indicator for evaluating the quality of the
diagnostic model. The FDOO1 dataset was first processed by
TW, and then the obtained data was input into three models:
LSTM, CNN, and the proposed method. The training epochs
and training mini-batch were set to 40 and 200, respectively
for all three models. Table 6 provides the training time for
the 3 models tested. It can be seen from Table 6 that the
training time of 81.84s for the CNN model is the shortest.
The training time of 138.17s for the proposed method is
shorter than the training time of 304.35s for the LSTM model.
Because the LSTM network involves processing time series
data, the training time of the proposed method and the LSTM
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model is longer than the CNN model. The proposed method
reduces the time series length of the LSTM network through
data cutting process and flatten layer. Moreover, the CNN
path and the LSTM path are in a parallel connection, the pro-
posed method has a shorter propagation path than the LSTM
methods. Therefore, the proposed method takes less training
time in comparison with the LSTM model.

V. CONCLUSIONS

In this paper, a new DAG network structure including LSTM
and CNN was proposed. The sliding TW was applied to
process the raw data into a data table with the same length
of time sequence. And the traditional linear RUL function
was replaced by the improved piece-wise linear function
according to the fault occurrence mechanism. The turbofan
engine degradation simulation dataset provided by NASA
was used to validate the developed prediction model. The
following conclusions can be drawn:

1) Compared with the RUL prediction methods present in
recent 4 years using the C-MAPSS dataset validation,
the overall prediction results of the proposed method
in terms of RMSE and score are better than other
methods. This shows that the prediction capability of
the proposed method is better than the existing RUL
prediction methods.

2) Increasing the length of the sliding TW can improve the
prediction accuracy of the developed model.

3) Since the performance degradation in the later period of
the operation is more obvious, the model has a deeper
‘memory’ of the late stage of degradation during the
training. As a result, when the whole life cycle of each
engine is predicted, the prediction accuracy at the late
stage of degradation is better than that at the early stage.

4) Compared with using CNN or LSTM methods alone,
the prediction accuracy of the proposed two-path DAG
network is better.
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