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ABSTRACT In this paper, a digital metamaterial of arbitrary base based on liquid crystal (LC) is proposed.
The digital metamaterial can be multiplexed for different desirable functions by properly biasing the LC for
different code patterns. Simulation results of two common functions, beam steering with a steering elevation
angle 27° and RCS reduction of at least 10 dB from 51 to 56 GHz, have been presented to prove the concept.
The feasibility has been further confirmed by preliminary measurement.

INDEX TERMS Coding metamaterial, digital metamaterial, liquid crystal (LC), coding particle, beam

steering, RCS reduction.

I. INTRODUCTION

Currently, metamaterials [1] have become a research hotspot
due to their special electromagnetic properties which are
inexistent in natural materials. They have been applied to
realize some amazing functions such as invisible cloaking [2],
negative refraction [3] and perfect lens [4].

In the past decades, metamaterials have been designed
to control phase of electromagnetic waves [5], [6]. Very
recently, coding metamaterials (CMM) [7], [8], or more gen-
eral digital metamaterials [9], have been proposed for this
purpose. CMM are only composed of two types of unit cells,
namely O and 1 elements. The phase difference between
0 and 1 elements is approximately 180°. Terahertz anomalous
reflections [10] and broadband diffusions [11] were achieved.

In the seminal innovation [7], “‘a subwavelength square
metallic patch printed on a dielectric substrate” is utilized
to realize the binary elements. Consequently, although CMM
encoded with different patterns might correspond to different
functions, instant switching of coding patterns for different
functions is a very tough challenge.

In the community of frequency selective surfaces,
reconfigurable antennas, and metamaterials, tunable struc-
tures play a critical role to achieve dynamic performance. One
of the common tunable structures is switches such as PIN
diodes, varactor diodes [12], [13], microelectromechanical
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systems (MEMS) devices. It is noticed that PIN diodes
have later been used to ‘“‘digitally control the ‘0’ and ‘I’
responses” [7], the binary characteristics of PIN diodes
seriously limits the coding freedom of CMM. CMM might be
very complicated and bulky. In addition, tuning switches usu-
ally result in parasitic resistances, electrostatic forces [14],
losses [15], cost, etc., especially at higher frequencies.

Liquid crystal (LC) is an emerging tunable dielectric whose
effective permittivity can be continuously tuned by applying a
bias voltage to orient LC molecules [16]—[18]. It has attracted
increasing attention in electromagnetic community due to its
experimentally verified low loss, liquid state, low profile and
low cost, especially at higher frequencies. Material character-
ization of LC has been extensively carried out in microwave
and millimeter-wave frequencies. Prominent functions with
the help of LC include phase shifter [19], [20], leaky-wave
antennas [21], [22], and metasurface [23], [24].

As far as we know, nobody else has ever studied digital
metamaterial [7]-[13] based on LC. All known LC-based
microwave devices [19]-[26] are analog ones, while LC has
never been involved in any known digital metamaterials.

In this paper, LC is introduced to develop a novel
digital metamaterial of arbitrary base for multifunctional
applications. General coding elements or codes of specific
base are designed by selecting appropriate LC and carefully
designing geometrical configuration. Switching between cus-
tom applications corresponding to different coding patterns is

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 79671

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-5185-1719
https://orcid.org/0000-0002-1401-1670

IEEE Access

Y. Zhao et al.: Digital Metamaterial of Arbitrary Base Based on Voltage Tunable Liquid Crystal

FIGURE 1. The far pattern of an digital metamaterial.

made simple. As a proof of concept, our digital metamaterial
can be instantly tuned amount base 2, base 4 and base 8 for
beam steering or RCS reduction.

Il. THEORY OF DIGITAL METAMATERIAL
The far pattern of a digital metamaterial as shown in Fig. 1 is

FO.0=3Y" 3" expliton. )
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where 6 and ¢ are the elevation and azimuth angles, ¢(m, n)
is the phase difference between reflection and incident waves
arising from the digital coding particle, D is the periodicity in
x and y.

Obviously, in digital metamaterials, the digital state ¢(m,
n) of particle (m, n) plays a critical role. The digital metama-
terial can be multiplexed for different functions by properly
changing ¢(m, n) to achieve different far patterns.

Ideally, for a digital particle of base B,

¢ (m,n) € {¢i|¢i=é360",0§i53—1} )

Traditionally, different digital states correspond to different
geometries of passive coding particles or ON/OFF states of
PIN diodes of active coding particles [6]-[8]. Obviously, PIN
diode-based active binary particles can only achieve 1-bit
CMM. On the other hand, although multi-bit CMM can be
realized by applying passive multi-bit coding particles, each
passive coding particle corresponding to a specific digital
state has to be independently designed. The design process is
therefore much more tedious. What’s worse, it is impossible
to multiplex a passive CMM once finalized.

Ill. LC-BASED DIGITAL PARTICLE OF BASE B

A. CONFIGURATION

In this work, LC is introduced to develop active digital parti-
cles of base B and accordingly multifunctional base-B digital
metamaterials for different applications. The configuration of
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FIGURE 2. Geometry of LC-based coding particle (a) 3-dimensional and
(b) Cross Section.

the active digital particle is shown in Fig. 2. It is composed of
a top layer of quartz (relative permittivity of ¢, = 3.75 and
loss tangent of 0.0004), a rectangular patch, a bottom layer
of LC, and an Au ground. The digital particle is supported by
another layer of quartz below the Au ground.

The LC exhibits different dielectric characteristics
depending on different bias voltages. When no bias voltage
is applied, LC molecules are aligned parallel by using a
polyimide layer. Consequently, the LC shows the minimum
permittivity &, | . At maximum bias voltage V., the effec-
tive permittivity of LC is &, ;. Increasing the bias voltage
would rotate the LC molecules and change the effective per-
mittivity of LC continuously from &; | to &, /. In accordance,
¢ or equivalently the digital state of the active digital particle
depends on the applied bias voltage.

By properly selecting LC and tuning the geometrical
parameters of the digital particle, the digital particle will
achieve maximum phase difference A¢ and B digital states
if

A¢>B_ L3600
= B

B. PARAMETRIC STUDY

Two representative applications, namely beam steering and
RCS reduction, will be presented to preliminarily prove our
concept. The former application requires a phase gradient (0°,
90°, 180°, 270°) while the latter one expects alternating phase
distribution (0° and 180°). A digital metamaterial of base 4 is
therefore sufficient for both applications.

GT3-23001 manufactured by Merck [27] has been well
known for its excellent tunability (e, | = 3.2, &1 = 2.4,
tand = 0.002, and tand | = 0.006, V4 = 14V). Therefore,
it is chosen in this study.

There are 5 geometrical parameters for us to determine:
periodicity D, superstrate thickness #;qr;, LC thickness ¢,
patch length L and patch width W. A series of paramet-
ric studies has been carried out to determine their values

numerically.
The optimized values are D = 3 mm, L = 2.5 mm,
W = 15 mm, tz,¢c = 0.05 mm, fguur; = 0.5 mm.

The corresponding maximum phase difference A¢ of the
optimized digital coding particle at normal incidence (6 =
0°, ¢ = 0°) is shown in Fig. 3. A¢ > 270° from 52.1GHz to
53.1GHz.
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FIGURE 3. Maximum phase difference for the coding particle at normal
incidence (§ = 0°, ¢ = 0°).
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FIGURE 4. Fabricated metamaterial and experimental setup.

C. PRELIMINARY EXPERIMENTS

For a proof of concept, a LC-based metamaterial is fabricated
and measured. Due to availability problem of GT3-23001
manufactured by Merck, it is replaced by a commercial LC,
TIANMAY9 whose tunable range (¢, | = 2.815, &, | = 2.76,
tand| = 0.024,and tand | = 0.04, V,ae = 7 V) falls in that of
GT3-23001 but is significantly smaller than that of
GT3-23001. All optimized geometrical parameters are kept
intact. Consequently, the measured phase shift is much
weaker than designed. A photograph of the fabricated meta-
material and the experimental setup is given in Fig. 4 while
the measured and simulated maximum phase difference A¢
is shown in Fig. 5. Good agreement is very clear.

IV. REPRESENTATIVE FUNCTIONS

To justify our LC-based digital metamaterial, two represen-
tative applications of digital metamaterials, namely beam
steering and RCS reduction, have been numerically studied.
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FIGURE 5. Measured and simulated maximum phase difference of the
fabricated metamaterial.

FIGURE 6. The periodic coding pattern of metamaterials for beam
steering, in which the blue region represents “0", the orange region
represents “1”, the red region represents “2", and the Purple Region
Represents “3".

A. BEAM STEERING

Beam steering is one of the most common applications of

digital metamaterials. It has been known that phase gradient

in metamaterials results in re-directing the outgoing beam.
According to [28], in our study, the beaming direction

1
6 o arcsin (—13360"/,3(1)

where B is the base for the digital particle, d is the distance
between adjacent digital particles and g is the wavenum-
ber. Therefore, 6 can be tuned by changing B. Coding base
B = 3 or larger is absolutely necessary for phase gradient in
digital metamaterials.

To multiplex our digital metamaterial, the coding base
B = 4 is chosen. The four digital states 0, 1, 2, and 3
corresponding to phase difference 0°, 90°, 180° and 270°
can be obtained by biasing the digital coding particles
with different voltages. Under periodic coding pattern of
0123/0123...as shown in Fig. 6, the outgoing beam at 54 GHz
is re-directed to 27° by our digital metamaterial as shown
in Fig. 7. Then, one more beam steering example of 6 = 15°
with B = 8 has been presented. The seven digital states
0, 1, 2,..., 6 correspond to phase difference 0°, 45°, 90°,
135°, 180°, 225° and 270°. Under periodic coding pattern
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FIGURE 7. Beam steering performance of the LC-based metamaterial at
54 GHz.
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FIGURE 8. The periodic coding pattern of metamaterials for RCS
reduction, in which the blue region represents “0”, and the red region
represents “1".

of 0123456/0123456..., the outgoing beam at 54 GHz is
re-directed to 15° by our digital metamaterial as shown
in Fig. 7 too.

Obviously, the outgoing beams can be re-directed to other
desirable directions if the digital metamaterial is other-
wise encoded. Further studies will be reported in future
publications.

B. RCS REDUCTION

RCS reduction is another very important application for dig-
ital metamaterial. By diversifying the incoming beam to as
many outgoing beams as possible, the RCS at a specific
direction can be significantly reduced, even if there is no loss
in the digital metamaterials.

Without loss of generality, alternating code pattern
010101/010101...as shown in Fig. 8 is studied. The sim-
ulated RCS of the proposed LC-based digital metamaterial
under normal incidence is shown in Figs. 9-10. At least 10dB
reduction is observed.

It is very interesting to point out that the binary states of
our digital coding particles can be obtained in many different
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FIGURE 9. Low- RCS property of the LC-based metamaterial from
54 to 56 GHz under biasing scheme 1.
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FIGURE 10. Low- RCS Property of the LC-based metamaterial from
51 to 52.4 GHz under biasing scheme 2.

biasing schemes because the maximum phase difference of
our digital coding particles is much larger than 180°. From
this point of view, although our digital metamaterial with a
specific biasing scheme can only reduce RCS in a limited
frequency band, our digital metamaterial is able to reduce
RCS by at least 10dB from 51 GHz to 56 GHz by biasing
it differently in different frequency bands.

V. CONCLUSIONS

In this paper, a digital metameterial of arbitrary base based
on LC is proposed. It is composed of a superstrate of quartz,
an array of metallic patches, a substrate of LC, and a ground.
Encoding is realized by biasing LC to shift phase of incoming
waves. The novel coding mechanism has been proven by both
numerical simulation and preliminary experiment.

Two representative applications of digital metamaterials,
namely beam steering and RCS reduction, have been
presented to justify the novel digital metamaterial. The
coding freedom of the LC-based digital metamaterial is
demonstrated very clearly. It has also been observed that
the LC-based digital metamaterial provides a very feasible
solution for broadband applications.

It is regretful to point out that the desirable LC,
GT3-23001 manufactured by Merck, is yet not available to
the authors by the time this paper is submitted. Purchase has
been in progress. Progress will be timely updated in following
publications.
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