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ABSTRACT In this paper, semi analytical solutions for velocity field and tangential stress correspond to
fractional Oldroyd-B fluid, in an annulus, are acquired by Laplace transforms and modified Bessel equation.
In the beginning, cylinders are stationary, motion is produced after t = 0 when both cylinders start rotating
about their common axis. The governing equations solved for velocity field and shear stress by using the
Laplace transform technique. The inverse Laplace transform is alternately calculated by Stehfest’s algorithm
using ‘‘MATHCAD’’ numerically. The numerically obtained solutions are in the form of modified Bessel’s
equations of first and second kind and satisfying all the imposed physical conditions. Finally, there is a
comparison between exact and obtained solutions. It is observed that semi analytical technique and exact
technique are approximately the same and satisfy imposed boundary conditions. Through graphs, the impact
of physical parameters (relaxation time, retardation time kinematic viscosity, and dynamic viscosity) and
fractional parameters on both velocity and shear stress is observed.

INDEX TERMS Fractional Oldroyd-B fluid, annulus, integral transformations, modified Bessel equation,
velocity field, shear stress, numerical solutions.

I. INTRODUCTION
The complicated correspondence between stress and strain
in non-Newtonian fluids and their technological appli-
cation made study of non-Newtonian fluids valuable.
Non-Newtonian fluids, especially in a cylindrical domain
have great importance in the field of engineering and mathe-
matics.

In previous era solutions for the flow of non-Newtonian
fluids were discussed by many researchers. Mahmood
et al. established a note on sinusoidal motion of a vis-
coelastic non-Newtonian fluid [1]. Hayat et al. obtained
the velocity fields for some simple flows of Oldroyd-B
fluids using Fourier transform [2]. Fetecau established
exact solutions for some unidirectional flows of the same
fluids in unbounded domains which ware geometrically
axi-symmetric pipelike [3]. Yin and Zhu studied the oscillat-
ing flow of a viscoelastic fluid in a pipe with the fractional
Maxwell model [4]. Waters and King studied the start-up
Poiseuille flow of an Oldroyd- B fluid in a straight circular
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tube and found exact solution by using the Laplace transform
method [5]. Wood considered the general case of helical flow
of an Oldroyd-B fluid, due to the combined action of rotating
cylinders (with constant angular velocities) and a constant
axial pressure gradient [6].

Now-a-days fractional calculus is beneficial to summarize
viscoelastic characteristics. Fractional calculus is advanta-
geous in bio-engineering [7] and bio-rheology [8] (study of
flow properties of biological fluids) because many tissue-like
materials illustrate power-law when stress or strain are
applied on them [9], [10]. Elastic tissues of the aorta are
an example for such power-law behavior and fractional
order viscoelastic models are used to analyze these types of
data [11], [12]. Fractional calculus was born in 1695 during
the conversation of L′ Hospital and Leibniz on the possibility
of generalizing the operation of differentiation to non-integer
orders. Fractional derivatives are actually modified differen-
tial equations, where integer order time derivative replaced
by Caputo fractional calculus operators [13], [14]. By this
abstraction integrals or derivatives of non-integer order can
be defined precisely [14]. Fractional calculus is very useful
in the field of mathematics as well as in physics [15], [16].
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Bagley and Torvik established a link between molecular
theories that predict the macroscopic behavior of certain
viscoelastic media and an empirically developed fractional
calculus approach to viscoelasticity [17].

Recently many researchers have worked on unsteady
flow of fractionalized non-Newtonian fluids (second grade,
Maxwell, Oldroyed-B and Burgers’) and obtained the solu-
tions by using integral transformations. Jamil and Khan
studied the unsteady flows of Burgers’ fluid with fractional
derivatives model, through a circular cylinder, by means
of the Laplace and finite Hankel transforms [18]. Qi and
Xu discussaed unsteady flow of viscoelastic fluids with the
fractional Maxwell model [19]. Exact solutions for unsteady
flow of a fractional Maxwell fluid through moving co-axial
circular cylinders obtaianed by Imran et al. in (2016) [20].
Ali et al. studied fractional Casson fluid with heat generation
over the oscillating plate by using fractional Caputo derivative
for mathematical formulation [21] and found closed form of
the solutions. Jimenez et al. discussed relaxation modulus in
PMMA and PTFE fitting by fractional Maxwell model [22].
In (2011) Kamran et al. investigate the solution for the
unsteady linearly accelerating flow of a fractional second
grade fluid through a circular cylinder [23]. Tong et al. stud-
ied some unsteady unidirectional transient flows of fractional
Oldroyd-B fluid in an annular pipe and discussed the fol-
lowing four problems: (1) Poiseuille flow due to a constant
pressure gradient; (2) axial Couette flow in an annulus; (3)
axial Couette flow in an annulus due to a longitudinal constant
shear; (4) Poiseuille flow due to a constant pressure gradient
and a longitudinal constant shear [24]. In 2017 Qi et al. [25]
found the exact solutions for fractional Oldroyd-B fluid by
using integral transforms technique. Ali et al. analysed the
effects of magnetohydrodynamics on the blood flow when
blood is represented as a Casson fluid, along with magnetic
particles in a horizontal cylinder and concluded that the
model with fractional order derivatives bring a remarkable
change as compared to the ordinary model [26]. Sheikh et al.
studied generalized Casson fluid model with heat genera-
tion and chemical reaction and gives a comparison between
the Atangana-Baleanu and Caputo-Fabrizio fractional deriva-
tives for said fluid [27]. Recently Farooq et al. [28] stud-
ied the viscous fluid flow over an infinite plate by using
Caputo-Fabrizio derivative model and present solutions in
closed form.

In the present era numerical study of non-Newtonian fluids
got more attention of scientists. Recently, many researchers
worked on numerical solutions of non-Newtonian fluids
with the help of some numerical algorithms, for example
Stehfest’s, Tzou’s and Talbot’s algorithm. Villinger solved
the inhomogeneous one dimensional heat diffusion equation
semi-analytically in a cylindrically layered whole space and
calculate the inverse Laplace transform by using a numerical
procedure (Gaver Stehfest algorithm) [29]. In (2017) Raza
investigate numerical solution of unsteady rotational flow of
a second grade fluid with non-integer Caputo time fractional
derivative by using Stehfest’s algorithm [30]. Tahir et al.

obtained the solutions for temperature, velocity and shear
stress with numerical inversion techniques of Laplace trans-
form namely, Stehfest’s and Tzou’s algorithms for Maxwell
fluid over an oscillating vertical plate [31]. Raza et al.
obtained numerical solution for fractional Maxwell fluid
by using a semi analytical technique [32]. Shah et al. [33]
studied the effect of magnetic Field and convection on
flow of viscous fluid over a plate with by using Caputo-
Fabrizio fractional derivative model by using semi analytic
technique.

The aspiration of study here is to formulate solu-
tions for fractional Oldroyd-B fluid in cylindrical domain
using semi analytical technique. The general solutions are
acquired by integral transformation and modified Bessel
equation. Laplace inverse transformation has been cal-
culated numerically by using MATHCAD. Furthermore,
the influence of motion by variations in material param-
eters is presented in tabular and graphical illustrations.
Also to check the accuracy of obtained solution, there
is a comparison with already calculated exact analytical
solutions.

II. PROBLEM FORMULATION AND GOVERNING
EQUATIONS
The constitutive equations for an Oldroyd-B fluid
are [34], [35]

T = −pI+ S ; S + λ(
•

S - LS - SLT )

= µ[A + λr (
•

A - LA - ALT )], (1)

where T, p, I, λ, S, µ, A, λr , are Cauchy stress tensor,
hydrostatic pressure, unit tensor, relaxation time, extra-stress
tensor, dynamic viscosity, 1st Rivlin-Ericksen tensor and
retardation time respectively. δ

δt denotes upper convected
derivative defined as [36],

δS
δt
=

(
d
dt
− L − LT

)
S.

Consider an incompressible Oldroyd-B fluid between two
infinite circular cylinders. For the considered problem flow
is only in θ -direction, so we have flow of the form [37]

V = V (r, t) = vθ (r, t)eθ ; S = S(r, t), (2)

where, eθ is the unit vector in the θ -direction of the cylin-
drical coordinate. The governing equations corresponding to
Oldroyd-B fluid are [34], [35](
1+λ

∂

∂t

)
τ (r, t)=µ

(
1+λr

∂

∂t

)(
∂

∂r
−
1
r

)
vθ (r, t) , (3)(

1+λ
∂

∂t

)
∂vθ (r, t)
∂t

= ν

(
1+λr

∂

∂t

)
(
∂2

∂r2
+
1
r
∂

∂r
−

1
r2

)
vθ (r, t) , (4)

where, τ (r, t) = Srθ (r, t) is the shear stress.
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FIGURE 1. Oldrod-B fluid in coaxial cylinders with rotational motion.

The governing equation corresponding to fractional
Oldroyd-B fluid obtained from (3) and (4) by replacing the
time derivative with the fractional derivative operator(
1+ λαDαt

)
τ (r, t) = µ

(
1+ λβr D

β
t

)( ∂
∂r
−

1
r

)
vθ (r, t) ,(

1+ λαDαt
) ∂vθ (r, t)

∂t
(5)

= ν
(
1+ λβr D

β
t

)( ∂2
∂r2
+

1
r
∂

∂r
−

1
r2

)
vθ (r, t) . (6)

where, the fractional differential operator Dβt is [38]

Dγt g(t) =


1

0(1− γ )
d
dt

∫ t
0

g(τ )
(t − τ )γ

dτ, 0 ≤ γ < 1;

d
dt
g(t), γ = 1.

(7)

III. INITIAL AND BOUNDARY CONDITIONS WITH
GEOMETRY
The Fractional Oldroyb-B fluid (FOBF) is at rest in the begin-
ning between two infinite coaxial circular cylinders having
radii R1 and R2. Here R1 and R2 are radius of inner and outer
cylinders respectively as shown in Fig. 1. The annulus begins
to rotate when t = 0+ with unsteady velocities around the
axis of the cylinder. Taking this position into account, we set
the initial and boundary conditions of the considered problem
as follows

vθ (r, 0) =
∂vθ (r, 0)
∂r

= 0; r ∈ [R1,R2] , (8)

vθ (R1, t) = R1�1t = X (t);

vθ (R2, t) = R2�2t = Y (t), t > 0. (9)

IV. SOLUTION OF THE PROBLEM
A. CALCULATION OF THE VELOCITY FIELD
Applying Laplace transformation to Eqs. (5), (9) and using
the initial condition (8),(

q+ λαqα+1
)
v̄θ (r, q)

= ν
(
1+ λβr q

β
) ( ∂2
∂r2
+

1
r
∂

∂r
−

1
r2

)
v̄θ (r, q) ,

(10)

v̄θ (R1, q) =
R1�1

q2
= X (q); v̄θ (R2, q) =

R2�2

q2
= Y (q),

(11)

where, vθ (r, q) is the Laplace transformation of vθ (r, t).
Writing the Eq. (10) in another form as,

∂2v̄θ (r, q)
∂r2

+
1
r
∂ v̄θ (r, q)
∂r

−
v̄θ (r, q)
r2

(12)

+ λβr q
β

(
∂2v̄θ (r, q)
∂r2

+
1
r
∂ v̄θ (r, q)
∂r

−
v̄θ (r, q)
r2

)
−

(
q+ λαqα+1

ν

)
v̄θ (r, q) = 0, (13)

rearranging to have the form

[1+ a(q)]
∂2v̄θ (r, q)
∂r2

+ [1+ a(q)]
1
r
∂ v̄θ (r, q)
∂r

− [1+ a(q)]
v̄θ (r, q)
r2

− b(q)v̄θ (r, q) = 0, (14)

where,

λβr q
β
= a(q) and

q+ λαqα+1

ν
= b(q). (15)

Using variable transformation Z = r
√

b(q)
1+a(q) = rd(q) in

Eq. (14), we have

Z2 ∂
2v̄θ
∂Z2 + Z

∂ v̄θ
∂Z
− (Z2

− 1)v̄θ = 0. (16)

Eq. (16) is the modified Bessel equation when n = 1 and its
general solution is [39], [40]

v̄θ (Z , q) = C1I1(Z )+ C2K1(Z ), (17)

where, C1, C2 are constants and I1, K1 are modified Bessel
function of the first and second kind respectively.
Solving Eqs. (11) and (17) we get the values of C1 and C2,

C1 =
X (q)

I1(R1d(q))

−
K1(R1d(q))

K1(R2d(q))I1(R1d(q))− K1(R1d(q))I1(R2d(q))

×

(
Y (q)− X (q)

I1(R2d(q))
I1(R1d(q))

)
,

C2 =
I1(R1d(q))

K1(R2d(q))I1(R1d(q))− K1(R1d)I1(R2d(q))

×

(
Y (q)− X (q)

I1(R2d(q))
I1(R1d(q))

)
.

Finally, put the values of C1 and C2 in Eq. (17) we have

v̄θ (r, q)=
[

X (q)
I1(R1d(q))

−
K1(R1d(q))

K1(R2d(q))I1(R1d(q))−K1(R1d(q))I1(R2d(q))
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TABLE 1. Comparison of velocity field corresponding to numerical and
exact values for R1 = 0.7,R2 = 1,�1 = 0.81,�2 = −0.45, λα = 2,
λ
β
r = 1, ν = 8, α = 0.0001, β = 1, t = 1.

×

(
Y (q)−X (q)

I1(R2d(q))
I1(R1d(q))

)]
+I1(rd(q))

×

[
I1(R1d(q))

K1(R2d(q))I1(R1d(q))−K1(R1d(q))I1(R2d(q))

×

(
Y (q)− X (q)

I1(R2d(q))
I1(R1d(q))

)]
K1(rd(q). (18)

It is very laborious to calculate inverse Laplace trans-
formation of Eq. (18) traditionally. So, inverse Laplace
transform calculated numerically by using Gaver-Stehfest
algorithm [41]

v(r, t) =
ln(2)
t

2m∑
j=1

djv
(
r, j

ln(2)
t

)
, (19)

where m is a positive integer and

dj = (−1)j+m
min(j,m)∑
i=
[
j+1
2

]
im (2i)!

(m− i)!i! (i− 1)! (j− i)! (2i− j)!
.

In order to check the accuracy of our numerical solution
here is a comparison between the numerical and already cal-
culated exact analytical solution of this fluid given in Table 1,
in which velocity field is, [35]

ω(r, t) =
�1R21(R

2
2 − r

2)+�2R22(r
2
− R21)

r(R22 − R
2
1)

tκ −
π

λς

×

∞∑
n=1

J1(R1rn)A(r, rn) (�2R2J1(R1rn)−�1R1J1(R2rn))

J21 (R1rn)− J
2
1 (R2rn)

×

∞∑
k=0

k∑
m=0

k!
m!(k − m)!

(
−
νr2n
λς

)k
λςmr

×

[
Gς,ςm−k−κ−1,k+1

(
−λ−1, t

)
+ λGς,ς+ςm−k−κ−1,k+1

(
−λ−1, t

) ]
. (20)

In table 1. we presented the equivalence of exact and numer-
ical results.

B. CALCULATION OF SHEAR STRESS
Applying Laplace transformation to Eq. (5) we have(
1+ λαqα

)
τ̄ (r, q) = µ

(
1+ λβr q

β
) ( ∂
∂r
−

1
r

)
vθ (r, q),

(21)

writing above equation in another form

τ̄ (r, q) = µ

(
1+ λβr qβ

1+ λαqα

)(
∂vθ (r, q)
∂r

−
vθ (r, q)

r

)
, (22)

or

τ̄ (r, q) = κ(q)
(
∂vθ (r, q)
∂r

−
vθ (r, q)

r

)
, (23)

where,

µ

(
1+ λβr qβ

1+ λαqα

)
= κ(q).

Since, [39]

∂In
∂x
= In+1(x)−

nIn(x)
x

.

∂Kn
∂x
= −Kn+1(x)−

nKn(x)
x

.

Now using equation Eq. (18) and above relations we have

∂vθ (r, q)
∂r

−
vθ (r, q)

r

=

[
X (q)

I1(R1d(q))

−
K1(R1d(q))

K1(R2d(q))I1(R1d(q))− K1(R1d(q))I1(R2d(q))

×

(
Y (q)− X (q)

I1(R2d(q))
I1(R1d(q))

)]
[
dI0(rd(q))− 2

I1(rd(q))
r

]
−

[
I1(R1d(q))

K1(R2d(q))I1(R1d(q))− K1(R1d(q))I1(R2d(q))

×

(
Y (q)− X (q)

I1(R2d(q))
I1(R1d(q))

)]
×

[
dK0(rd(q))+ 2

K1(rd(q))
r

]
.

Finally Eq. (23) takes the following form by using above
equation

τ̄ (r, q) = κ(q)
[

X (q)
I1(R1d(q))
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TABLE 2. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,�2 =

−0.5, λα = 2, λβr = 1, ν = 0.02, α = 0.9, β = 0.8 and variation in time.

TABLE 3. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,�2 = −0.5,
t = 2, λβr = 0.5, ν = 0.005, α = 0.02, β = 0.9 and variation in λα .

−
K1(R1d(q))

K1(R2d(q))I1(R1d(q))− K1(R1d(q))I1(R2d(q))

×

(
Y (q)− X (q)

I1(R2d(q))
I1(R1d(q))

)]
[
dI0(rd(q))− 2

I1(rd(q))
r

]
−

[
I1(R1d(q))

K1(R2d(q))I1(R1d(q))− K1(R1d)I1(R2d(q))

×

(
Y (q)− X (q)

I1(R2d(q))
I1(R1d(q))

)]
×

[
d(q)K0(rd(q))+ 2

K1(rd(q))
r

]
. (24)

Now, find the inverse Laplace transform numerically through
MATHCAD by using Gaver-Stehfest algorithm [41].

V. DISCUSSION ON RESULTS
In this article, numerical solution of the velocity field and
tangential stress is acquired by using the semi analytical
technique. The solutions determined by using the integral
transformation and modified Bessel equation. The results are

TABLE 4. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,�2 = −0.5,
λα = 2, t = 2.5, ν = 0.005, α = 0.02, β = 0.9 and variation in λr .

TABLE 5. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,
�2 = −0.5, λα = 2, λβr = 0.5, t = 1, α = 0.01, β = 0.9 and variation in ν.

TABLE 6. τ (r , t), Eq. (24) for R1 = 0.5,R2 = 1,�1 = 1,�2 = −1,
λα = 6, λβr = 3, ν = 5, α = 0.01, β = 1, µ = 2.196 and variation in time.

in series form of Modified Bessel functions I0(.), I1(.),K0(.)
and K1(.). The general solutions presented by Eq. (18) and
Eq. (24).
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TABLE 7. τ (r , t), Eq. (24) for R1 = 0.5,R2 = 1,�1 = 1,�2 = −1,
t = 1, λβr = 1, ν = 1, α = 0.8, β = 0.5, µ = 2.196 and variation in λα .

TABLE 8. τ (r , t), Eq. (24) for R1 = 0.5,R2 = 1,�1 = 1,�2 = −1,
λα = 6, t = 0.8, ν = 1, α = 0.1, β = 0.1, µ = 2.196 and variation in λr .

TABLE 9. τ (r , t), Eq. (24) for R1 = 0.5,R2 = 1,�1 = 1,�2 = −1,
λα = 6, λβr = 1, ν = 3, α = 0.5, β = 0.5, t = 1 and variation in µ.

Now, in order to reveal some relevant physical aspects of the
obtained results, the figures of the velocity as well as those
of the shear stress are depicted against r for different values

FIGURE 2. vθ (r , t), Eq. (18) for R1 = 0.2,R2 = 1,�1 = 0.5,�2 = 0.5,
λα = 3, λβr = 1, ν = 2, α = 0.9, β = 0.8 and variation in time.

FIGURE 3. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,�2 = 0.5,
t = 3, λβr = 4, ν = 0.006, α = 0.5, β = 0.7 and variation in λα .

of time t and of the physical parameters. Also, to check the
accuracy of our solution, there is a comparison graph between
numerical and exact solutions.

The velocity field vθ (r, t) and shear stress τ (r, t) given in
Eqs. (18) and (24) have been drawn against r . The velocity
profiles illustrate in figures (2-7) for different values of phys-
ical parameters also there are tables for respective parameter.
Fig. 2 for the effect of t , it is clearly observed that as we
increase the value of time the fluid flow develop and velocity
of the fluid increases. So one can say that velocity of fluid is
an increasing functionwith respect to time. Similarly increase
in velocity can also be observed in figure 2 with respect to
radial component r while fixing the other dependent parame-
ters and our solution satisfy the applied boundary conditions.
It can also be observed that velocity has linear relation for
r with respect to t. Fig. 3, 4 depicted for the effect of λ
and λr respectively, the velocity is decreasing functions with

VOLUME 7, 2019 72487



B. Wang et al.: Semi Analytical Solutions for Fractional Oldroyd-B Fluid Through Rotating Annulus

FIGURE 4. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,�2 = 0.5,
λα = 6, t = 4, ν = 0.006, α = 0.5, β = 0.7 and variation in λβr .

FIGURE 5. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,�2 = 0.5,
λα = 2, λβr = 0.5, t = 1, α = 0.01, β = 0.9 and variation in ν.

respect to λ and increasing functions with respect to λr . The
relaxation time parameter also called the memory time of
the fluid associated with the microstructure of the material.
When elastic fluid is deformed after the memory time or the
relaxation time of the material has elapsed, the stress would
reach a steady value and has no effect on fluid motion after
that time. So velocity is a decreasing function of relaxation
time as larger value of relaxation time offer more elasticity
stress to fluid which slow down its velocity. Retardation time
is the delayed response to an applied force or stress and can be
described as delay of the elasticity and its effect on velocity

FIGURE 6. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,�2 = 0.5,
λα = 5, λβr = 1, t = 20, ν = 0.001, β = 0.1 and variation in α.

FIGURE 7. vθ (r , t), Eq. (18) for R1 = 0.7,R2 = 1,�1 = 0.5,�2 = 0.5,
λα = 5, λβr = 1, t = 20, ν = 0.001, α = 0.1 and variation in β.

is opposite to relaxation time. Fig. 5 shows the effect of ν,
velocity is a decreasing function of kinematic viscosity which
validates our results as increase in viscosity offer resistance
to fluid flow which deceases the fluid velocity. Figs. 6 and 7
drawn to observe the effects of fractional parameter on fluid
velocity. As expected the effects of fractional parameter α and
β is similar to relaxation time and retardation time respec-
tively. From tables (2 - 5) we can observe that in all cases the
velocity of the fluid is zero near the inner cylinder when both
the cylinders are rotating in the opposite direction with the
same speed.

The tangential shear stress illustrates in figures (8 - 11)
for different values of physical parameters also there are
tables (6 - 9) for respective parameters. These figures
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FIGURE 8. τ (r , t), Eq. (24) for R1 = 0.5,R2 = 1,�1 = 1,�2 = 0.5,
λα = 6, λγr = 3, ν = 5, α = 0.01, γ = 1, µ = 2.196 and variation in time.

FIGURE 9. τ (r , t), Eq. (24) for R1 = 0.5,R2 = 1,�1 = 1,�2 = 0.5,
t = 1, λβr = 1, ν = 1, α = 0.8, β = 0.5, µ = 2.196 and variation in λα .

showing that the shear stress is influenced by parameters
r, t, λ, λr and µ. One can say that the relaxation parame-
ters λ have decreasing behaviour for stress. This fact can
be observed in figure 9. Whereas, stress is increasing func-
tion (in absolute values)for the retardation parameter λr ,
viscosity µ and t as shown in figures 10, 11 and 8. These
figures 2 − 11 make it possible to check the point to point
variations, increment or decrement (among which the graphs
are made) for shear stress profile.

Finally a comparison between obtained and already exist-
ing exact solution for the same values of physical and frac-
tional parameters given in Fig. 12 and table 1 to check the
accuracy of our solution. Fig. 12 and table 1 shows that

FIGURE 10. τ (r , t), Eq. (24) for R1 = 0.5,R2 = 1,�1 = 1,�2 = 0.5,
λα = 6, t = 0.8, ν = 1, α = 0.8, β = 0.5, µ = 2.196 and variation in λβr .

FIGURE 11. τ (r , t), Eq. (24) for R1 = 0.5,R2 = 1,�1 = 1,�2 = −1,
λα = 6, λβr = 1, ν = 3, α = 0.5, β = 0.5, t = 1 and variation in µ.

numerical and exact solutions for fractional Oldoyd-B fluid
are approximately same.

VI. CONCLUSIONS
In this article semi analytical solutions for fractional

Oldoyd-B fluid through an annulus are calculated by using
Laplace transformation andmodifiedBessel function, numer-
ical scheme is used to obtain final results. The main conclu-
sions are,

• Obtained results satisfy all imposed physical conditions.
• The velocity and shear stress are increasing functions
of time. It has been observed that the velocity of the
fluid is zero nearer to the inner cylinder when both the
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FIGURE 12. vθ (r , t) corresponding to numerical and exact values for
R1 = 0.7,R2 = 1,�1 = 0.81,�2 = −0.45, λα = 2, λβr = 1, ν = 8,
α = 0.0001, β = 1, t = 1.

cylinders are rotating in the opposite direction with the
same speed.

• As expected, that the behaviors of relaxation and retar-
dation time are opposite in direction, both functions,
velocity and shear stress are decreasing with respect
to relaxation time ’λ’ and increasing with respect to
retardation time ’λr ’.

• The effects of fractional parameter α and β on velocity
is similar to λ and λr respectively.

• Kinematic viscosity ν has a forceful domination on the
velocity, as value of ν increases velocity field is increas-
ing or vice versa.

• Shear stress is increased by an increase in dynamic
viscosity.

• In case of opposite rotation of cylinders, velocity is zero
nearer to the inner cylinder because the radius of inner
cylinder is less than outer cylinder.

• Numerical solution Eq. (18) approximately same as
exact solution Eq. (20).

• In future authors will try to generalize the study by
considering the heat and magnetic field effects on fluid
motion.
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