
Received May 11, 2019, accepted May 23, 2019, date of publication May 27, 2019, date of current version June 10, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919319

An Energy-Efficient and Deadline-Aware Task
Offloading Strategy Based on Channel Constraint
for Mobile Cloud Workflows
YINGJIE WANG 1, LEI WU1, XIUSHENG YUAN 1, XIAO LIU 2,
AND XUEJUN LI 1, (Member, IEEE)
1School of Computer Science and Technology, Anhui University, Hefei 230601, China
2School of Information Technology, Deakin University, Geelong, VIC 3125, Australia

Corresponding authors: Lei Wu (wuleijsj@ahu.edu.cn) and Xiao Liu (xiao.liu@deakin.edu.au)

This work was supported in part by the Humanities and Social Sciences of MOE under Project 16YJCZH048 and in part by the Natural
Science Foundation of Anhui Province under Project 1708085MF160.

ABSTRACT Energy efficiency is a fundamental problem due to the fact that numerous tasks are run-
ning on mobile devices with limited resources. Mobile cloud computing (MCC) technology can offload
computation-intensive tasks frommobile devices onto powerful cloud servers, which can significantly reduce
the energy consumption of mobile devices and thus enhance their capabilities. In MCC, mobile devices
transmit data through the wireless channel. However, since the state of the channel is dynamic, offloading at
a low transmission rate will result in the serious waste of time and energy, which further degrades the quality
of service (QoS). To address this problem, this paper proposes an energy-efficient and deadline-aware task
offloading strategy based on the channel constraint, with the goal of minimizing the energy consumption of
mobile devices while satisfying the deadlines constraints of mobile cloud workflows. Specifically, we first
formulate a task offloading decision model that combines the channel state with task attributes such as the
workload and the size of the data transmission to determine whether the task needs to be offloaded or not.
Afterward, we apply it to a new adaptive inertia weight-based particle swarm optimization (NAIWPSO)
algorithm to create our channel constraint-based strategy (CC-NAIWPSO), which can obtain a near-optimal
offloading plan that can consume less energywhile meeting the deadlines. The experimental results show that
our proposed task offloading strategy can outperform other strategies with respect to the energy consumption
of mobile devices, the execution time of mobile cloud workflows, and the running time of algorithms.

INDEX TERMS Mobile cloud computing, task offloading, channel constraint, energy consumption.

I. INTRODUCTION
Mobile devices such as smart-phones and tablets have
become an essential part of our daily lives due to their
high convenience and efficiency. However, battery life is
a critical factor affecting the Quality of Service (QoS) of
mobile applications. In recent years, mobile cloud comput-
ing (MCC) [1] has become a promising way to enhance
the capabilities of mobile devices. In MCC, task offloading
technology [2] can migrate computation-intensive tasks to
powerful servers in the cloud through a wireless network to
reduce the energy consumption of mobile devices. However,
task offloading will inevitably increase the communication

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

between the mobile device and the cloud and thus increases
the cost on the energy consumption, communication time and
bandwidth [3], [4]. Therefore, the decision of task offloading
is actually a decision on the tradeoff between the commu-
nication cost and the computation cost considering the QoS
constrains of mobile workflow applications.

Many task offloading approaches have been proposed to
find the optimal task offloading solutions for mobile applica-
tions running in MCC [5]–[7]. Li et al. [8] analyzed customer
service preferences, especially when the details of service
requests were not fully disclosed. Although it improved
the transaction success rate and the user satisfaction rate,
the energy consumption reduction of mobile devices was
ignored. Kuang et al. [9] proposed a strategy which can coor-
dinate task offloading between mobile devices and produce

69858 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-6852-8491
https://orcid.org/0000-0001-7832-5882
https://orcid.org/0000-0001-8400-5754
https://orcid.org/0000-0001-6630-2958


Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

offloading solutions with less response time to meet the
deadlines. However, they focused only on single applications
rather than different types of mobile workflow applications.
Moreover, these existing approaches cannot perform effi-
ciently when there are dynamic changes in the channel state.
If the data transmission rate is too slow during task offloading,
channel congestion may occur, which could significantly
increase the execution time and the energy consumption. The
channel state directly affects the data transmission rate. For
example, if a task with large transmission data but a small
workload is offloaded when the channel state is bad, it will
produce much larger time overhead and energy consumption
compared with running the task locally on the mobile device.
Therefore, it is essential to find an effective task offloading
strategy which can simultaneously consider the impact of
the channel state and reduce the energy consumption of the
mobile device for different mobile workflows.

In this paper, we propose an energy-efficient and
deadline-aware task offloading strategy based on the channel
constraint for mobile cloud workflows. Specifically, we first
formulate a task offloading decision model in which the
channel state and task attributes such as the workload and
the size of transmission data are combined to determine
whether the task should be offloaded to the cloud server or
not. Afterwards, we propose a new channel constraint based
adaptive inertia weight based particle swarm optimization
(CC-NAIWPSO) strategy to find the near-optimal offloading
decision, which can prevent the premature convergence of
the particle swarm optimization (PSO) algorithm and signif-
icantly reduce the energy consumption of the mobile device.
The experimental results demonstrate the better performance
of CC-NAIWPSO in reducing the energy consumption of the
mobile devices, satisfying the deadlines of different types of
workflows and reducing the algorithm running time.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III illustrates
an example of task offloading that motivates this work.
Section IV defines all the models that are used in this paper
and Section V provides the novel CC-NAIWPSO strategy
in detail. Section VI demonstrates the experimental results.
Finally, Section VII concludes the paper and provides some
potential future work

II. RELATED WORK
A. MOBILE CLOUD COMPUTING
In the last decade, many studies have been dedicated to
the research and application of cloud computing [10]–[13],
which is a new distributed computing paradigm that can
provide users with on-demand and reliable services. Recently,
with the rapid development of the Internet of things (IoT),
new computing paradigms such as MCC [14]–[16], Fog
Computing (FC) [17]–[19] and Mobile Edge Computing
(MEC) [20]–[22] have been proposed according to the
requirements of different application scenarios. In this paper,
since our focus is on mobile workflow applications, MCC

is selected as the computing paradigm. Zhang et al. [23]
developed an energy efficient approach to jointly optimize
task offloading and radio resource allocation for lower energy
consumption in MEC. It can offload tasks to the MEC
servers on the edge of the network that is closer to the users.
Wei and Jiang [24] proposed an algorithm for FC to solve
the nonconvex online optimization problem with polyno-
mial complexity using the Lyapunov optimization method,
which can improve the offloading efficiency and maximize
the long-term average system utility. Since FC and MEC is
still in its infancy, many more works have been devoted to
the study of task offloading in MCC, which aims to reduce
the execution time of mobile applications and the energy
consumption of mobile devices for the purpose of satisfying
user’s requirements.

B. ENERGY CONSUMPTION REDUCTION
With the emergence of a large number of mobile applications,
how to extend the mobile battery lifetime has become a
hot research topic. Considering the heterogeneity of multiple
remote sites, Zhang et al. [25] combined a local optimization
algorithm with genetic search, which can reduce the energy
consumption for the mobile device as much as 90% to 98.5%.
Chen et al. [26] established an offloading algorithm model
by using the population based incremental learning (PBIL)
algorithm to achieve load balance of servers when offloading
large-scale tasks. While these approaches are efficient in
reducing the energy consumption, they did not consider time
deadlines. However, deadlines cannot be overlooked as if the
execution time exceeds the deadline, the user’s satisfaction
rate will be significantly deteriorated. Lin et al. [27] deter-
mined the frequencies for executing local tasks by applying
the dynamic voltage and frequency scaling technique, which
can reduce the energy consumption of the mobile devices in
order to satisfy the deadlines. Li et al. [28] extended the work
in [27] to select the appropriate voltage level for each task
and adopted an energy-efficient scheduling algorithm called
QCWES for sorting tasks in the workflow so as to meet the
deadlines and reduce the energy consumption at the same
time.

C. INTELLIGENT ALGORITHMS FOR TASK OFFLOADING
Computation offloading is an NP-hard problem [29] which
can be addressed by intelligent algorithms. Popular intelligent
algorithms include Tabu Search, Genetic Algorithm (GA),
Ant Colony Optimization (ACO), PSO [30]–[34], and there
are someworks try to combine different intelligent algorithms
to achieve even better performance [35]–[37]. Different intel-
ligent algorithms have different advantages. Xu and Zhu [38]
structured an adaptive penalty function based on GA to
offload tasks within deadlines. The algorithm can adjust the
population crossover and mutation probability to effectively
avoid premature convergence of the algorithm and improve
its reliability, and hence to reduce the energy consumption for
task execution. GA has a good effect in solving small-scale
tasks offloading, but for medium-scale or large-scale tasks

VOLUME 7, 2019 69859



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

offloading, ACO algorithm usually can search for the optimal
solution with fewer iterations and thus have better perfor-
mance than GA [39]. He and Bai [40] developed a method
based on the improved ACO to find the offloading solution
which can improve the pheromone update and the optimal
path selection so as to effectively accelerate the conver-
gence rate and reduce the energy consumption. However,
the method can be easily trapped into the local optimum.

In this paper, we first present a new adaptive inertia
weight-based particle swarm optimization (NAIWPSO) algo-
rithm that can constantly and more correctly adjust the
particle velocity with time and energy constraints. In this
way, it can significantly avoid the local optimum and help
stabilize the convergence rate of the algorithm more. After-
wards, we design a task offloading decision model with the
channel constraint and applied it to the NAIWPSO algorithm
to form the CC-NAIWPSO strategy, which can intelligently
adjust the offloading plans intelligently according to different
channel states to produce the approximate optimal solution
for the energy savings problem of mobile cloud workflows
with deadline requirements. Experimental results show that
our strategy can significantly reduce the energy consumption
of mobile devices while satisfying the deadlines of mobile
cloud workflows.

III. MOTIVATING EXAMPLE
In this section, we use an example workflow to demonstrate
an instance of task offloading in detail. The motivating exam-
ple shows that as the channel state changes, it is necessary to
find a task offloading plan with lower energy consumption
before the deadline expired.

Fig. 1 illustrates a workflow model with six tasks. Assume
that the clock frequencies of the small, medium and large
virtual machines are 1000 MHz, 1300 MHz and 1600 MHz,
and the clock frequency of the mobile device is 500 MHz.
In addition, suppose that when the channel state is good,
the data transmission rate is 100 Kb/s. The workload of tasks
is shown in Table 1, and the input data and output data of tasks
are shown in Table 2 [41]. Tasks A and F are respectively the
entrance and exit tasks of workflow that must be executed on
the mobile device, and thus there is no transmission data for
task A and task F.

FIGURE 1. Example of workflow.

Supposing that the deadline of the workflow in Fig. 1 is
1 s and the channel state is good, two offloading plans that
satisfy the deadline are given in Fig. 2. Plan (a) randomly
offloads tasks whereas plan (b) offloads tasks considering the
impact of the channel state. Apparently, the final execution

FIGURE 2. Gantt charts of two offloading plans (R = 100 Kb/s).

time of these two plans both meet the cut-off time constraint
that is mentioned above. For the former, the total execution
energy is 0.214 J. For the latter, the total energy consumption
is 0.108 J, which is 0.106 J (approximately 50%) lower
than the former. Moreover, the execution time of the channel
constrained offloading plan decreases by 0.540 s.

As shown in table 3, suppose that the channel state turns
bad at this moment and the data transmission rate drops to
20 Kb/s. At this point, the previous plan b is set as plan b∗ in

69860 VOLUME 7, 2019



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

TABLE 1. Workload of tasks.

TABLE 2. Input and output data of tasks.

TABLE 3. Offloading plans in different channel states (deadline = 1 s).

the current state, the energy consumption rises to 0.240 J and
the execution time rises to 1.338 s. Apparently, the execution
time is now over the deadline of 1 s. Due to the change in
channel state, we desperately need a decision that is con-
strained by the channel state to form a new plan (c), as shown
in Fig. 3, which transforms tasks B and E to the mobile device
from the cloud servers and moves D from the small to large
virtual machine. Hence, the adjusted plan (c) satisfies the
deadline and its energy consumption reduces to 0.203 J.

From the analysis above, it can be seen that when the chan-
nel state is good, task D possesses 100 Kb of the workload but
only 4 Kb and 3 Kb of the input and output data, respectively.
Therefore, task D should be preferentially executed on the
cloud. Nevertheless, the input and output data of task C reach
up to 25 Kb and 32 Kb, respectively, whereas the workload
of task C is merely 30 Kb, which means that task C prefers
to be executed on the mobile device. After we leverage an
offloading decision to restrict task C and task D, task D is
offloaded to the small virtual machine and task C is executed
on the mobile device such that the workflow execution time
and energy consumption are significantly reduced. When the
channel state becomes bad, it is no longer appropriate for data
transmission. Therefore, some tasks that are performed on the
virtual machines need to be transferred to the mobile device
to avoid unnecessary energy consumption.

In conclusion, when the channel state is unstable,
we urgently need an effective task offloading strategy with
the channel constraint decision to find the offloading plans
with lower energy consumption within the deadline.

IV. SYSTEM MODEL
In this section, we will define all the models that are used
in our paper in detail. First, we introduce the model for the
workflow and MCC system. Then, we present the execution
time model and the energy consumption model that are used
for task offloading. Finally, the channel model is introduced.

FIGURE 3. Gantt charts of two offloading plans (R = 20 Kb/s).

A. WORKFLOW MODEL
In a workflow, we use a Directed Acyclic Graph (DAG) to
represent the dependency relationship between tasks [27].
G = (V ,E,w) is a directed acyclic graph with n nodes. The
set of vertices V = {v1, v2, . . . , vn} represents the set of the
ordered executable tasks. The directed edge eij = (vi, vj) ∈ E
illustrates the invoked relationship between tasks vi and vj in
which task vj starts executing only when task vi has finished.
Furthermore, the set of node weights w = {w1,w2, . . . ,wn}
describes the computational workload or the amount of CPU

VOLUME 7, 2019 69861



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

FIGURE 4. The framework of MCC system model.

cycles (in million cycles, M cycles) for each task. If task
vi is offloaded to the cloud server for execution, the mobile
device needs to transmit the input data to the cloud, which is
denoted as inputdatai. Similarly, when task vi is executed on
the cloud, the mobile device will receive the output data from
the cloud, which is denoted as outputdatai. In addition, there
must be an entrance node without any predecessors and an
exit node without any successors in this graph. The entrance
node corresponds to the entrance task in the workflow and the
exit node corresponds to the exit task. They must be executed
on the mobile device [42].

B. MCC SYSTEM MODEL
Fig. 4 depicts the framework of our proposed MCC system
model. In the gray box, the process of task offloading is
described. Here, we use variable xi to denote the offloading
plan of task vi. Specifically, xi = 0 denotes that the task will
be executed on the mobile device and xi = 1 denotes that the
task will be offloaded to cloud servers. The task offloading
plans can be expressed as the sets of X = {x1, x2, . . . , xn}.
Since the entrance and exit tasks must be executed on the
mobile device, x0 and xn+1 are always equal to 0, which can
also be shown in Fig. 4.

In Fig. 4, offloading planner is the main component in
our framework and is actually a decision maker. It decides
what task can be run locally and what task can be offloaded.
Offloading planner can produce the optimal offloading plan
by executing certain task offloading strategy. In this paper,
we aim to propose an optimal task offloading strategy to
minimize energy consumption under the deadlines of mobile
workflows.

As shown in Fig. 4, a task can be either executed locally on
the mobile device or remotely on the cloud server according
to its offloading plan. If task vi will be offloaded to the cloud
server, there are three phases in sequence:¬ sending the input
data, ­ task execution on the cloud, ® receiving the output
data. In the first phase, the inputdatai is sent to the cloud

server by the mobile device through the wireless network
channel. In the second phase, task vi is executed by the cloud
server. In the third phase, the mobile receives the outputdatai
from the cloud server to check the validity of the result before
executing the next task.

When a task is offloaded to the cloud, we use R to represent
the data transmission rate of the wireless network channel.
The power when the mobile device is being idle is P0 and the
clock frequency of cloud server is fc, where both P0 and fc are
constants that can be measured. Ps and Pr denote the power
for sending and receiving data of the mobile device, where Ps
is considerably larger than Pr [27].

C. EXECUTION TIME MODEL
The workflow execution time contains two parts: the com-
putation time and the communication time. As depicted in
the MCC system model, if a task is executed on the cloud,
it is necessary to send the input data to the cloud before
execution and send the output data back to the mobile device
after the task has finished. Therefore, if a task is executed
on the mobile device, only the computation time is included.
Meanwhile, if the task is executed on the cloud, besides the
computation time, the communication time is also included.
We formulate the execution time of task vi as follows. All the
relevant definitions for the symbols in the formulas below are
shown in table 4.

1) COMPUTATION TIME
a: EXECUTED LOCALLY
If task vi is executed on the mobile device (xi = 0), then the
computation time of task vi can be calculated using (1).

b: EXECUTED REMOTELY
If task vi is executed on the cloud (xi = 1), then the compu-
tation time of task vi can be calculated also using (1).

T compi (xi) = (1− xi)×
wi
fm
+ xi ×

wi
fc

(1)

2) COMMUNICATION TIME
a: EXECUTED LOCALLY
If tasks are executed on the mobile device (xi = 0), there will
not be any communication time that is generated.

b: EXECUTED REMOTELY
If task vi is executed on the cloud (xi = 1), then the commu-
nication time of task vi can be calculated using (2).

T commi (xi) = xi ×
inputdatai + outputdatai

R
(2)

In addition, to obtain the execution time, we must calculate
the start time of each task using (3).

Tstart (xi)

=

{
Tstart (x0) = 0, i = 0

maxxj∈P(xi)
{
Tstart

(
xj
)
+ T compj

(
xj
)
+ T commj

(
xj
)}
,

i 6= 0 (3)

69862 VOLUME 7, 2019



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

TABLE 4. Notations.

Thus, we can obtain the workflow execution time using (4),
where T finishn+1 is the finish time of the exit task vn+1.

T (X ) = T finishn+1 = Tstart (xn+1)+ T
comp
n+1 (xn+1) (4)

D. ENERGY CONSUMPTION MODEL
When the tasks of the workflow are executed, the energy
consumption of the mobile device also contains two parts:
the computation energy consumption and the communica-
tion energy consumption. Note that in this work, our focus
is to reduce the energy consumption of the mobile device
through task offloading technology, and hence the energy
consumption of cloud servers is not considered. As depicted
in the MCC system model, if a task is executed on the cloud,
it is necessary to send the input data to the cloud before
execution and send the output data back to the mobile device
after the task has finished. Therefore, a task that is executed
on the mobile device only involves the computation energy
consumption.When being executed on the cloud, the task also
includes the energy consumption of sending and receiving
the data in addition to the computation energy consumption.
Thus, the energy consumption of task vi can be formulated as
follows.

1) ENERGY CONSUMPTION FOR COMPUTATION
a: EXECUTED LOCALLY
If task vi is executed on the mobile device (xi = 0), then the
computation energy consumption of task vi can be calculated
using (5).

b: EXECUTED REMOTELY
If task vi is executed on the cloud (xi = 1), then the compu-
tation energy consumption of task vi can be denoted as (5).

Ecompi (xi) =(1− xi)× Pm ×
wi
fm
+ xi × P0 ×

wi
fc

(5)

2) ENERGY CONSUMPTION FOR SENDING INPUT DATA
a: EXECUTED LOCALLY
If tasks are executed on the mobile device (xi = 0), there will
be no sending energy consumption.

b: EXECUTED REMOTELY
The energy consumption of task vi for sending input data can
be calculated using (6) if task vi is executed on the cloud
(xi = 1).

|Esi (xi) = xi × Ps ×
inputdatai

R
(6)

3) ENERGY CONSUMPTION FOR RECEIVING OUTPUT DATA
a: EXECUTED LOCALLY
If tasks are executed on the mobile device (xi = 0), there will
be no receiving energy consumption.

b: EXECUTED REMOTELY
The energy consumption for receiving output data can be
calculated using (7) if task vi is executed on the cloud
(xi = 1).

Eri (xi) = xi × Pr ×
outputdatai

R
(7)

Therefore, we can obtain the energy consumption of
mobile devices when the tasks are executed on the mobile
device using (8) and on the cloud using (9)

Em =
n∑
i=0

Ecompi (xi) (8)

Ec =
n∑
i=0

[
Ecompi (xi)+ Esi (xi)+ E

r
i (xi)

]
(9)

VOLUME 7, 2019 69863



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

In conclusion, the total energy consumption of mobile
devices can be denoted as (10).

E (X) = Em + Ec (10)

E. CHANNEL MODEL
Mobile devices transmit data to the cloud through thewireless
channel. Suppose that the data transmission rate is fixed
and the wireless channel determines the transmission qual-
ity. Then, we can fit the wireless channel according to the
Gilbert-Elliott (GE) channel model [43].

It is assumed that the channel state gt can be detected in
the time interval t. When the current state of the channel
is good, then we have gt = gG. Similarly, when the state
of the channel is bad, we have gt = gB. Suppose that
the power of the mobile device when sending and receiving
data is constant, which means that the channel state gt is
uniquely determined by the data transmission rate Rt in the
time interval t. In addition, when gt = gG, we have Rt = RG,
where RG is the data transmission rate when the state of the
channel is good. When gt = gB, we have Rt = RB, where
RB is data transmission rate when the channel state is bad.
Furthermore, we can suppose thatPBG is the probability when
the channel state changes from bad gB to good gG and PGB is
the probability when the channel state changes from good gG
to bad gB. Thus, we can obtain that the stability probability
of the channel state being good is PBG

PBG+PGB
and the stability

probability of the channel state being bad is PGB
PBG+PGB

.
In conclusion, the channel expectation transmission rate

can be derived using (11).

Exp (R) =
PBG

PBG + PGB
RG +

PGB
PBG + PGB

RB (11)

V. THE PROPOSED CC-NAIWPSO STRATEGY
In this section, we first introduce the task offloading decision
model with the channel constraint. This decision model will
be used in conjunction with the NAIWPSO algorithm to
construct our task offloading strategy. Then, we present the
definition of the fitness function. The fitness function is a
crucial part of theNAIWPSO algorithm that aims tominimize
the energy consumption of mobile devices given the deadline.
Finally, CC-NAIWPSO is presented, which can solve the
energy-saving problem of mobile devices while satisfying the
deadlines of mobile workflow applications.

A. OFFLOADING DECISION MODEL WITH CHANNEL
CONSTRAINT
In the process of offloading the task, since the state of the
wireless channel is not fixed, it will generate more time and
energy consumption when the data transmission rate is low.
In addition, the workload and transmission data of the task
will also affect the offloading plan.

Therefore, we formulate an offloading decision model
based on the channel state and the attributes of the task to
determine whether the task needs to be offloaded to the cloud
server. The task offloading plan is further constrained in terms

of the execution time and energy consumption of the mobile
devices. In this way, the offloading plan can continuously
approach the best solution. The offloading decision consists
of the following two scenarios.

1) If task vi is determined to be executed on the mobile
device but

inputdatai + outputdatai
wi

<
Exp(R)
fm

, (12)

then instead of being executed on the mobile device, the task
will be offloaded to the cloud for execution. We can take
advantage of this condition to constrain the task in terms of
the execution time.

2) If task vi is determined to be executed on the cloud but
inputdatai × Ps+outputdatai × Pr

wi
≥
Exp (R)× Pm

fm
, (13)

then task vi will be executed on the mobile device rather than
being offloaded to the cloud server. Likewise, this condition
can constrain the task for the purpose of reducing the energy
consumption of the mobile device.

To summarize, the offloading decision that is based on
the channel constraint can modify the offloading plan using
formulas (12) and (13), which is very effective at dramatically
reducing the execution time and energy consumption of the
mobile device.

B. NAIWPSO ALGORITHM
The PSO algorithm has the characteristics of fewer param-
eters, easy implementation and fast convergence, and has
been widely used in various optimization fields. However,
the PSO algorithm does not effectively control the velocity
of particles, and so it cannot well balance the global and local
search abilities of particles. It also has the defect of local
convergence, which results in the inability to find the optimal
solution in a limited number of iterations. Therefore, we put
forward the NAIWPSO algorithm. By comparing the fitness
of each particle with the global optimal value, the state of
particles can be described more accurately, thus improving
the adaptability of the weight. The new weight can adjust
the particle speed more accurately, and so that the algorithm
can better balance the global and local search abilities of the
particles and avoid falling into the local optimum. Further-
more, we can apply the algorithm to solve the problem of task
offloading in MCC.

1) NEW ADAPTIVE INERTIA WEIGHTS (NAIW)
First, we calculate the success value of a single particle,
as shown in equation (14).

S (i, t) =



1, fitness
(
pbest ti

)
< fitness

(
pbest t−1i

)
and

fitness
(
pbest ti

)
< globalbest t ;

0.5, fitness
(
pbest ti

)
< fitness

(
pbest t−1i

)
and

fitness
(
pbest ti

)
≥ globalbest t ;

0, fitness
(
pbest ti

)
= fitness

(
pbest t−1i

)
;

(14)

69864 VOLUME 7, 2019



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

where S (i, t) denotes the success value of particle i at the t-th
iteration, and pbest ti is the optimal position of particle i at the
t-th iteration. fitness

(
pbest ti

)
is the fitness value of particle i

in the optimal position at the t-th iteration, and globalbest t is
the global optimal value at the t-th iteration.

Then, we calculate the success rate of the entire particle
swarm using (15).

Ps (t) =
n∑
i=1

S(i, t)/n (15)

where Ps (t) represents the success rate of the particle swarm
at the t-th iteration,

∑n
i=1 S (i, t) is the sum of the success

values of all particles, and n is the number of particles in the
entire particle swarm.

Finally, the success rate is used to update the inertia weight
using formula (16). The weight NAIW in the NAIWPSO
algorithm will change with the different search states of the
particle swarm, and therefore the particle velocity can be
changed dynamically, as shown in formula (17).

ω (t) = (ωmax − ωmin)Ps (t)+ ωmin,

0 ≤ ωmin ≤ ωmax ≤ 1 (16)

vi (t) = ω (t) vi (t − 1)+ r1c1
(
pti − x

t
i
)
+ r2c2

(
ptg − x

t
i

)
(17)

where ω (t) represents the inertia weight at the t-th iteration
that is used to adjust the initial velocity of the particle at
each iteration; vi (t) is the velocity of particle i at the t-th
iteration;r1 and r2 denote random numbers between 0 and 1;
c1 and c2 are learning factors; pti and p

t
g are the individual

extremum of the particle and the global extremum of the
population, respectively; and x ti represents the position of
particle i at the t-th iteration.

If the particle swarm is close to the best solution, the value
of Ps (t) will be relatively low. Accordingly, the value of
ω (t) and the velocity of each particle will decrease for the
purpose of refining the optimal solution at a lower search
speed. In contrast, Ps (t) will be relatively high if the particle
swam is away from the optimal solution. Similarly, the value
of ω (t) and the velocity of each particle will increase so that
the particle swam can approach the optimal solution faster.

To sum up, the NAIWPSO algorithm can constantly
change the velocity of particles according to the current posi-
tion of the particle swarm through the NAIW to dynamically
balance and improve the global search and local search abil-
ities of the algorithm.

2) FITNESS FUNCTION
The fitness value can measure the quality of the individuals in
the population. The objective of this strategy is to minimize
the energy consumption of the offloading plan within the
deadline, and so the fitness function is denoted as (18). If the
execution time T(X) is less than or equal to the deadline, then
f1 = 1 and f2 = 0. Otherwise, we set f1 = 0 and f2 = 1.

fitness = f1E(X )+ 10f2 ×
T (X )
deadine

E(X ) (18)

Strategy: Energy-Efficient Task Offloading Strategy
With Channel Constraint (CC-NAIWPSO)

Input: the particles N, the iterations, the tasks, the virtual
machine VM s and the deadline
Output: the offloading plan Xbest

1: For i = 1 to N do
2: Generate the initial task offloading plans and its
search velocity randomly
3: End for
4: For i = 1 to N do
5: Modify the offloading plans using the offloading
decisions of (12) and (13)
6: Calculate the fitness value of each plan using
(18)
7: End for
8: Find the initial global optimal plan with the smallest
fitness value from N plans
9: While i < Iterations do
10: For j = 1 to N do
11: Update the task offloading plans according
to its search velocity
12: Modify the offloading plans using the
offloading decision of (12) and (13)
13: Calculate the fitness value of each plan using
(18)
14: End for
15: Find the global optimal plan with the smallest
fitness value from N plans
16: For j = 1 to N do
17: Calculate the success value for each plan
using
(14)
18: End for
19: Obtain the success rate at this iteration using (15)
20: Update the inertia weight using (16)
21: Update each plan’s search velocity using (17)
22: End while
23: Return the offloading plan Xbest

The fitness function can measure the energy consump-
tion of different offloading plans before the workflow dead-
line [44]. The higher the fitness value is, the greater the
energy consumption. The calculation of the fitness contains
two parts: the energy consumption of the offloading plan
when the execution time is less than or equal to the deadline
(f1 = 1 and f2 = 0) and when the execution time is
greater than the deadline (f1 = 0 and f2 = 1). The value of
deadline is between deadlinemin and deadlinemax , which can
be calculated using (19) and (20), respectively.

deadlinemin = min {T (X )} (19)

deadlinemax = max {T (X )} (20)

VOLUME 7, 2019 69865



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

TABLE 5. Parameter settings.

FIGURE 5. Energy consumption of mobile devices with different strategies under two workflow structures.

C. CC-NAIWPSO STRATEGY
According to the offloading decision model with the channel
constraint, we present an energy-efficient and deadline-aware
task offloading strategy named CC-NAIWPSO based on
the NAIWPSO algorithm. The NAIWPSO algorithm allows
the weights to adjust the particle velocities more precisely
by improving the formula of the success value. Based on
that, we apply the NAIWPSO algorithm to the offloading
decision model to construct the CC-NAIWPSO, which can

further reduce the energy consumption within the deadline
and improve the convergence rate. The detailed flow of the
CC-NAIWPSO strategy is presented as follows.

In CC-NAIWPSO, we first initialize the task offloading
plans, the search velocity and other parameters (lines 1-8).
While in the iterations, we update the offloading plans
according to the search velocity (line 11). Then, the offload-
ing plans are modified by the task offloading decision based
on the channel constraint (line 12) and the fitness value

69866 VOLUME 7, 2019



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

FIGURE 6. Workflow execution time with different strategies under two workflow structures.

FIGURE 7. Number of iterations for different algorithms under two workflow structures.

of each offloading plan is calculated (line 13). Afterwards,
we update the inertia weight and search velocity according
to the NAIWPSO algorithm (lines 16-21). After a number

of iterations, the final offloading plan Xbest is obtained
(line 23). The NAIWPSO algorithm can avoid the problem
of premature and local optimization, and it can achieve

VOLUME 7, 2019 69867



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

FIGURE 8. Running time of different algorithms under two workflow structures.

a stable convergence speed. Based on these results, our
CC-NAIWPSO strategy can improve the convergence rate
and generate task offloading plans that can greatly reduce the
execution time ofmobile workflows and the energy consump-
tion of mobile devices.

VI. EXPERIMENTAL RESULTS
In this section, we first introduce the experimental environ-
ment and the setting of the experimental parameters. Then,
we use two representative scientific workflows [45] to evalu-
ate the effectiveness of our proposed task offloading strategy.
Furthermore, the experimental results are analyzed in terms
of the energy consumption of the mobile device and the
execution time of mobile workflows. We also evaluate the
convergence rate and running time of algorithms and the
energy consumption of the mobile device under different
deadlines. Finally, the results for the number of tasks which
have been offloaded to cloud servers are also demonstrated.

A. EXPERIMENTAL ENVIRONMENT AND PARAMETER
SETTINGS
The simulation environment runs on a PC with the follow-
ing configurations: a dual-core CPU, 8GB of RAM, and

the Microsoft Windows 10 OS. We use Java to deploy the
CC-NAIWPSO strategy and other strategies. For each work-
flow structure, the number of tasks varies from 50 to 300.
In different situations, the deadline is respectively set as the
average time of executing the workflow 100 times. We create
3 virtual machines, namely, one small, one medium, and one
large virtual machine. The workload of each task is in the
range of 0-50 M cycles. The input and output data are in the
range of 0-30 Kb [46]. PBG = 0.005, and PGB = 0.005 [43].
The parameters that are involved in the experiment are shown
in Table 5 [47]. All experiments are repeated 100 times and
the average results are obtained.

B. EXPERIMENTAL RESULTS ANALYSIS
The experimental results have shown that CC-NAIWPSO
has great advantages in reducing the energy consumption
and execution time. Specifically, in order to provide a fair
comparison, we first compared NAIWPSO with three other
representative offloading algorithms including the PSO algo-
rithm [48], the simulated annealing (SA) algorithm [49] and
the random (RANDOM) algorithm. In addition, we applied
the offloading decision model with the channel constraint

69868 VOLUME 7, 2019



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

FIGURE 9. Energy consumption under different deadlines for epigenomics.

to these algorithms so that we can further compare our
CC-NAIWPSO with CC-PSO, CC-SA, and CC-RANDOM.

1) ENERGY CONSUMPTION OF MOBILE DEVICES
The energy consumption of each strategy with the number of
tasks varying from 50 to 300 under two workflow structures
is shown in Fig. 5.

Figs. 5 (a) and (c) show that NAIWPSO achieves the best
performance with the lowest energy consumption for two
different workflows. It is able to find near-optimal offloading
plans mainly because of the improvement of the adaptabil-
ity of the inertia weight. As shown in Figs. 5 (b) and (d),
with the channel constraint based offloading decision model,
the energy consumption is further reduced by all strategies
for different workflows. CC-NAIWPSO performs better than
all others with the channel constraint. Therefore, we can
conclude that CC-NAIWPSO can achieve the best perfor-
mance in minimizing the energy consumption under different
workflow structures.

2) EXECUTION TIME OF WORKFLOW APPLICATIONS
The execution time of two workflows using different strate-
gies with the number of tasks varying from 50 to 300 is shown
in Fig. 6. As mentioned above, the deadline is respectively

set as the average time of executing the workflow 100 times
under different situations.

From Figs. 6 (a) and (c), we can see that for the two differ-
ent workflows, the workflow execution time with NAIWPSO
is the lowest compared with the other algorithms. Clearly,
the NAIWPSO algorithm can improve the efficiency of the
workflow’s execution. Furthermore, in Figs. 6 (b) and (d),
CC-NAIWPSO performs the best compared with other strate-
gies with the channel constraint. Therefore, we can con-
clude that CC-NAIWPSO improves the execution efficiency
of the workflow applications while reducing the energy
consumption.

3) CONVERGENCE RATE OF ALGORITHMS
The convergence rate is a critical measurement for the effi-
ciency of the algorithm itself. In Fig. 7, the convergence rate
of each strategy with the number of tasks varying from 50 to
300 under two workflow structures is presented. Note that
since the convergence rate does not apply to the RANDOM
algorithm, it is omitted here.

Figs. 7 (a) and (c) show that compared with two other
traditional strategies (PSO and SA), the number of iterations
for NAIWPSO is much lower and more stable under different
workflows. Therefore, the NAIWPSO algorithm is more effi-
cient when searching for the best solution. Furthermore, given

VOLUME 7, 2019 69869



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

FIGURE 10. Number of tasks offloaded to cloud servers with different strategies under two workflow structures.

the offloading decision model with the channel constraint,
CC-NAIWPSO keeps the convergence rate stable and further
decreases the number of iterations compared with NAIW-
PSO, as shown in Figs. 7 (b) and (d). Similarly, the conver-
gence rate has also been greatly reduced for CC-PSO and
CC-SA compared with PSO and SA. Hence, our offloading
decision model with the channel constraint can significantly
improve the convergence rate. Therefore, we can conclude
that CC-NAIWPSO has the highest efficiency and stability
under all different cases.

4) RUNNING TIME OF ALGORITHMS
The running time of the algorithm directly reflects the effi-
ciency of the algorithm. We compare the running time of
different algorithms for various task numbers in mobile work-
flows. The running time is calculated from the beginning of
the execution of the algorithm until it finally converges. Note
that since the RANDOM strategy does not have an iterative
process, we do not consider its running time.

In Fig. 8, the NAIWPSO and CC-NAWIPSO’s running
time are obviously lower than other strategies. This is because
the two strategies are able to converge faster after the adoption
of the NAIW. In addition, the running time of strategies

with channel constraint is further reduced, which proves that
the offloading decision model with the channel constraint
is of significance to improving the run time of algorithms.
Therefore, we can conclude that CC-NAIWPSO’s running
time keeps the lowest and it has the highest efficiency under
all different cases.

5) ENERGY CONSUMPTION UNDER DIFFERENT DEADLINES
We use an epigenomics workflow as an example with task
sizes of 50, 100, 250 and 300 to demonstrate the impacts
of different deadlines on the energy consumption. The value
of deadlinemin + α(deadlinemax − deadlinemin) is set as the
abscissa, where α ranges from 0.1 to 1.0. Since in part 1) we
have already shown that strategies with the channel constraint
are better than the original ones, here we only include the
results for strategies with the channel constraint.

As seen from Fig. 9, when the deadline is close to the mini-
mum, all the strategies cannot have an appropriate offloading
plan because the deadline is too restrictive.When the deadline
moves from the minimum to the maximum, the energy con-
sumption gradually decreases. The energy consumption of all
strategies tends to be stable until the deadline reaches a certain
rangewhere all tasks are assigned to the virtual machines with

69870 VOLUME 7, 2019



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

lower energy consumption, regardless of the four different
strategies. Based on the results, we can conclude that our
CC-NAIWPSO strategy can always achieve the lowest energy
consumption under different deadlines.

6) NUMBER OF TASKS OFFLOADED TO CLOUD SEVERS
To demonstrate more details of our experiments, in Fig. 10,
the number of tasks offloaded from the mobile to cloud
servers are presented. The results have shown that generally
more tasks are offloaded to the cloud servers by the strategies
with channel constraint compared with those without. Mean-
while, we can also observe that for the ‘‘offloading ratio’’,
namely the number of offloaded tasks divided by the number
of total tasks, it is generally stable across all strategies with
or without channel constraint.

VII. CONCLUSION AND FUTURE WORK
The energy consumption of mobile devices is a critical
issue in mobile cloud computing. Meanwhile, due to the
dynamic network state, it is a big challenge to ensure the
satisfaction of deadline requirements. In this paper, to reduce
the energy consumption of mobile devices while satisfying
the deadline requirements of mobile workflow applications,
we proposed an energy-efficient task offloading strategy
CC-NAIWPSO based on the channel constraint. We for-
mulated a task offloading decision model with the channel
constraint and applied it with the NAIWPSO algorithm to
create the CC-NAIWPSO strategy, which aims to achieve the
near-optimal offloading plan. The experimental results have
shown that our strategy can effectively reduce the energy con-
sumption of the mobile devices while satisfying the deadlines
of workflow applications.

In the future, we will try to measure the real-time data
transmission rate to improve the generated task offloading
plan. Meanwhile, we can also explore other optimization
algorithms such as combining the PSO with other heuristic
algorithms to further improve the efficiency of the strategy.

ACKNOWLEDGMENT
The authors would like to thank the reviewers for their critical
and constructive comments and suggestions. Besides, F. A.
and T. C. Authors thank Jia Xu and Ruimiao Ding deeply for
their instructive suggestions and valuable comments.

REFERENCES
[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, ‘‘A survey of mobile cloud

computing: Architecture, applications, and approaches,’’ Wireless Com-
mun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611, Dec. 2013.

[2] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, ‘‘A survey
of mobile cloud computing application models,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, 1st Quart., 2014.

[3] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, ‘‘Heterogeneity in mobile
cloud computing: Taxonomy and open challenges,’’ IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 369–392, 1st Quart., 2014.

[4] M. V. Barbera, S. Kosta, A.Mei, and J. Stefa, ‘‘To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing,’’ in Proc.
32nd IEEE INFOCOM Conf., Turin, Italy, Apr. 2013, pp. 1285–1293.

[5] M. Shiraz, A. Gani, A. Shamim, S. Khan, and R. W. Ahmad, ‘‘Energy effi-
cient computational offloading framework for mobile cloud computing,’’
J. Grid Comput., vol. 13, no. 1, pp. 1–18, Mar. 2015.

[6] P. V. Krishna, S. Misra, V. Saritha, D. N. Raju, and M. S. Obaidat,
‘‘An efficient learning automata based task offloading in mobile cloud
computing environments,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Paris,
France, May 2017, pp. 1–6.

[7] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, ‘‘Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,’’ IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319–333,
Feb. 2019.

[8] W. Li, J. Cao, K. Hu, J. Xu, and R. Buyya, ‘‘A trust-based agent learning
model for service composition in mobile cloud computing environments,’’
IEEE Access, vol. 7, pp. 34207–34226, 2019.

[9] Z. Kuang, S. Guo, J. Liu, and Y. Yang, ‘‘A quick-response framework for
multi-user computation offloading in mobile cloud computing,’’ Future
Gener. Comput. Syst., vol. 81, pp. 166–176, Apr. 2018.

[10] X. Ge, J. Yu, C. Hu, H. Zhang, and R. Hao, ‘‘Enabling efficient verifiable
fuzzy keyword search over encrypted data in cloud computing,’’ IEEE
Access, vol. 6, pp. 45725–45739, 2018.

[11] X.-F. Liu, Z.-H. Zhan, J. D. Deng, Y. Li, T. L. Gu, and J. Zhang, ‘‘An energy
efficient ant colony system for virtual machine placement in cloud comput-
ing,’’ IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 113–128, Feb. 2018.

[12] B. Hayes, ‘‘Cloud computing,’’ Commun. ACM, vol. 51, no. 7, pp. 9–11,
Jul. 2008.

[13] P. Singh, M. Dutta, and N. Aggarwal, ‘‘A review of task scheduling
based on meta-heuristics approach in cloud computing,’’ Knowl. Inf. Syst.,
vol. 52, no. 1, pp. 1–51, Apr. 2017.

[14] L. A. Tawalbeh, R. Mehmood, E. Benkhlifa, and H. Song, ‘‘Mobile cloud
computing model and big data analysis for healthcare applications,’’ IEEE
Access, vol. 4, pp. 6171–6180, 2016.

[15] D. Huang, T. Xing, and H. Wu, ‘‘Mobile cloud computing service mod-
els: A user-centric approach,’’ IEEE Netw., vol. 27, no. 5, pp. 6–11,
Sep./Oct. 2013.

[16] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, ‘‘A survey
of mobile cloud computing application models,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, Jul. 2013.

[17] M. Mukherjee, R. Matam, L. Shu, L. A. Maglaras, M. A. Ferrag,
N. Choudhury, and V. Kumar, ‘‘Security and privacy in fog computing:
Challenges,’’ IEEE Access, vol. 5, pp. 19293–19304, 2017.

[18] M. Peng, S. Yan, K. Zhang, and C. Wang, ‘‘Fog-computing-based radio
access networks: Issues and challenges,’’ IEEE Netw., vol. 30, no. 4,
pp. 46–53, Jul./Aug. 2016.

[19] Q. Huang, Y. Yang, and L. Wang, ‘‘Secure data access control with cipher-
text update and computation outsourcing in fog computing for Internet of
Things,’’ IEEE Access, vol. 5, pp. 12941–12950, 2017.

[20] Y. Hao, C. Min, H. Long, M. S. Hossain, and A. Ghoniem, ‘‘Energy
efficient task caching and offloading for mobile edge computing,’’ IEEE
Access, vol. 6, pp. 11365–11373, 2018.

[21] F. Wang, J. Xu, X. Wang, and S. Cui, ‘‘Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,’’ IEEE
Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, Mar. 2017.

[22] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, ‘‘Performance guaranteed
computation offloading for mobile-edge cloud computing,’’ IEEEWireless
Commun. Lett., vol. 6, no. 6, pp. 774–777, Dec. 2017.

[23] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
and Y. Zhang, ‘‘Energy-efficient offloading for mobile edge computing in
5G heterogeneous networks,’’ IEEE Access, vol. 4, pp. 5896–5907, 2016.

[24] Z. Wei and H. Jiang, ‘‘Optimal offloading in fog computing systems with
non-orthogonal multiple access,’’ IEEE Access, vol. 6, pp. 49767–49778,
2018.

[25] W.-L. Zhang, B. Guo, Y. Shen, D.-G. Li, and J.-K. Li, ‘‘An energy-efficient
algorithm for multi-site application partitioning in MCC,’’ Sustain. Com-
put., Inform. Syst., vol. 18, pp. 45–53, Jun. 2018.

[26] N. Chen, X. Fang, and X. Wang, ‘‘A cloud computing resource scheduling
scheme based on estimation of distribution algorithm,’’ in Proc. 2nd Int.
Conf. Syst. Inf., Shanghai, China, Nov. 2014, pp. 304–308.

[27] X. Lin, Y. Wang, Q. Xie, and M. Pedram, ‘‘Task scheduling with dynamic
voltage and frequency scaling for energy minimization in the mobile cloud
computing environment,’’ IEEE Trans. Services Comput., vol. 8, no. 2,
pp. 175–186, Dec. 2014.

[28] T. Li, B. Y. Wang, and S. O. Computer, ‘‘Workflow energy-efficient
scheduling algorithm in cloud environment with QoS constraint,’’Comput.
Sci., vol. 45, no. 6A, pp. 304–309, Jun. 2018.’

VOLUME 7, 2019 69871



Y. Wang et al.: Energy-Efficient and Deadline-Aware Task Offloading Strategy

[29] M. A. Arfeen, K. Pawlikowski, and A. Willig, ‘‘A framework for resource
allocation strategies in cloud computing environment,’’ in Proc. 35th
Comput. Softw. Appl. Conf. Workshops, Munich, Germany, Jul. 2011,
pp. 261–266.

[30] W. J. Shi, J. G. Wu, and Y. C. Luo, ‘‘Fast and efficient scheduling
algorithms for mobile cloud offloading,’’ Comput. Sci., vol. 45, no. 4,
pp. 94–99, Apr. 2018.

[31] X. Wang and X. Liu, ‘‘Clouding computing resource scheduling based on
double fitness dynamic genetic algorithm,’’ Comput. Eng. Des., vol. 39,
no. 5, pp. 1372–1376, May 2018.

[32] C. Ju, X. Zhao, and M. Wang, ‘‘Application of improved genetic algorithm
in optical scheduling of cloud computing resources,’’ Softw. Guide, vol. 17,
no. 4, pp. 45–46, Apr. 2018.

[33] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, ‘‘A multi-objective opti-
mization scheduling method based on the ant colony algorithm in cloud
computing,’’ IEEE Access, vol. 3, pp. 2687–2699, 2015.

[34] A. Salman, I. Ahmad, and S. Al-Madani, ‘‘Particle swarm optimization
for task assignment problem,’’ Microprocess. Microsyst., vol. 26, no. 8,
pp. 363–371, 2002.

[35] X. Chen, J. W. Xu, and D. Long, ‘‘Resource scheduling algorithm of
cloud computing based on ant colony optimization-shuffled frog leading
algorithm,’’ J. Comput. Appl., vol. 38, no. 6, pp. 1670–1674, Jun. 2018.

[36] C. Y. Liu and W. W. Yang, ‘‘A multi-objective task scheduling based on
genetic and particle swarm optimization algorithm for cloud computing,’’
Comput. Technol. Develop., vol. 27, no. 2, pp. 56–59, Feb. 2017.

[37] B. Wang and X. Zhang, ‘‘Task scheduling algorithm based on particle
swarm optimization genetic algorithms in cloud computing environment,’’
Comput. Eng. Appl., vol. 51, no. 6, pp. 84–88, Jun. 2015.

[38] J. R. Xu and H. J. Zhu, ‘‘Coevolutionary genetic algorithm of cloud
workflow scheduling based on adaptive penalty function,’’ Comput. Sci.,
vol. 45, no. 8, pp. 105–112, Aug. 2018.

[39] G.-Y. Cai and E.-Q. Dong, ‘‘Comparison and analysis of generation algo-
rithm and ant colony optimization on TSP,’’ Comput. Eng. Appl., vol. 43,
no. 10, pp. 96–98, Oct. 2007.

[40] C. J. He and Z. J. Bai, ‘‘Task scheduling based on improved ant colony
algorithm in cloud environment,’’ Comput. Technol. Develop., vol. 28,
no. 12, pp. 13–16, Dec. 2018.

[41] X. J. Li, J. Xu, F. Wang, E. Z. Zhu, and L. Wu, ‘‘Energy aware task
scheduling algorithm in cloud workflow system,’’ Pattern Recognit. Artif.
Intell., vol. 40, no. 2, pp. 364–377, Sep. 2016.

[42] W. Zhang and Y. Wen, ‘‘Energy-efficient task execution for application
as a general topology in mobile cloud computing,’’ IEEE Trans. Cloud
Comput., vol. 6, no. 3, pp. 708–719, Jul./Sep. 2018.

[43] X. Liu, J. Li, and Z. Yang, ‘‘A task collaborative execution policy in
mobile cloud computing,’’ Chin. J. Comput., vol. 40, no. 2, pp. 364–377,
Feb. 2017.

[44] N. Netjinda, B. Sirinaovakul, and T. Achalakul, ‘‘Cost optimal schedul-
ing in IaaS for dependent workload with particle swarm optimization,’’
J. Supercomput., vol. 68, no. 3, pp. 1579–1603, Jun. 2014.

[45] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi,
‘‘Characterization of scientific workflows,’’ in Proc. 3rd Workshop Work-
flows Support Large-Scale Sci., Austin, TX, USA, Nov. 2008, pp. 1–10.

[46] W. Zhang, Y. Wen, and D. O. Wu, ‘‘Energy-efficient scheduling policy for
collaborative execution in mobile cloud computing,’’ in Proc. 32nd IEEE
INFOCOM Conf., Turin, Italy, Apr. 2013, pp. 190–194.

[47] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, ‘‘Computation offloading
for service workflow in mobile cloud computing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 12, pp. 3317–3329, Dec. 2015.

[48] R. C. Eberhart and Y. H. Shi, ‘‘Particle swarm optimization: Develop-
ments, applications and resources,’’ in Proc. Congr. Evol. Comput., Seoul,
South Korea, May 2001, pp. 81–86.

[49] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

YINGJIE WANG is currently pursuing the bach-
elor’s degree with Anhui University, China. Her
research interests include mobile cloud computing
and workflow systems.

LEI WU received the Ph.D. degree from Anhui
University, China, in 2018, where she is currently a
Lecturer with the School of Computer Science and
Technology. Her major research interests include
workflow systems and cloud computing, schedul-
ing, and optimization.

XIUSHENG YUAN is currently pursuing the bach-
elor’s degree with Anhui University, China. His
research interests include mobile cloud computing
and workflow systems.

XIAO LIU received the master’s degree in man-
agement science and engineering from the Hefei
University of Technology, Hefei, China, in 2007,
and the Ph.D. degree in computer science and
software engineering from the Faculty of Infor-
mation and Communication Technologies, Swin-
burne University of Technology, Melbourne, VIC,
Australia, in 2011. He is currently a Senior Lec-
turer with the School of Information Technology,
Deakin University, Melbourne. He has published

over 90 papers in the area of software engineering and service computing
including journals, such as the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

and the IEEE TRANSACTIONS ON SERVICE COMPUTING.

XUEJUN LI (M’18) received the Ph.D. degree
fromAnhui University, China, in 2008, where he is
currently a Professor with the School of Computer
Science and Technology. His major research inter-
ests include workflow systems, cloud computing,
and intelligent software.

69872 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	MOBILE CLOUD COMPUTING
	ENERGY CONSUMPTION REDUCTION
	INTELLIGENT ALGORITHMS FOR TASK OFFLOADING

	MOTIVATING EXAMPLE
	SYSTEM MODEL
	WORKFLOW MODEL
	MCC SYSTEM MODEL
	EXECUTION TIME MODEL
	COMPUTATION TIME
	COMMUNICATION TIME

	ENERGY CONSUMPTION MODEL
	ENERGY CONSUMPTION FOR COMPUTATION
	ENERGY CONSUMPTION FOR SENDING INPUT DATA
	ENERGY CONSUMPTION FOR RECEIVING OUTPUT DATA

	CHANNEL MODEL

	THE PROPOSED CC-NAIWPSO STRATEGY
	OFFLOADING DECISION MODEL WITH CHANNEL CONSTRAINT
	NAIWPSO ALGORITHM
	NEW ADAPTIVE INERTIA WEIGHTS (NAIW)
	FITNESS FUNCTION

	CC-NAIWPSO STRATEGY

	EXPERIMENTAL RESULTS
	EXPERIMENTAL ENVIRONMENT AND PARAMETER SETTINGS
	EXPERIMENTAL RESULTS ANALYSIS
	ENERGY CONSUMPTION OF MOBILE DEVICES
	EXECUTION TIME OF WORKFLOW APPLICATIONS
	CONVERGENCE RATE OF ALGORITHMS
	RUNNING TIME OF ALGORITHMS
	ENERGY CONSUMPTION UNDER DIFFERENT DEADLINES
	NUMBER OF TASKS OFFLOADED TO CLOUD SEVERS


	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YINGJIE WANG
	LEI WU
	XIUSHENG YUAN
	XIAO LIU
	XUEJUN LI


