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ABSTRACT Air ground integrated mobile cloud computing (MCC) provides UAVs with more flexibility
and resilience from the cloud computing architecture. However, the increasing aerial mobile data requires
heterogeneous quality of experience (QoE) for aerial accessing network. In addition, for the persistent
flying, energy efficiency during the computation offloading should also be under consideration. This paper
proposes an energy-efficient resource allocation scheme with the ability of QoE enhancement. Various aerial
offloading data with different QoE requirements is stored and relayed in the multi-queueing architecture.
Hence offloading rate differentiation is utilized to ensure the high-priority data a better QoE. The satisfaction
function is designed with respect to energy efficiency and actual performance experienced by UAV. By using
the Lyapunov optimization technique, the problem can be decoupled into two independent sub-problems.
The first one is rate control associated with multi-queueing architecture in ground base-station (GBS) that
manages the aerial offloading data from the UAVs according to the queue state information. The second one
is resource allocation associated with the strategy of subcarrier assignment and power allocation according
to the channel state information. The experiments demonstrate the algorithm has great properties such as
maximization of the UAVs’ satisfaction, the reliable heterogeneous QoE support and enhancement of the
UAVs’ transmission energy efficiency.

INDEX TERMS Mobile cloud computing, unmanned aerial vehicle, computation offloading, quality of
experience, energy efficiency.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs), especially mini-drones,
have attracted much attention for their flexible deploy-
ment, agile management, and low cost. UAV cloud [1]or
UAV-based Mobile Cloud Computing (UAV-MCC) sys-
tem, as well as air ground integrated mobile edge net-
work (AGMEN) [2]–[4], provides a promising approach that
enhances the performance of computation-intensive appli-
cation by offering computation offloading opportunities to
every individual drone or ground vehicle via aerial-to-aerial
(A2A) and aerial-to-ground (A2G) communication.

Recent researches on UAV cloud [1] or UAV-aided
network [5], [6] feature in treating UAV as an aerial moving
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relay system or an UAV-mounted cloudlet. However, such
dramatic variety relayed data from sensors in a range makes
multiple UAVs hard to afford. Computation-intensive aerial
applications on UAV itself like simultaneous localization
and mapping (SLAM), virtual reality(VR) and video/audio
transmission, also generate a large mount of data, which
results in such an issue that the performance of aerial
applications on UAVs can be enhanced by offloading tasks
to the cloud [1], [7]. Computation-intensive aerial applica-
tions are divided into a series of tasks, and then dis-
patched to the resource-rich cloud infrastructure for fast
processing.

Comparing with general cloud, the smart drones in UAV
cloud could not only offload tasks to cloud, but also share
information and cooperate with each other through a flying
ad hoc network (FANET) as well as cellular based network.
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Although the cloud-based approach can significantly aug-
ment computational capability for UAVs, a large amount of
offloading data makes the wireless A2G Link a new bot-
tleneck that affects the performance of aerial application.
The main problems and characteristics of wireless resource
management in UAV cloud offloading are summarized as
follows:
1) UAVs differ in processing capacity, mission envi-

ronment and tasks emergency, and different types
of aerial applications may generate heterogeneous
user-perceived quality of service (QoS), which is also
known as quality of experience (QoE). For exam-
ple, SLAM and control signals should be supe-
rior to the general sensing data transmission. While
lower-changing data such as temperature and moisture
measurements is corresponding more delay-tolerant
than that of fast-changing data such as real-time video
and audio stream.

2) The communication model for wireless can either be
WiFi access point [8]–[10], or Femtocell network or
a macrocell in cellular network. Although 5th Gen-
eration (5G) communication technology as well as
LTE can provide higher accessing rate for cloud, the
rapid growth of aerial application and service puts for-
ward higher requirements for network. Especially that
offloading transmission always bursts for the uncertain
nature of UAV missions and fast-changing environ-
ment, it is unnecessary and impossible to predict and
reserve enough subcarriers or bandwidth to meet the
QoE requirements.

3) Energy efficiency should be considered in the wire-
less task offloading scheme [4]. All kinds of aerial
applications gradually come across the bottlenecks of
common shared wireless channels, especially in the
cellular mobile communication system. If too many
drones choose to offload the computation simultane-
ously, they may suffer severe interference, large delay
and network congestion. The uncontrolled retransmis-
sion causes unwanted energy wasting. For small UAVs
with limited aerial platform carriage, less power wast-
ing will enhance the aerial loiter endurance [11], which
is important to the practicability of UAVs.

Therefore, it is a great challenge to improve the wire-
less accessing efficiency under the dual constraints of lim-
ited energy consumption and heterogeneous aerial QoE. The
mobility, as well as the uncertainty of aerial applicant offload-
ing, makes the problem more complicated. So it is very
hard to arrange the resource ahead of time precisely. In
general, the resource allocation in wireless network access
is a dynamic optimization or a feedback control problem.
To the best of our knowledge, most of the researches have
solved QoE and energy efficiency in communication as two
independent problems.

1) No matter QoS or QoE, the instinctive idea is
to arrange more resource to high priority users
according to their actual QoE. Frequency division

duplex (FDD) and either orthogonal or non-orthogonal
multiple access (NOMA) schemes are used during
the design of QoE/QoS mapping and monitoring
in 5G architecture [12]–[14]. Generally, utility func-
tions are used to map one or several QoS metrics to
QoE, and then are modelled as optimization prob-
lems. Approaches for solving optimizations include
game [15], [16], machine learning for control [7], [17]
and convex optimization [4]. The resource for allo-
cation may be the access preambles [18], con-
tention window [7], transmission power [7], [17],
bandwidth [19] and caching in the sky [4].

2) Energy efficient or green wireless communication is an
other appealing challenge [20]. High energy efficiency
in communication will improve the limited endurance
of UAVs [21]. Bit allocation optimization [6] is pro-
posed for minimizing the mobile energy consumption
in UAV-MCC, which means only parts of the aerial
tasks can be offloaded to cloudlet with the constrains
of power and trajectory for relay. In cellular relay
network, energy efficiency can also be improved by
cognitive radio [22] or masssive MIMO [23]. Some
researches aim at assessing energy efficiency and QoE
in typical cellular network by subcarrier selection and
bandwidth allocation without the consideration of het-
erogeneous application QoE [19], [24].

Nevertheless, aerial application offloading with QoE sup-
port and energy efficiency can not be solved by the
simple combination of aforementioned methods. In par-
ticular, the jointed optimization of the wireless resource
allocation and heterogeneous QoE, are tackled with the
aims of maximizing the throughput under mobility con-
straints and a decode-store-and-forward scheme in ground
base-station (GBS). This paper proposes an Energy-Efficient
Differentiated QoE resource allocation (EE&Diff-QoE)
scheme for UAV-MCC, which aims at minimizing the total
mobile energy consumptions while satisfying heterogeneous
QoE requirements.

In the algorithm, heterogeneous QoE support and energy
efficiency are two vital optimization targets. The main con-
tributions of this paper are as follows:

1) First, consider the overall process of aerial appli-
cation offloading in UAV-MCC and model it as a
multi-queueing architecture (also known as perfor-
mance isolation [19]), so stability and continuity of
queues are under consideration during the resource
scheduling. Queue state information (QSI) and channel
state information (CSI) are applied as feedback vari-
ables to assist the algorithm to maintain the stability of
queues.

2) Second, with application ranking and measurement of
UAVs’ satisfaction, the problem can be decoupled into
two independent issues by Lyapunov method. One is
aerial offloading rate control at GBS for heterogeneous
QoE support. The other is subcarriers assignment and
power allocation at UAVs for energy efficiency. So the
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TABLE 1. Notation.

proposed scheduling scheme can be solved and imple-
mented by typical mathematical optimization.

The rest of this paper is organized as follows. In Chap-
ter II, the model of EE&Diff-QoE algorithm in UAV-MCC
is detailed. The mathematical discription of EE&Diff-QoE is
in Chapter III. In Chapter IV, a series of simulations are car-
ried out to test the performance of EE&Diff-QoE algorithm.
Additionally the results of these experiments with analysis are
also presented in this section. The conclusion is illustrated in
Chapter V. Table 1 lists main notations used in the paper.

II. SYSTEM MODEL
A. COMMUNICATION MODEL
The communication model for wireless access in UAV-MCC
is shown in Fig. 1. Supposing there exist a wireless access
GBS, through which the UAVs in range can offload tasks
to cloud. GBS can be either a WiFI or 4G/5G Femtocell or
Macrocell access point. Supposing that there are N drones
with different aerial applications to be offloaded, and there
are K subcarriers or subchannels in the system. Data arrives
in GBS randomly at every time slot and is queued separately
according to traffic type. The priorities of UAVs and QoE
requirements may be pre-fixed or dynamically negotiated and
broadcasted by high-level protocol, which is not in the scope
of this paper.

Every kind of aerial applications’ data arrival is indepen-
dently and identically distributed (i.i.d). To support differen-
tiated service, the data received by GBS is temporarily stored
in isolated queues waiting to be relayed in the manner of
First-InFirst-Out(FIFO). Additionally, queueing theory also
has been used to model and analyze this mutil-queueing
system [25]. At each time slot t , the arriving data from drones
is Poisson distribution with rate µn. Qn(t) denotes the queue
length of aerial traffic n, then Q(t) = {Qn(t)} represents all
queue state information at GBS.

FIGURE 1. System model.

The service rate of different aerial applications is con-
trolled at GBS by rate controller, which is tend to accept high
priority aerial data. The queue length is finite. So if the queue
is fulfilled, GBSwill reject corresponding newly arrived data.
The rate control subsystem is detailed in Section III-B.1.
Power assignment and subcarriers selection are implemented
by resource allocation subsystem, which enforces the final
resource allocation and dominates the QoE. The resource
allocation subsystem is detailed in Section III-B.2. In this
paper, aerial application with larger queue backlog or better
channel condition or higher priority will be assigned higher
transmission power and more subcarriers [26].

B. A2G COMMUNICATION IN PHYSICAL LAYER
UAVs offload their aerial application data to cloud through
A2G cellular network. Generally, the A2G uplink and down-
link are asymmetric, because UAV offloading by A2G
uplink contains large amount of computation-intensive data,
while cloud only returns simple processing results by A2G
downlink [2]. The paper only considers the A2G uplink that
dominates the QoE of offloading.

Supposing that there are K subcarriers and N UAVs in
cellulaer UAV-MCC system that operates in a time-slot fash-
ion. A subcarrier can only be used by one UAV in a time
slot. ωn,k (t) ∈ {0, 1} is the subcarrier assignment indicator.
ωn,k (t) = 1 denotes that subcarrier k is allocated to drone n
at the time slot t .

N∑
n=1

ωn,k (t) ≤ 1, ∀n, t (1)

µn(t) is the total A2G uplink transmission rate from nth UAV
to GBS at the entrance of queue, which is also known as
the arriving rate in queue theory. One UAV can use multiple
subcarriers in a time slot.

µn(t) =
K∑
k=1

ωn,k (t) log2(1+
pn,k (t)hn,k (t)

n0B
), ∀n, t (2)

pn,k (t) denotes the transmission power of drone n on subcar-
rier k at time slot t , and hn,k (t) denotes the corresponding
channel gain square. n0 is power spectrum density of AWGN
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and B is subcarrier bandwidth. hn,k (t) is i.i.d, and H(t) =
{hn,k (t)} is a N × K -dimensional channel gain matrix for all
users and subcarriers.

In addition, the average transmit power of UAV is also
up-bounded by average power Pn,max.

0 ≤ lim
T→∞

1
T

T−1∑
t=0

E{Pn(t)} ≤ Pn,max (3)

where Pn(t) =
∑K

k=1 ωn,k (t)pn,k (t) is the transmit power
vector.

C. QoE SATISFACTION FUNCTION
Let wn denote the priority of nth UAV, which can be achieved
by sorting and assigning themwith different weight according
to their aerial applications’ QoE. For example, a remote aug-
mented reality (AR) which needs 10Mbps rate for offloading
will be assigned a larger wk . In practise, the determination of
weigh wn can also be pre-fixed or dynamically negotiated by
other protocols, which is out of scope of this paper. In small
UAV system, the accepting rate at GBS and power-saving in
UAV are of equally importance for persistence flying.

Without loss of generality, it is supposed that every UAV
only offloads one kind of aerial application data. Notice that
for each UAV, different subcarrier set and different transmis-
sion power will lead to different offloading rate.

There are many mean opinion score (MOS) based metrics
for QoE evaluation [14] in 5G communication system, which
combines send bit rate (SBR), packet error rate (PER) and
frame rate (FR) into one MOS value. However, UAV-MCC
offloading rate is the most important for mission success.
For some real-time applications, too low offloading rate will
induce the crucial delay and lead to the failure of aerial
task. In order to guarantee aerial applications’ QoE with
consideration of energy efficiency, in this paper, an increas-
ing, concave, and continuous function is used to measure
aerial applications/drones’ satisfaction. There is evidence that
user experience and satisfaction follow logarithmic laws [27].
Additionally, we use a positive weight β1 and β2 to
strike a balance between transmission rate and energy
efficiency [28], [29]. In this way, the satisfaction function for
UAV n is defined as

sn(t) = β1wnlog2(Rn(t))+ β2
µn(t)∑K

k=1 ωn,k (t)pn,k (t)
(4)

Equ. (4) is made up of two parts. The first item in the left
represents offloading rate, which is actually related to the
service rateRn(t) and the queue lengthQn(t). The second item
represents the energy efficiency. The weights of these two
criteria are represented by β1, β2, (β1 + β2) = 1. Although
every UAV expects a higher service rate, it is still limited by
the data arrival rate µn. Consequently, the up boundary of
service rate at time slot t is

0 ≤ Rn(t) ≤ µn, ∀n, t (5)

This inequality constraints that the aerial service rate cannot
exceed the transmission rate.

D. QUEUEING SYSTEM AT GBS
GBS is actually a multi-queueing system, which accepts the
aerial data from UAV and relays them to cloud via a fibre
cable in manner of FIFO. Qn(t) denotes the queue length of
nth aerial offloading data. The growth rate of queue is data
accepting arrival rate from drones, i.e. Rn, while the reduce
rate of queue is actually offloading rate of drones, i.e. λn.
So the recursive formula for queue length can be obtained
as follows [30]:

Qn(t + 1) = max[Qn(t)− λn(t), 0]+ Rn(t) (6)

Considering the actual transmission, to keep the aerial appli-
cation integration and continuity, the queue mean rate should
be stable.

lim
T→∞

E{Qn(t)}
T

= 0 (7)

E. PROBLEM FORMULATION
EE&Diff-QoE algorithm optimizes aerial application’ sat-
isfaction by applying subcarrier allocation and power con-
trol schemes for varying channel state. The problem can be
described as:

max
R(t),W (t),P(t)

lim
T→∞

1
T

T−1∑
t=1

E{
N∑
n=1

sn(t)}

s.t. ωn,k (t) ∈ {0, 1}, ∀n, k, t (C1)
N∑
n=1

ωn,k (t) ≤ 1, ∀n, t (C2)

0 ≤ lim
T→∞

1
T

T−1∑
t=0

E{Pn(t)} ≤ Pn,max (C3)

lim
T→∞

E{Qn(t)}
T

= 0 (C4)

0 ≤ pn,k (t) ≤ ∞, ∀n, k, t (C5)

0 ≤ Rn(t) ≤ µn, ∀n, t (C6) (8)

C1, C2 are conditions of subcarriers, which constrains that
each subcarrier can only be allocated to one UAV once a time.
C3, C4 ensure the rate stable of virtual power queues and
actual data queues. C5 constrains that the transmission power
can not be infinite. C6 constrains that service rate could not
exceed the data arriving rate.

R(t) = {Rn(t)}, W (t) = {ωn,k (t)}, P(t) = {pn,k (t)}

are strategy elements controlled by EE&Diff-QoE algorithm.
By Lyapunov method, Problem(8) above can be decoupled
into two optimization sub-problems.

1) The first one is offloading rate control subsystem,
which determinates the service rate R(t) for each aerial
application according to queue backlogQ(t), data arriv-
ing rate µn and users’ priority wn, i.e. aerial applica-
tions’ QoE level.

2) The second one is resource allocation subsystem,
according to the results of offloading rate control, QSI
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Q(t) and CSI H(t), while assignment indicator matrix
W (t) and transmission power matrix P(t) are optimised
by assigning larger transmission power and more better
subcarriers to drones who are able to achieve higher
energy efficiency.

Thus EE&Diff-QoE algorithm can solve two sub-problems
separately and finally offer the QoE-differentiation with high
energy efficiency.

III. EE&DIFF-QoE ALGORITHM
A. LYAPUNOV OPTIMIZATION
The queueing system should be stable, so Lyapunov
method [26], [30] is used to ensure the life-span and stability
in a long term. For every UAV, the transmission power Pn(t)
can only change in a continuity, so virtual power queue is
introduced based on the maximum limitation of transmission
power Pn,max [24], which can convert C3 into a virtual power
queue stability like C4. The virtual power queue at UAV n is
defined as

Yn(t + 1) = max[Yn(t)− Pn,max, 0]+ Pn(t) (9)

Only if both Q(t) and Y (t) are stable, this multi-queueing
system is robustness in terms of stability of the average queue
size and power continuity.

Lyapunov function is defined as

L(G(t)) =
1
2

N∑
n=1

[Qn(t)]2 +
1
2

N∑
n=1

[Yn(t)]2 (10)

G(t) represents the strategy of EE&Diff-QoE algorithm,
which is composed of R(t), W (t), and P(t). From Equ.(10),
Lyapunov function drift is also defined as

1L(t),E{L(G(t + 1))− L(G(t))} (11)

where the expectation depends on the EE&Diff-QoE algo-
rithm and strategy G(t) made in reaction. According to the
definition of Qn(t) and Yn(t), the up-bound of 1L(t) exists
and satisfies

1L(t) ≤ B+ E{
N∑
n=1

Qn(t)(Rn(t)− λn(t))

+

N∑
n=1

Yn(t)(Pn(t)− Pn,max)} (12)

where B = E{
∑N

n
Rn2(t)+λn2(t)

2 } + E{
∑N

n
P2n(t)+P

2
n,max

2 } is
defined as a finite constant to simplify the right-hand-side of
Equ.(12) above.

Minimizing 1L(t) at every control slot is also known as
minimizing the Lyapunov dift, which can only help to meet
the stability of backlog in virtual power and actual queues in
according with constrains C3, C4. To optimize Problem (8),
the objective function F[sn(t)] = −Vsn(t) is mapped as a
penalty [26]. Instead of taking action to greedily minimize
1L(t) in Equ. (12), actions are taken every time to greedily

minimize the drift-plus-penalty expression by EE&Diff-QoE
algorithm. Lemma 1 stated blow provides an up boundary.
Lemma 1: Supposing hn,k is i.i.d, for all possible G with

given non-negative V , the drift-plus-penalty item has the
following up boundary:

1L(G(t))+E
{
F[sn(t)]≤B+ E

{
N∑
n=1

Qn(t) (Rn(t)− λn(t))

}

+E{
N∑
n=1

Yn(t)(Pn(t)− Pn,max)} − VE{sn(t)} (13)

Proof: See Appendix A for the proof. �
V is a non-negative constant parameter that controls the

tradeoff between 1L(t) and the satisfaction function. A big-
ger V indicates a greater willing to maximize the satisfaction
function value sn(t) with the expense of larger queue backlog.
Lemma 1 is the system drift up boundary. To ensure the
system stable and optimal, the up boundary should be as small
as possible, and the original problem could be transformed
into the minimum optimization problems with conditions
C1,C2,C5, and C6 as follows:

min E{
N∑
n=1

Qn(t)(Rn(t)− λn(t))} − VE{sn(t)}

+E{
N∑
n=1

Yn(t)(Pn(t)− Pn,max)}

s.t. C̃1,C2,C5, and C6

Q(t) and Y (t) are mean rate stable. (14)

By introducing the conception of virtual queue, the constrain
of power expenditure C3 is satisfied if Yn(t) is mean rate
stable and continuity.

As mentioned before, R(t), W (t), and P(t) are strategy
elements decided by EE&Diff-QoE algorithm. Equ.(14) can
be divided into the summation of two parts. The first part
only relates to vector R(t) and the second part relates to
matrices W (t),P(t). So Problem (14) can be transformed to
one minimization P1 with respect to Rn(t), and one maxi-
mization problem P2 with respect to ωn,k (t) and pn,k (t), i.e.
1) P1. Offloading rate control to achieve aerial application
QoE-differentiation with the condition C6. 2) P2. Resource
allocation to guarantee the high energy efficiency with the
constrains C1,C2,C4,C5. The details of P1 and P2 are in the
following Section III-B.1 and Section III-B.2.

B. EE&DIFF-QoE ALGORITHM DESIGN
In this section, convex optimization and KKT condition are
used to obtain the solution of these two parts. In P1, the opti-
mization target is a simple convex function with respect to
Rn(t) and condition C6, so the minimization can be solved by
directly taking derivative to Rn(t).

In P2, we take the energy efficiency as the most important
element of solution. Since P2 can be treated as a concave

68660 VOLUME 7, 2019



A. Gao et al.: QoE-Oriented Scheduling Scheme for Energy-Efficient Computation Offloading

problem, KKT condition is used to solve the global maxi-
mization. To solve the transcendental formula, both proof by
contradiction and dichotomy methods are employed.

1) AERIAL OFFLOADING RATE CONTROL
Rn(t) is mainly based on the QoE requirements and queue
backlog. The algorithm proposed will allow high-priority
aerial application to enjoy a better service rate. The rate
differentiation problem is formulated as

P1 : min
Rn(t)
E{

N∑
n=1

Qn(t)Rn(t)} − Vβ1wnE{log2Rn(t)}

s.t. C6 (15)

Obviously, Problem (15) has a minimum value, because
sn(t) is a downward convex function to Rn(t). Taking the

derivative of
N∑
n=1

Qn(t)Rn(t)−Vnβ1 log2 Rn(t) with respect to

Rn(t) and setting the derivation to zero, there is

Qn(t)−
β1Vwn
Rn(t) ln 2

= 0 (16)

So it is obtained that

Rn(t) =


β1Vwn
Qn(t) ln 2

, Rn(t) < µn

µn, Rn(t) ≥ µn
(17)

It is obviously that the service rate is limited by A2G trans-
mission rate from UAVs to GBS.

2) ENERGY-EFFICIENT RESOURCE ALLOCATION
In this subsystem, proper power and subcarriers are assigned
to UAVs for high energy efficiency. The minimum problem is
converted into a maximization by taking negative to the initial
Equ. (14):

P2 : max
ωn,k (t),pn,k (t)

N∑
n=1

Qn(t)λn(t)+ Vβ2
µn(t)∑K

k ωn,k (t)pn,k (t)

−

N∑
n=1

K∑
k=1

Yn(t)ωn,k (t)pn,k (t)

+

N∑
n=1

Yn(t)Pn,max

s.t. C1,C2, and C5 (18)

Resource allocation P2 is a mixed combinatorial problem
because it involves both binary variables ωn,k (t) and contin-
uous variables pn,k (t), which can be solved by brust-force
exhaustive searching with complexity ofO(NK ). By applying
a continuous relaxation approach [31]–[34], i.e. relaxingωn,k
to ω̃n,k ∈ [0, 1], Equ.(18) becomes an upward concave
function with respect to ωn,k (t) and pn,k (t), so that P2 can
be converted to a concave optimization problem.

Proof: For the prove of concavity, See Appendix B. �
Consequently, the maximization objective is a concave

function with inequality constraints, so that KKT condition

can be used to solve the optimization problem. Lagrangian
multiplier on,k is introduced to remove the constrain C5. By
submitting Equ. (2) to Equ. (18), the Lagrangian function is
constructed as

L(P) =
N∑
n=1

Qn(t)λn(t)+ Vβ2
ω̃n,k (t)log2[1+

pn,k (t)hn,k (t)
ω̃n,k (t)n0B

]∑K
k ω̃n,k (t)pn,k (t)

−

N∑
n=1

K∑
k=1

Yn(t)ω̃n,k (t)pn,k (t)

+

N∑
n=1

Yn(t)Pn,max − on,kpn,k (t) (19)

Qn(t) and Yn(t) should be stable and continuous, Yn(t) is close
to 0 with a long enough duration average. In this way, taking
the derivative of L(P) with respect to pn,k (t), and setting
∂L(P)
∂pn,k

= 0 yields

∂L(P)
∂pn,k

= Vβ2
a

ω̃n,kpn,k (1+
apn,k
ω̃n,k

) ln 2

−Vβ2
log2(1+

apn,k
ω̃n,k

)

ω̃n,kp2n,k
− λn,k = 0 (20)

where a = hn,k (t)/n0B. Obviously, Equ. (20) is a transcen-
dental formula that may have no analytical solution. So we
take proof by contradiction:
1) Assuming that subcarrier k∗ is assigned to user n, i.e.

ω̃n,k∗ = ωn,k∗ = 1. Equ. (20) can be rewritten as

0n,k (pn,k ) = Vβ2
a

pn,k (1+ apn,k ) ln 2

−Vβ2
log2(1+ apn,k )

p2n,k
= 0 (21)

2) Equ. (21) can be solved by dichotomy [35]. By taking
dichotomy searching, 0n,k should have at least one
zero point when p∗n,k ∈ [0.01, 0.05] Watts, because
it is sustainable power range of typical 4G cellular
communication. When zero point of 0n,k is outside the
interval, it means that power in subcarier k∗ exceeds
the affordable power. So set p∗n,k (t) = 0.035 Watts
(15.5dBm, typical 4G LTE subcarrier power) as the
default solution.

3) With the power solution of p∗n,k (t) fixed, the allocation
of subcarriers is a maximization of Lagrangian func-
tion. The Lagrangian Equ.(19) with respect to fixed
p∗n,k (t) becomes

arg
K

max
k=1

Ln,k (ωn,k ) = Vβ2
ωn,k log2(1+ ap

∗
n,k )

p∗n,k
−Yn(t)ωn,kp∗n,k (22)

4) If k∗ = arg
K

max
k=1

Ln,k (ωn,k ), which means subcarrier k∗

can be assigned to user nwith power p∗n,k (t); Otherwise,

VOLUME 7, 2019 68661



A. Gao et al.: QoE-Oriented Scheduling Scheme for Energy-Efficient Computation Offloading

ωn,k∗ (t) = 0 and p∗n,k (t) is invalid, subcarrier k
∗ should

not be used by UAV n.
So, at every time slot t , the subcarier k∗ is assigned to UAV

n to get the maximum Ln,k (ωn,k ), where p∗n,k (t) is the opti-
mal solution for power allocation. EE&Diff-QoE algorithm
iterate all Ln,k (ωn,k ) and find the maximum, then the solution
of ωn,k (t) is formulated as

ωn,k (t) =

{
1, if k = k∗

0, otherwise
(23)

Given the above, detailed EE&Diff-QoE with combination
of both offloading rate control and energy-efficient resource
allocation is summarized in Algorithm 1. The complexity
mainly depends on the dichotomy searching for Equ.(21) in
step 1, so the overall time complexity of EE&Diff-QoE is
O(log2 K ).

Algorithm 1 EE&Diff-QoE Algorithm
Input: hn,k (t), µn,k (t) and constant Pn,max,wn,V
Output: ωn,k , pn,k ,Rn
Initialize: t ← 0,Q(t) = 0,Y (t) = 0;
while t ≤ T do

Q(t)← update according to Equ.(6);
Y (t)← update according to Equ.(9);
for n = 1 to N do

for k = 1 to K do
Solving Equ.(21) with respect to pn,k by
dichotomy searching when ωn,k = 1;
if 0.01 ≤ pn,k ≤ 0.05 then

p∗n,k = pn,k
end
else

p∗n,k = 0.035
end

end
end
for n = 1 to N do

Solving Equ.(22) ;
ωn,k ← update according to Equ.(23);

end
for n = 1 to N do

µn(t)← update according to Equ.(2);
Rn(t)← update according to Equ.(17);

end
t ← t + 1;

end

C. PERFORMANCE ANALYSIS
It is obvious that sn(t) is a function of G(t) =

{R(t),P(t),W (t)}, Where G(t) represents the strategy ele-
ments of EE&Diff-QoE algorithm. In additional, all the
physical quantiles related to the procedure of aerial offloading
are bounded in practical system, such as transmission power,
service rate, arriving rate and etc. Given channel condition

vector H(t), it is reasonable to assumed that all the mathe-
matical expectation of sn(t) is bounded by :

smin
≤ E{sn(G(t),H(t))} ≤ smax (24)

where smin and smax are finite constants related to G(t).
Lemma 2: There exist at least one solution for Problem (8)

to satisfy C1-C6, and the bound of Equ. (24) holds. Given
arbitrary small positive constant ε, for any δ > 0, there also
exit a stationary randomized algorithm that satisfies,

E{R∗n(t)− µ
∗
n(t)|G(t)} ≤ −ε (25)

E{Y ∗n (t)− Pn,max|G(t)} ≤ −δ (26)

E{s∗n(t)|G(t)} = sopt (27)

where R∗n(t), µ
∗
n(t) and s

∗
n(t) are the corresponding accepting

rate, transmission rate and user’s satisfaction values with any
alternative strategy solution G(t), sopt is theoretical optimal
of Problem (8).

Proof: A similar proof can be found in [26] pp. 92. �
Theorem 1: Supposing hn,k is i.i.d over time, for any given

V ≤ 0, if Q(0) ≥ 0 and Y (0) ≥ 0, the proposed EE&Diff-
QoE with problem of Equ.(8), has the following properties:

1) Queue stability: All queues at GBS, i.e. data queuesQn
and virtual power queues Yn are mean rate stable.

2) Satisfaction bound: The bound of time averaged user’s
satisfaction, i.e. the optimization objective of EE&Diff-
QoE satisfies:

lim
T→∞

1
T

T−1∑
t=1

E{sn(t)} ≤ sopt −
B
V

(28)

3) Average backlog bound: The time averaged backlog of
queue is bounded:

lim
T→∞

1
T

T−1∑
t=1

E{
N∑
n

Qn(t)}≤
B+V (smax−sopt )

ε
(29)

Proof: See Appendix C for the proof. �
Theorem 1 shows that if parameter V is sufficiently large,

i.e. B/V is arbitrary small, yielding sn(t) is arbitrarily closed
to the optimum. However, as V increases, the backlog bound
of queues at GBS is consequently growing linear with V
bounded by Equ.(29). In summary, pushing user’s satisfaction
close to the maximum value will sacrifice the queue backlog.
So in practise, the selection of parameter V should tradeoff
between satisfaction value and queue backlog. In Section IV-
C, simulation in Figure 6 also shows the same result.

IV. SIMULATION RESULTS
A. SIMULATION CONFIGURATION
In this section, the performance, as well as feasibility and
robustness of EE&Diff-QoE are estimated. There are N = 9
UAVs and K = 64 subcarriers in the system, and Pn,max =

2.5Watts for every UAV. The bandwidth of each subcarrier is
10kHz according to the existing 4G LTE system. The total
time of simulation is 128 slots, and each slot lasts 10ms.
To achieve aerial QoE-differentiation, we sort 9 UAVs into
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FIGURE 2. Results of EE&Diff-QoE with mobile UAVs at different time slot. (a) subcarrier allocation and power assignment. (b) energy
effeciency and offloading rate.

three groups, and weights of them are 2, 5, 10 respectively.
UAVs in the same group are of same priority weight, i.e.
w1 . . .w3 = 2;w4 . . .w6 = 5;w7 · · ·w9 = 10. In each group,
one UAV moves far away to the GBS, one stays still and one
approaches the GBS. In this situation, hn,k (t) will decline,
keep and increase. We select distance changing from 300m
to 400m, which implies that the maximum velocity of UAV
is up to 280km/h, and it is in according with most civilian
UAVs.

B. PERFORMANCE WITH TIME VARYING
Fig. 2 shows the results of simulation with mobile UAVs
at every 32 slots. Fig.2(a) shows the detailed subcarrier
allocation and power assignment, while Fig.2(b) shows the
corresponding energy efficiency in bit per Jowel (bit/J) and
offloading rate in kilobit per second (Kbps). The resource

allocation strategy in a sample slot results from a comprehen-
sive consideration of CSI, QSI, and the expectation of energy
efficiency. The phenomenons as follows can be seen from the
simulation.

1) In accord with the pre-setted weights of UAVs,
the offloading rate, as well as the energy efficiency,
are distinguished into three different groups. UAVs,
whosewn is larger, i.e. UAV 7, 8, 9, enjoy higher energy
efficiency and offloading rate.

2) Fig.2(a) reveals that EE&Diff-QoE offers a scheme to
transmit more data with less power consumption and
achieve a better offloading rate. Subcarriers with good
channel condition (SNR) could achieve higher rate with
lower transmission power. Consequently, they may be
assigned to high priority UAVs for better QoE. For
example, in Fig.2(a) at 96th slot, ‘‘Good’’ subcarriers
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FIGURE 3. Channel condition and queue backlog changes with mobile
UAVs at different time slot. (a) Channel Condition. (b) GBS Queue Backlog.
(c) UAV Average Offloading Rate.

16, 19, 31, 59 are assigned to UAV 7 with lower trans-
mission power ( less than 0.03mW, which is marked by
green grid).

3) As shown in Fig.2(a), the tendency can be roughly
observed that UAV 7, 8, 9 who possess more ‘‘Good’’
subcarriers can achieve a better offloading rate with
relatively lower transmission power. In other words,
the high-priority aerial applications or UAVs could use
more ‘‘Good’’ subcarriers, so that lower transmission
power can still lead to a high offloading rate.

4) As shown in Fig.2(b), although EE&Diff-QoE algo-
rithm provides heterogeneous QoE in aerial applica-
tion offloading, offloading rate is still affected by the
mobility of UAV. UAV 3, 6, 9 fly close to GBS, so the
corresponding offloading rate is getting larger, and
vice-versa for UAV 1,4, 7, which is because the mobil-
ity of UAVs affects channel condition/gain hn,k (t).

5) It should also be noticed that offloading rate increases
with time, which is because at the very beginning of
the simulation, queues at GBS are not fully padded.
As queues are fulfilled at 96 and 128 slots, GBS
is saturation. The output and input of queues get
equilibration.

Fig. 3 depicts the detailed channel condition (in Fig.3(a)),
queue backlog (in Fig.3(b)) and offloading rate (in Fig.3(c))
in a long term. The trend that UAVs’ mobility affects the
allocation strategy is shown again. UAVs moving far away
from GBS will be assigned less resource. On the contrary,
UAVs getting closer will acquire more power and subcarriers
to offload aerial mission. Some fluctuation appears in the
very beginning of the simulation, due to the initial zero state
of multi-queueing architecture. After that, the system will
become stable and reliable. In addition to the mobility, power
and subcarriers are still strictly assigned according to UAVs’
priority, which proves a good performance of heterogeneous
QoE support.

Fig. 4 and Fig. 5 depict the resource assignment and
CDF(Cumulative Distribution Function) of energy efficiency,
offloading rate and queue backlog in the condition of fixed
channel state, i.e. UAVs are hovering in the air. Comparing
with the condition that UAV moves, queue backlog is the
dominant factor that affects power allocation. Fig. 4 shows
that queues with longer length are tend to be transmitted at
a relatively higher power to make input and output balance.
Fig. 5 shows CDFs for each grouped UAVs according to their
priority, which proves again that EE&Diff-QoE can provide
heterogeneous QoE with relatively larger average offloading
rate, better energy efficiency and lower queue backlog for
high priority UAVs, such as UAV 7, 8, 9. In additional,
we also mark the corresponding mean µ and variance δ2 with
different colours in Fig. 5. To some extent, a relative smaller
variances over means also proves the robustness of EE&Diff-
QoE algorithm.

C. PERFORMANCE COMPARISON OF EE&DIFF-QoE
As aforementioned before, V is the parameter that trades
off the queue backlog and user’s satisfaction. In Fig.6, it is
observed that V effects UAV satisfaction value and the cor-
responding queue backlog on GBS, i.e. sacrificing the queue
backlog to enhance the satisfaction value, which is in accor-
dance with the conclusions in Equ.(28) and Equ.(29). When
V ≥ 500, the satisfaction value is nearly indistinguishable,
so 500 is selected as an optimal value for V in the simulation
in Sec. IV-B. Nevertheless, no matter what V is, the satisfac-
tion values of different UAVs and corresponding queue back-
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FIGURE 4. Resource assignment with fixed channel state.

FIGURE 5. Empirical CDF of energy efficiency, offloading rates and queue
backlog.

logs on GBS still show the differentiation in priorities, which
proves again that EE&Diff-QoE can provide heterogeneous
QoE.

The simulations above have proved that EE&Diff-QoE
algorithm can provide heterogeneous QoE support with the
jointed consideration of aerial application priority, channel
states and energy efficiency. In the following, we imple-
ments a performance comparison with other two typical kinds
of power allocation algorithm. The first one is a common
quality-aware power allocation scheme (PF Quality-Aware)
[14], which is actually based on proportional fairness (PF)
that makes the throughput ration constant. The second one
is aiming at maximize the instantaneous total throughput of
all users (Throughput-optimal), whose basic ideal is based on
weighted water-filling power algorithm. In the comparison,
the total UAV satisfaction (TotSat), i.e.

∑N
n=1 sn(t) is used

FIGURE 6. Effect of V on queue backlog and utility value.

FIGURE 7. Performance comparison of EE&Diff-QoE.

to evaluated the global performances [14], [19] of UAV-MCC
system. The following phenomenons show the advantages of
EE&Diff-QoE algorithm.

1) As shown in Fig.7, with the increasing of average
arriving aerial data at GBS, the total offloading rate are
enhanced.
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2) Throughput-optimal has the biggest total offloading
rate, but without the consideration of energy efficiency
and heterogeneous QoE leads to the worst TotSat in
three algorithms. It is because that larger transmission
power and better subcarriers may be arranged to lower
priority user, while the low service rate makes lower
priority user suffer a longer queueing time, which dete-
riorates the offloading rate.

3) On the contrary, PF Quality-Aware provides limited
consideration of QoE, so its TotSat is better than
water-filling based throughput-optimal.

4) EE&Diff-QoE has the biggest TotSat for its fully com-
bination of user ranking and queue stability. Also,
the total offloading rate in EE&Diff-QoE is closed to
that with water-filling based throughput-optima strat-
egy.

It is noticed that solely maximizing total offloading
rate (throughput) of GBS deteriorates the global perfor-
mances of TotSat, i.e. water-filling based throughput-optimal
scheme. And solely simply PF based QoE-aware scheme also
over-sacrifices the total offloading rate. The results above
demonstrate EE&Diff-QoE has the advantage of maximiz-
ing the aggregate UAVs’ satisfaction with little throughput
degradation.

V. CONCLUSION
This paper proposes a high energy-efficient resource allo-
cation scheme with QoE differentiation in UAV-MCC sys-
tem. This adaptive algorithm offers a scheduling scheme
with respect to mobility of UAVs as well as channel con-
dition. EE&Diff-QoE comes up with a new satisfaction
function with consideration of both actual performance expe-
rienced and energy efficiency. By taking Lyapunov optimiza-
tion, EE&Diff-QoE algorithm decouples the resource alloca-
tion optimization into two subproblems. The first optimized
object is QoE of aerial offloading, which is measured by the
time average throughput. The queues of aerial application
in GBS with high priority is allowed to be transmitted and
relayed to cloud at a higher speed. The other optimized
object is energy efficiency, which is achieved by selecting
the channels with good condition and being transmitted at
a lower power. In this way, EE&Diff-QoE can support an
energy-efficient offloading rate for mobile UAVs. Simulation
results confirm the reliable performance and feasibility of
EE&Diff-QoE in dynamic aerial channel condition and dif-
ferent transmission data rate.

APPENDIX A
PROOF OF LEMMA 1
Lemma 3: For any nonegative real number Q, b and A,

there holds that [max(Q− b, 0)+ A]2 ≤ Q2
+ b2 + A2 +

2Q(A− b) [26]
By taking usages of Lemma 3, there is

1L(t) , E{L(G(t + 1))− L(G(t))}

=
1
2

N∑
n=1

E{Q2
n(t + 1)− Q2

n(t)}

+
1
2

N∑
n=1

E{Y 2
n (t + 1)− Y 2

n (t)}

≤ B(t)+ E{
N∑
n=1

Qn(t)(Rn(t)− λn(t))

+

N∑
n=1

Yn(t)(Pn(t)− Pn,max)} (30)

where

B = E{
N∑
n

R2n(t)+ λ
2
n(t)

2
} + E{

N∑
n

P2n(t)+ P
2
n,max

2
}

Adding the penltay term of VE{sn(t)} to Equ.(30) proves
Equ.(13).

APPENDIX B
PROOF OF CONCAVITY OF RESOURCE ALLOCATION
SUBPROBLEM
By relaxing ωn,k to ω̃n,k ∈ [0, 1] as the subcarriers’
time sharing factor [34], the users are allowed to time-share
each subcarrier over a large number symbols. The objective
Equ. (18) in P2. can be reformulated as

max
ω̃nk (t),pn,k (t)

N∑
n=1

Qn(t)λn(t)+ Vβ2
ω̃n,k log2[1+

pn,k (t)hn,k (t)
ω̃n,kn0B

]∑K
k ω̃n,k (t)pn,k (t)

−

N∑
n=1

K∑
k=1

Yn(t)ω̃n,k (t)pn,k (t)

+

N∑
n=1

Yn(t)Pn,max

s.t. 0 ≤ ω̃n,k ≤ 1 ∀n, k, t (CC1)

0 ≤
N∑
n=1

ω̃n,k (t) ≤ 1, ∀n, t (CC2)

(C5)

Assuming that f (x) is concave, then its perspec-
tive function bf (x/b) is still concave [36]. Since the
function log2[1 +

pn,khn,k
n0 B

] is concave, its perspective

ω̃n,k log2[1+
pn,khn,k
ω̃n,kn0B

]/
∑K

k ω̃n,kpn,k is jointly concave with

respect to W̃ (t) = {ω̃n,k} and P(t).
∑K

k=1
∑N

n=1 ω̃n,kpn,k
is a linear function. As the result, the objective function
in the given optimization problem is jointly concave in W̃
and P.

In addtion, CC1, CC2 and C5 are all linear constrains,
therefore CC1, CC2 and C5 together construct a convex set.
Thus, it is a concave optimization problem.
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APPENDIX C
PROOF OF PERFORMANCE BOUND
Supposing s∗n(t) is a feasible solution of EE&Diff-QoE,
in accordance with Lemma 1, there is

1L(G(t))+ E{F[s∗n(t)]

≤ B+ E{
N∑
n=1

Qn(t)(R∗n(t)− λ
∗
n(t))}

+E{
N∑
n=1

Yn(t)(P∗n(t)− Pn,max)} − VE{s∗n(t)} (31)

Submitting Equ.(25),(26),(27) to Equ.(31), and taking δ→ 0,
yields that

1L(G(t))+E{F[s∗n(t)]}≤B−ε
N∑
n=1

E{Qn(t)}−VE{sopt} (32)

Using iterated expectation over each sampling time t ∈
{0, 1, . . . ,T − 1} yields

E{L(G(T ))} − E{L(G(0))} −
T−1∑
t=0

VE{s∗n(t)}

≤ T (B− Vsopt)− ε
T−1∑
t=0

N−1∑
n=0

E{Qn} (33)

• Submitting Equ.(24), as well as the definition of Lya-
punov function L(G(t)) in Equ. (10) into Equ.(33), there
is

E{
N∑
n=1

Y 2(T )}≤2TB+2VT (smax
−sopt)+2E{L(G(0))}

Dividing by T and taking a limits as T →∞ proves that

lim
T→∞

E{
∑N

n Y
2(T )}

T
= 0 (34)

Hence for every Y 2
n ≥ 0, there is

lim
T→∞

E{|Yn(T )|}

T
= 0 (35)

so every virtual power queue Yn is mean rate stable.
A similar proof can be applied for Qn to satisfy C4 in
Problem (8).

• Dividing Equ.(33) by TV , and for the fact that
E{L(G(T ))} ≥ 0 and Qn(t) ≥ 0, yields

lim
T→∞

1
T

T−1∑
T=1

E{s(t)}≥sopt−
B
V
−
E{L(G(0))}

TV
(36)

Taking the limits T →∞ proves Equ.(28).
• Similarly, rewrite Equ.(33), there is

ε

T−1∑
t=0

N∑
n

E{Qn} ≤ E{L(G(0))}

+

T−1∑
t=0

VE{s(t)} + T (B− Vsopt) (37)

Dividing by εT and taking T →∞, yields that

lim
T→∞

T−1∑
t=0

N∑
n

E{Qn(t)} ≤
B+ V (smax

− smin)
ε

which proves Equ.(29).
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