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ABSTRACT In this paper, a designated interleaved structure of constructing optimal frequency-hopping
sequence (FHS) sets with low hit zone (LHZ) is presented based on the Cartesian product. By the general
structure, we obtain infinitely many optimal LHZ FHS sets with new and flexible parameters by combining
the optimal LHZ FHS sets with one-coincidence sequence sets. Moreover, our constructions remove the
constraint requiring that the extension factor is co-prime with the length of the original FHSs. In this paper,
most of the extension constructions suffer from this constraint. As a result, our constructions allow great
flexibility of choosing parameters of the LHZ FHS sets for a given quasi-synchronization frequency-hopping
spread spectrum system.

INDEX TERMS Frequency hopping sequences, low hit zone, optimal Hamming correlation, extension
construction.

I. INTRODUCTION
In frequency-hopping multiple access (FHMA) communi-
cation systems, the signal of each user hop over the entire
transmission bandwidth in a pseudo random fashion. FHMA
communication systems are widely adopted in practice
[1], [2]. For example, many popular systems, such as military
communications [3], ultra wideband communications [4], 5G
communication systems [5], HetNets [6], and Bluetooth [7],
use FHMAmethods. In such systems each user is represented
by a sequence of hopping frequencies [8]. Simultaneous
transmission by any two users over the same frequency band
results in collisions of signals, and hence, it is very desirable
that such collisions over the same frequency band are min-
imized. Thus, the design of a frequency hopping sequence
(FHS) set with good property is an important problem.

Different from conventional FHS design, the design of
FHSs with low hit zone (LHZ) aims at making Hamming
correlation equal to a very low value within a correlation
zone [9]. The significance of LHZ FHS set is that, even there
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are relative delays between the transmitted FHSs, the number
of hits will be kept at a very low level between different
sequences as long as the relative delay does not exceed
certain limit (zone). There have been a number of optimal
FHS sets which satisfies Peng-Fan-Lee bound [11]. In 2010,
optimal LHZ FHS sets meeting Peng-Fan-Lee bound were
constructed firstly by Ma and Sun [12]. In 2012 and 2014,
we got some constructions of optimal LHZ FHS sets by
interleaving technique [13], [14]. In 2013, Chung et al.
introduced some constructions of optimal LHZ FHS sets
through Cartesian product [15]. In 2016, Han and Wang con-
structed sets of optimal LHZ FHSs with different parameters
[16], [17]. In 2017, Zhou et al. presented new constructions of
LHZ FHS sets via Cartesian product [18], and obtained two
constructions of optimal LHZ FHS sets based on the deci-
mated sequences of m-sequence [19]. In 2018, we presented
a new of optimal LHZ FHSs with large family size [20].

Throughout this paper, we use (N , v, λ;M ) to denote an
FHS set of M sequences of length N over a frequency slot
set of size v, with the maximum Hamming correlation λ,
use (N , v, λ;M;Z ) to denote an FHS set of M sequences
of length N over a frequency slot set of size v with the
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TABLE 1. Comparison of parameters for some optimal LHZ FHS sets.

maximumHamming correlation λ and low hit zone Z , and use
(n, v2;MC ) to denote an OC sequence set ofM sequences of
length N over a frequency slot set of size v. We compare the
parameters of the LHZ FHS sets in literature as summarized
in Table 1.

In this paper, we present an extension interleaved structure
of constructing optimal LHZ FHS sets based on Cartesian
product. Under the structure, we obtain infinitely many new
optimal LHZ FHS sets which increase the length and alphabet
size of the original LHZ FHS set by using flexible extension
factor. Compared with the existing results, our constructions
are with large family size and more flexible parameters.
As a result, our constructions allow a great flexibility of
choosing parameters of LHZ FHS sets for a given quasi-
synchronization FHMA communication system.

The rest of this paper is organized as follows. In Section 2,
we give some preliminaries to FHSs. In Section 3, we present
a general interleaved structure to construct optimal LHZ FHS
sets with flexible parameters based on Cartesian product.
In Section 4, we obtain the new classes of optimal LHZ
FHS set in which all the sequences are shift distinct. Finally,
we conclude the paper in Section 5.

II. PRELIMINARIES
Throughout this paper, the following symbols will be
used:

Zn: the ring of integers modulo n for a positive integer
n > 1;
< x >y: the least nonnegative residue of x modulo y for an

integer x and a positive integer y;
dze: the smallest integer greater than or equal to z.
Let F = {f1, f2, . . . , fv} be a frequency slot set with

size |F | = v, X be a set of M FHSs of length N . For
any two FHSs xi = (xi(0), xi(1), . . . , xi(N − 1)), xj =
(xj(0), xj(1), . . . , xj(N−1)) ∈ X , 0 ≤ i, j < M , the Hamming
correlation function Hxixj (τ ) of sequences xi and xj at time
delay τ is defined as follows:

Hxixj (τ ) =
N−1∑
t=0

h
(
xi(t), xj(〈t + τ 〉N )

)
, 0 ≤ τ < N , (1)

where h(a, b) = 1 if a = b, and h(a, b) = 0 otherwise, and
only positive time shifts are considered.

For any given FHS set X , the maximum Hamming auto-
correlation Ha(X ), the maximum Hamming crosscorrelation
Hc(X ) and the maximum Hamming correlation Hm(X ) are
defined as follows, respectively:

Ha(X ) = max
{
Hxixi (τ ) : xi ∈ X , 0 < τ < N

}
,

Hc(X ) = max
{
Hxixj (τ ) : xi, xj ∈ X , i 6= j, 0 ≤ τ < N

}
,

Hm(X ) = max {Ha(X ),Hc(X )}.

For simplicity, we denote λ = Hm(X ).
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In 2004, Peng and Fan [10] established the following lower
bound of an FHS set.
Lemma 1 (Peng-Fan bound): Let X be a set of M FHSs of

length N over a frequency slot set with size v, we have

λ ≥

⌈
(MN − v)N
(MN − 1)v

⌉
. (2)

For any FHS set X , let integer λ ≥ 0. Then the low hit zone
Z , the low hit zone autocorrelation Za and the low hit zone
crosscorrelation Zc of X are defined as follows, respectively:

Z = min {Za,Zc},

Za = max
{
T |Hxixi (τ ) ≤ λ : xi ∈ X , 0 < τ ≤ T

}
,

Zc = max
{
T |Hxixj (τ ) ≤ λ : xi, xj ∈ X , i 6= j, 0 ≤ τ ≤ T

}
.

Then the set X is said to be an FHS set with low hit zone Z .
In 2006, Peng et al. [11] established the following lower

bound of an LHZ FHS set.
Lemma 2 (Peng-Fan-Lee bound): Let X be a set of M

FHSs of length N over a frequency slot set with size v, and
let Z be the low hit zone of X with respect to constants λ.
Then for any position integer LH , 0 ≤ LH ≤ Z, we have

λ ≥

⌈
(MLH +M − v)N
(MLH +M − 1)v

⌉
. (3)

If the maximum Hamming correlation λ is the mini-
mum integer solution of inequality (3), then the correspond-
ing FHS set X is called an optimal (N , v, λ;M;Z ) LHZ
FHS set.

The one-coincidence (OC) sequence set [21] was firstly
proposed by Shaar and Davies in 1984.
Definition 1 [21]: A one-coincidence sequence set is a

set of nonrepeating sequences, for which the peak of the
Hamming crosscorrelation function equals one for any pair
of sequences belonging to the set.

Namely, the Hamming autocorrelation and crosscorrela-
tion of the OC sequences are respectively 0 and 1.
Lemma 3: Let X = {xi = (xi(0), xi(1), . . . , xi(N−1)), 0 ≤

i < M} be a sequence set of M FHSs of length N over
frequency slot set F = {f1, f2, . . . , fv}. For any fα ∈ F,
1 ≤ α ≤ v, the location of occurrences of fα within xi and X,

denoted by Nxi (fα) and NX (fα), can be written as

Nxi (fα) = {(i, a) : xi(a) = fα, 0 ≤ a < N },

NX (fα) =
M−1⋃
i=0

Nxi (fα).

Then, the maximum number of appearance of any fre-
quency slot fα ∈ F in set X, denoted by m(X ),can be written
as m(X ) = max {|NX (fα)| : fα ∈ F, 1 ≤ α ≤ v}.

III. AN EXTENSION INTERLEAVED STRUCTURE
OF LHZ FHS SET
In this section, we give an extension interleaved structure of
LHZ FHS set based on Cartesian product by combining some
known OC sequences with optimal LHZ FHS sets.

Let F1 = {f11, f12, . . . , f1 v1} be a frequency slot set
with size |F1| = v1. Choose a (N , v1,Hm(X );MX ;Z ) LHZ
FHS set X = {xi : 0 ≤ i < MX } over F1 with
xi = (xi(0), xi(1), . . . , xi(N − 1)). The maximum number
of appearance of any frequency slot fα ∈ F1 of set X
denote by m(X ).
Let F2 = {f21, f22, . . . , f2 v2} be a frequency slot set with

size |F2| = v2. Choose a (n, v2,Hm(C);MC ) FHS set C =
{ci : 0 ≤ i < MC } over F2 with ci = (ci(0), ci(1), . . . , ci(n−
1)) where MC > m(X ).

For any i, k1, 0 ≤ i < MX , 0 ≤ k1 < n, an n× N matrix is
formed by combining the sequence cωi(t2) with the FHS xi as
follows, uk1i , as shown at the bottom of this page, where for
any 0 ≤ t2 < N , ωi(t2) defines as follows:

ωi(t2) =
i−1∑
j=0

|Nxj (xi(t2))| + |{θ : xi(θ ) = xi(t2), 0 ≤ θ ≤ t2}|.

The above definition can ensure ωi(t2) 6= ωi(t2 + τ2) if
xi(t2) = xi(t2 + τ2) for any 0 ≤ τ2 < N . It is very important
property to prove the correlation of extended sequences later.

By reading the elements in uk1i row by row, we get an
extended FHS uk1i = (uk1i (0), u

k1
i (1), . . . , u

k1
i (nN − 1)) of

period nN over F = F1 × F2. Thus, we can obtain the
extended LHZ FHS set U = {uk1i : 0 ≤ i < MX , 0 ≤
k1 < n}, where the set X is called the original LHZ FHS set.

uk1i =



(
cωi(0)(k1), xi(0)

) (
cωi(1)(k1), xi(1)

)
. . .

(
cωi(N−1)(k1), xi(N − 1)

)
...

...
. . .

...(
cωi(0)(n− 1), xi(0)

) (
cωi(1)(n− 1), xi(1)

)
. . .

(
cωi(N−1)(n− 1), xi(N − 1)

)(
cωi(0)(0), xi(0)

) (
cωi(1)(0), xi(1)

)
. . .

(
cωi(N−1)(0), xi(N − 1)

)
...

...
. . .

...(
cωi(0)(k1 − 1), xi(0)

) (
cωi(1)(k1 − 1), xi(1)

)
. . .

(
cωi(N−1)(k1 − 1), xi(N − 1)

)



=


uk1i (0) uk1i (1) . . . uk1i (N − 1)
uk1i (N ) uk1i (N + 1) . . . uk1i (2N − 1)
...

...
. . .

...

uk1i ((n− 1)N ) uk1i ((n− 1)N + 1) . . . uk1i (nN − 1)


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For short, we write the extended FHS uk1i by using the inter-
leaving operator I as

uk1i = I
((
L(k1)

(
cωi(0)

)
, xi(0)

)
, . . . ,(
L(k1)

(
cωi(N−1)

)
, xi(N − 1)

))
,

where L is the (left cyclical) shift operator, i.e. L(2)(ai) =
(ai(2), ai(3), . . . , ai(N − 1), ai(0), ai(1)). By using the shift
operator L and interleaving operator I , the matrix representa-
tion of uk1i can be abbreviated.
For any j, k2, 0 ≤ j < MX , 0 ≤ k2 < n, another extended

FHS uk2j can be generated by combining cωj with xj as

uk2j = I
((
L(k2)

(
cωj(0)

)
, xj(0)

)
, . . . ,(
L(k2)

(
cωj(N−1)

)
, xj(N − 1)

))
.

Consider its cyclical shift version L(τ )(uk2j ), τ = Nτ1+ τ2,

0 ≤ τ1 < n, 0 ≤ τ2 < N . Obviously, L(τ )(uk2j ) is just another
extended FHS. Namely, we have

L(τ )(uk2j )

= I
(
L(k2+τ1)(cωj(τ2)), xj(τ2)), . . . , (L

(k2+τ1)(cωj(N−1)),

xj(N − 1)), (L(k2+τ1+1)(cωj(0)), xj(0)), . . . ,

(L(k2+τ1+1)(cωj(τ2−1)), xj(τ2 − 1))
)
.

Then, the Hamming correlation function H
u
k1
i u

k2
j
(τ ) between

the extended LHZ FHSs uk1i and uk2j at time delay τ becomes
the following from above formulas, i.e.,

H
u
k1
i u

k2
j
(τ )

=

N−τ2−1∑
t2=0

n−1∑
t1=0

h
((
cωi(t2)(k1 + t1), xi(t2)

)
,(

cωj(t2+τ2)(k2 + t1 + τ1), xj(t2 + τ2)
))

+

N−1∑
t2=N−τ2

n−1∑
t1=0

h
((
cωi(t2)(k1 + t1), xi(t2)

)
,(

cωj(t2+τ2)(k2 + t1 + τ1 + 1), xj(t2 + τ2)
))

=

N−τ2−1∑
t2=0

n−1∑
t1=0

h
(
cωi(t2)(k1 + t1), cωj(t2+τ2)(k2 + t1 + τ1)

)
· h
(
xi(t2), xj(t2 + τ2)

)
+

N−1∑
t2=N−τ2

n−1∑
t1=0

h
(
cωi(t2)(k1+t1), cωj(t2+τ2)(k2+t1+τ1+1)

)
· h
(
xi(t2), xj(t2 + τ2)

)
=

N−τ2−1∑
t2=0

Hcωi(t2),cωj(t2+τ2)
(k2+τ1 − k1) · h

(
xi(t2), xj(t2 + τ2)

)
+

N−1∑
t2=N−τ2

Hcωi(t2),cωj(t2+τ2)
(k2 + τ1 − k1 + 1)

· h
(
xi(t2), xj(t2 + τ2)

)
. (4)

Then, we will discuss the maximum Hamming correlation
of the FHS set U . For convenience and simplicity, let Hm(X )
be the maximumHamming correlation of FHS X within LHZ
Z , andH ′m(X ) denoted the maximumHamming correlation of
FHS X outside the low hit zone. Obviously,Hm(X ) ≤ H ′m(X ),
and H ′m(X ) 6= N where N is the length of FHS X .
Theorem 1: We can construct the LHZ FHS set U by

combining the (N , v1,Hm(X );MX ;Z ) LHZ FHS set X with
a (n, v2,Hm(C);MC ) FHS set C. For any LHZ FHS set u

k1
i

and uk2j ∈ U, 0 ≤ i, j < MX , 0 ≤ k1, k2 < n, the Hamming

correlation between uk1i and uk2j at time delay τ , τ = Nτ1 +
τ2, 0 ≤ τ1 < n, 0 ≤ τ2 < N can be discussed in the following
cases:

1) If 0 ≤ τ < Z, that is τ1 = 0, 0 ≤ τ2 < Z, then we have

H
u
k1
i u

k2
j
(τ ) ≤


nN , i = j, k1 = k2,τ2 = 0,
NHa(C), i = j, k1 6= k2, τ2 = 0,

Hc(C) · Hm(X ),
i = j, 0 < τ < Z ,
i 6= j, 0 ≤ τ < Z .

2) If Z ≤ τ < nN, that is 0 ≤ τ1 < n, 0 ≤ τ2 < N, then
we have

H
u
k1
i u

k2
j
(τ ) ≤



NHa(C), i = j, τ1 6≡ k1 − k2 mod n,
τ2 = 0,

nN , i = j, τ1 ≡ k1 − k2 mod n,
τ2 = 0,

Hc(C) · Hm(X ),
i = j, 1 ≤ τ2 < Z ,
i 6= j, 0 ≤ τ2 < Z ,

Hc(C) · H ′m(X ), Z ≤ τ2 < N .
Proof: Let 0 ≤ t1 < n, 0 ≤ t2 < N , τ = Nτ1 + τ2,

where 0 ≤ τ1 < n, 0 ≤ τ2 < N .
In order to discuss H

u
k1
i u

k2
j
(τ ), we divide the problem in

following cases:
Case 1). i = j, τ2 = 0.
In this case, it is obviously that the Hamming autocorre-

lation function of xi is h (xi(t2), xi(t2)) = 1 for any t2, 0 ≤
t2 < N . Thus, we can write the Hamming autocorrelation of
U from equation (4) as

H
u
k1
i u

k2
i
(τ ) =

N−1∑
t2=0

Hcωi(t2),cωi(t2)
(k2 + τ1 − k1) · 1.

Case1.1). If τ1 ≡ k1 − k2 mod n, then we have

H
u
k1
i u

k2
i
(τ ) ≤

N−1∑
t2=0

Hcωi(t2),cωi(t2)
(0) · 1 = nN . (5)

Case1.2). If τ1 6≡ k1−k2 mod n, we can get the Hamming
correlation between uk1i and uk2i at shif τ is

H
u
k1
i u

k2
i
(τ ) ≤ NHa(C). (6)

Case 2). i = j,τ2 6= 0.
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In this case, we can get the Hamming correlation ofU from
equation (4) as

H
u
k1
i u

k2
i
(τ )

=

N−τ2−1∑
t2=0

Hcωi(t2),cωi(t2+τ2)
(k2+τ1 − k1) · h (xi(t2), xi(t2+τ2))

+

N−1∑
t2=N−τ2

Hcωi(t2),cωi(t2+τ2)
(k2 + τ1 − k1 + 1)

· h (xi(t2), xi(t2 + τ2)) .

According to the definition of ω, we have ωi(t2) 6= ωi
(t2 + τ2) if xi(t2) = xi(t2 + τ2). Then, we have
Case 2.1). If 0 ≤ τ1 < n, 1 ≤ τ2 < Z , we can obtain that

H
u
k1
i u

k2
i
(τ ) ≤ Hc(C) · Ha(X ). (7)

Case 2.2).If 0 ≤ τ1 < n, Z ≤ τ2 < N , we can obtain

H
u
k1
i u

k2
i
(τ ) ≤ Hc(C) · H ′a(X ). (8)

Case 3). i 6= j.
In this case, we can get the Hamming correlation ofU from

equation (4) as

H
u
k1
i u

k2
j
(τ ) =

N−1∑
t2=0

Hc(C) · h
(
xi(t2), xj(t2 + τ2)

)
. (9)

The same as case 2), based on the definition of ω, we have
ωi(t2) 6= ωj(t2 + τ2) if xi(t2) = xj(t2 + τ2). Then, we have
Case 3.1). If 0 ≤ τ1 < n, 0 ≤ τ2 < Z , we can obtain that

H
u
k1
i u

k2
j
(τ ) ≤ Hc(C) · Hc(X ). (10)

Case 3.2). If 0 ≤ τ1 < n, Z ≤ τ2 < N , we can get

H
u
k1
i u

k2
j
(τ ) ≤ Hc(C) · H ′c(X ). (11)

Thus, the Hamming correlation of U at time delay τ ,
0 ≤ τ < nN have

H
u
k1
i u

k2
j
(τ )

≤



nN , i = j, τ1 ≡ k1 − k2 mod n, τ2 = 0,
NHa(C), i = j, τ1 6≡ k1 − k2 mod n, τ2 = 0,

Hc(C) · Hm(X ),
i = j, 0 ≤ τ1 < n, 1 ≤ τ2 < Z ,
i 6= j, 0 ≤ τ1 < n, 0 ≤ τ2 < Z ,

Hc(C) · H ′m(X ),
i = j, 0 ≤ τ1 < n,Z ≤ τ2 < N ,
i 6= j, 0 ≤ τ1 < n,Z ≤ τ2 < N .

Based on the above, we can get the following results:
1) If 0 ≤ τ < Z , that is τ1 = 0, 0 ≤ τ2 < Z , then we have

H
u
k1
i u

k2
j
(τ ) ≤


nN , i = j, k1 = k2,τ2 = 0,
NHa(C), i = j, k1 6= k2, τ2 = 0,

Hc(C) · Hm(X ),
i = j, 0 < τ < Z ,
i 6= j, 0 ≤ τ < Z .

2) If Z ≤ τ < N , that is τ1 = 0, Z ≤ τ2 < N , then we
have

H
u
k1
i u

k2
j
(τ ) ≤ Hc(C) · H ′m(X ).

3) If N ≤ τ < nN , that is 1 ≤ τ1 < n, 0 ≤ τ2 < N , then
we have

H
u
k1
i u

k2
j
(τ )≤



NHa(C), i = j, τ1 6≡ k1 − k2 mod n, τ2=0,
nN , i = j, τ1 ≡ k1 − k2 mod n, τ2 = 0,

Hc(C) · Hm(X ),
i = j, 1 ≤ τ2 < Z ,
i 6= j, 0 ≤ τ2 < Z ,

Hc(C) · H ′m(X ), Z ≤ τ2 < N .

In summary, this complete the proof of the Theorem 1. �
Corollary 1: We can construct the LHZ FHS set U by com-

bining the optimal (N , v1,Hm(X );MX ;Z ) LHZ FHS set X
with a (n, v2;MC ) OC FHS set C. The Hamming correlation
between uk1i and uk2j at time delay τ is

1) If 0 ≤ τ < Z, that is τ1 = 0, 0 ≤ τ2 < Z, then we have

H
u
k1
i u

k2
j
(τ ) ≤


nN , i = j, k1 = k2,τ2 = 0,
0, i = j, k1 6= k2, τ2 = 0,

Hm(X ),
i = j, 0 < τ < Z ,
i 6= j, 0 ≤ τ < Z .

2) If Z ≤ τ < nN, that is 0 ≤ τ1 < n, 0 ≤ τ2 < N, then
we have

H
u
k1
i u

k2
j
(τ ) ≤



0, i = j, τ1 6≡ k1 − k2 mod n, τ2 = 0,
nN , i = j, τ1 ≡ k1 − k2 mod n, τ2 = 0,

Hm(X ),
i = j, 1 ≤ τ2 < Z ,
i 6= j, 0 ≤ τ2 < Z ,

H ′m(X ), Z ≤ τ2 < N .
The design of FHSs with LHZ aims at making the number

of hits equal to a very low value within the LHZ. However,
in order to avoid the mutual interference increasing suddenly,
the number of hits should also be kept as low as possible when
the relative delays outside the LHZ. Thus, in the practical
system, it is very desirable that the LHZ FHS set with good
Hamming correlation in the LHZ and outside the LHZ. In the
above construction, some sequences in the proposed LHZ
FHS setU are the cyclical shift of the others. If the sequences
are the cyclically shift of each other, the number of hits will
equal to the length nN of sequence (full collision) at some
time slots outside the LHZ.

The sequence uk1i is the cyclical shift of uk2j only if i = j and
τ1 ≡ k1− k2 mod n with 0 ≤ i, j < MX , 0 ≤ k1, k2 < n. That
is because the any L(kδ)

(
cωi
)
, 0 ≤ δ < n column sequences

in the interleaved structure use the same shift kδ . A feasible
way is to get a suitable shift values to ensure that the column
sequences of U are not the cyclic shift of each other.
The definition of the inequivalent shift sequences [13] is

given as follows.
Definition 2: Any two shift sequences a = (a(0), a(1), . . . ,

a(l−1)), b = (b(0), b(1), . . . , b(l−1)) over Zn are said to be
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inequavalent if b(i)− a(i) = b(j)− a(j), for all 0 ≤ i 6= j < l
does not hold.

Without loss of generality, we can use shift sequences
e = (e(0), e(1), . . . , e(N − 1)) and g = (g(0), g(1), . . . ,
g(N − 1)) to express the shift value. Therefore, we can
obtain the cyclically distinct LHZ FHS set U by using the
inequivalent shift sequences.

IV. CONSTRUCTION OF CYCLICALLY
DISTINCT LHZ FHS SETS
In this section, we present optimal LHZ FHS set based on the
extension interleaved structure in Section 3. Moreover, all the
sequences in our new set are cyclically distinct.

Let F1 = {f11, f12, . . . , f1 v1} be a frequency slot set with
size |F1| = v1, and F2 = {f21, f22, . . . , f2 v2} be a frequency
slot set with size |F2| = v2. Our procedure of the extension
construction is described as follows.
Construction 1: Construction of Cyclically Distinct LHZ

FHS Sets with length nN .
Step 1: Select an optimal (N , v1,Hm(X );MX ;Z ) LHZ FHS

set X over F1, we have

X = {xi= (xi(0), xi(1), . . . , xi(N − 1)) : 0 ≤ i < MX }.

The maximum number of appearance of frequency slot
in X is m(X ).

Step 2: Select a (n, v2;MC ) OC sequence set C over F2,
satisfy MC > m(X ). For any 0 ≤ t2 < N, we have

ωi(t2) =
i−1∑
j=0

|Nxj (xi(t2))|

+|{θ : xi(θ ) = xi(t2), 0 ≤ θ ≤ t2}|.

Step 3: For 0 ≤ i < MX , generate a set Gi ={
gki : 0 ≤ k < n

}
with

gki =
(
gki (0), g

k
i (1), . . . , g

k
i (li − 1)

)
=
(
P0(k),P1(k), . . . ,Pli−1(k)

)
where

{
P0,P1, . . . ,Pli−1

}
are permutations over Zn,

such that all the sequences in Gi are pairwise inequiv-
alent in literature [13], and li can be written as

li = max {ωi(t2) : 0 ≤ t2 < N }

−min {ωi(t2) : 0 ≤ t2 < N } + 1.

Step 4: For 0 ≤ i < MX , we can obtain a shift sequence set
Ei =

{
eki : 0 ≤ k < n

}
over Zn with

eki =
(
eki (0), e

k
i (1), . . . , e

k
i (N − 1)

)
=

(
gki (ηi(0)), g

k
i (ηi(1)), . . . , g

k
i (ηi(N − 1))

)
where ηi(0) = 0, and for any j, 1 ≤ j < N, the function
ηi(j) denotes as follows:

ηi(j)=

{
ηi(j−θ ), ωi(j) = ωi(j−θ ), 0≤θ < j,
max {ηi(θ )}+1, ωi(j) 6= ωi(j−θ ), 0≤θ < j.

Step 5: We can construct the desired LHZ FHS set U ={
uki : 0 ≤ i < MX , 0 ≤ k < n

}
. Then, we have

uki = I
((
L(e

k
i (0))

(
cωi(0)

)
, xi(0)

)
, . . . ,(

L(e
k
i (N−1))

(
cωi(N−1)

)
, xi(N − 1)

))
.

Theorem 2: The proposed LHZ FHS set U constructed
by Construction 1 is an optimal (nN , v1v2,Hm(X ); nMX ;Z )
LHZ FHS set if

⌈
(MXZ+MX−v1)N
(MXZ+MX−1)v1

⌉
=

⌈
(nMXZ+nMX−v1v2)nN
(nMXZ+nMX−1)v1v2

⌉
.

Proof: From the Corollary 1, it is easily checked that
the proposed FHS set U in Construction 1 is a LHZ FHS set
with sequence length nN , frequency slot set size v1v2, and the
maximum Hamming correlation Hm(X ) within the LHZ Z .
Then wewill proof the Hamming correlation outside the LHZ
is less than nN .

Let 0 ≤ t1 < n, 0 ≤ t2 < N , 0 ≤ k1, k2 < n, τ = Nτ1+τ2,
where 0 ≤ τ1 < n, 0 ≤ τ2 < N . The case 1.1) in the proof of
Theorem 1 evolved into the following cases:

Case1.1). i = j, τ2 = 0, τ1 6= 0, and τ1 ≡ k1 − k2 mod n.
For any ε, 0 < ε < N, ε denotes the number of columns

in which the full collision occurs between the result sequence
matrices. Then, we can get the Hamming correlation function
of U as

H
u
k1
i u

k2
i
(τ ) ≤ H

u
k1
i u

k2
i
(τ ) ≤

ε−1∑
σ=0

Hcωi(t2)cωi(t2)
(0) · 1

+

N−ε−1∑
σ=0

Hcωi(t2)cωi(t2)
(ek2i (t2)− e

k1
i (t2)+τ1)·1.

According to the inequivalent nature of the shift sequence
ek1i and the shift sequence ek2i , we can get ek2i (t2)− e

k1
i (t2)+

τ1 6= 0 mod n. Therefore, the Hamming correlation function
of U is

H
u
k1
i u

k2
i
(τ ) ≤ εn+ Ha(C) · (N − ε) = εn. (12)

Case1.2). i = j, τ2 = 0, τ1 6≡ k1 − k2 mod n.
We can get the Hamming correlation between uk1i and uk2i

at shif τ is the same as case 1.2) in the proof of Theorem 1.
According to the above situation and combining with the

proof of Theorem 1, we can get the Hamming correlation
value of the LHZ FHS set U at time delay Z ≤ τ < nN ,
τ = Nτ1 + τ2, 0 ≤ τ1 < n, 0 ≤ τ2 < Z is

H
u
k1
i u

k2
i
(τ )≤


εn, i = j, τ1 ≡ k1−k2 mod n,τ2 = 0,
0, i = j, τ1 6≡ k1−k2 mod n, τ2 = 0,

Hm(X ),
i = j, 0 < τ < Z ,
i 6= j, 0 ≤ τ < Z .

Thus, we can obtain the proposed LHZ FHS setU with size
nMX by using the inequivalent shift sequence setGi with size
n in [13]. The maximum Hamming correlation within low hit
zone Z is Hm(U ) = Hm(X ), and the FHSs of the set U will
not full hit outside the LHZ.
Then, we will prove the optimality of the LHZ FHS set U .

The Hamming correlation of LHZ FHS set U within LHZ is
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TABLE 2. The Extended LHZ FHS Set from an Original (N, v, λ; M; Z )-LHZ FHS Set X by Construction 1.

the same with the original LHZ FHS set X . As the original
set X is an optimal (N , v1,Hm(X );M;Z ) LHZ FHS set that
satisfy Peng-Fan-Lee bound, we can obtain that the Hamming
correlation of purposed FHS set U within LHZ Z is

Hm(U ) = Hm(X ) =
⌈
(MXZ +MX − v1)N
(MXZ +MX − 1)v1

⌉
.

According to the Peng-Fan-Lee bound, the optimal Hamming
correlation of FHS set U should be

Hmo(U ) =
⌈
(nMXZ + nMX − v1v2)nN
(nMXZ + nMX − 1)v1v2

⌉
.

Therefore, the Hamming correlation Hm(U ) = Hm(X ) =
Hmo(U ) of LHZ FHS set U within LHZ Z is optimal if⌈
(nMXZ + nMX − v1v2)nN
(nMXZ + nMX − 1)v1v2

⌉
=

⌈
(MXZ +MX − v1)N
(MXZ +MX − 1)v1

⌉
.

In summary, the extended LHZ FHS set U is an optimal
(nN , v1v2,Hm(X ); nMX ;Z ) LHZ FHS set. �

If the original set X is a (N , v1,Hm(X );MX ) FHS set,
we can obtain the following corollary.
Corollary 2: Choose the (N , v1,Hm(X );MX ) FHS set as

original set in Construction 1, we can get an optimal
(nN , v1v2,Hm(X ); nMX ;N ) LHZ FHS set U.
Remark 1: It should be noted that our above construction

remove the constraint requiring that the extension factor is
co-prime with the length of original FHSs. The extension
constructions in [12], [13], [15], [17], [18] all suffer from
this constraint. Moreover, the LHZ FHS set constructed by
Construction 1 is optimal and cyclically distinct.

By using the inequivalent shift set, LHZ FHS set can keep
excellent properties both in and outside the LHZ. The relax-
ation of conditions provides more flexibility for the choice of
shift sequences and further leads to more parameters of LHZ
FHS sets.

Based on the above construction, we can obtain infinitely
many optimal LHZ FHS set with large family size by choos-
ing any optimal (N , v, λ;M;Z ) LHZ FHS set X and OC
sequence sets C with different parameters. Let the maximum
number of appearance of any frequency slot in set X is

m(X ). Then we can obtain the following corollaries by choos-
ing some OC sequence sets in literature [16]–[22]. In the
following corollaries, let p be an odd prime, and q be the
power of p.
Corollary 3: Choose a (q − 1, q; q) OC sequence set

C1 in [21] where q > m(X ). We can obtain an optimal
((q − 1)N , qv, λ; (q − 1)M;Z ) LHZ FHS set over Zq × F1
if
⌈
((q−1)MZ+(q−1)M−qv)(q−1)N

((q−1)MZ+(q−1)M−1)qv

⌉
=

⌈
(MZ+M−v)N
(MZ+M−1)v

⌉
.

Corollary 4: Choose a (p, p; p − 1) OC sequence set C2
in [21], [25] where p > m(X ) + 1. We can obtain an
optimal (pN , pv, λ; pM;Z ) LHZ FHS set over Zp × F1,

if
⌈
(MZ+M−v)pN
(pMZ+pM−1)v

⌉
=

⌈
(MZ+M−v)N
(MZ+M−1)v

⌉
.

Corollary 5: Choose a (n− 2d − 1, n; n) OC sequence set
C3 in [22] where n, d are positive integers with 2 - n, n >
m(X ) and d ≤

√
4n+1−1

2 . We can obtain an optimal ((n−2d−
1)N , nv, λ; (n − 2d − 1)M;Z ) LHZ FHS set over Zn × F1,
if
⌈
((n−2d−1)MZ+(n−2d−1)M−nv)(n−2d−1)N

((n−2d−1)MZ+(n−2d−1)M−1)nv

⌉
=

⌈
(MZ+M−v)N
(MZ+M−1)v

⌉
.

Corollary 6: Choose a (l, q; q q−1l ) OC sequence set C4

in [23] where q q−1l > m(X ), q = el + 1 for any 0 < e,
2 < l. We can obtain an optimal (lN , qv, λ; lM;Z ) LHZ FHS
set over Zq × F1, if

⌈
(lMZ+lM−qv)lN
(lMZ+lM−1)qv

⌉
=

⌈
(MZ+M−v)N
(MZ+M−1)v

⌉
.

Corollary 7: Choose a ((n−1)n1, nn1; n)OC sequence set
C5 in [24] where n1 − 1 > n > m(X ) for positive integers
n and n1 with gcd(n − 1, n1) = 1. We can obtain an optimal
((n− 1)n1N , nn1v, λ; (n− 1)n1M;Z ) LHZ FHS set over the
alphabet of size nn1v, if

⌈
((n−1)MZ+(n−1)M−nv)(n−1)n1N
((n−1)n1MZ+(n−1)n1M−1)nv

⌉
=⌈

(MZ+M−v)N
(MZ+M−1)v

⌉
.

Corollary 8: Choose a (pq1, pq1; p− 1) OC sequence set
C6 in [26] where p > m(X ) + 1, p1 is odd prime with
p1 > p, q1 is the power of p1. We can obtain an optimal
(pq1N , pq1v, λ; pq1M;Z ) LHZ FHS set over the alphabet of
size pq1v, if

⌈
(MZ+M−v)pq1N

(pq1MZ+pq1M−1)v

⌉
=

⌈
(MZ+M−v)N
(MZ+M−1)v

⌉
.

Remark 2: Suppose the original LHZ FHS set X with
parameters (N , v, λ;M;Z ), we can obtain infinitely opti-
mal extended LHZ FHS sets with new parameters by using
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FIGURE 1. The maximum Hamming correlation Hm(U) = 2 of U within low hit zone Z = 6.

different OC sequence set. We list some parameters of the
new LHZ FHS sets in Table 2. By choosing the optimal
(N , v, λ;M;Z ) LHZ FHS set X with specific parameters,
we can obtain infinitely many new optimal LHZ FHS sets with
flexible parameters, we omit it here.

We now illustrate the Construction 1 by the following
example.
Example 1:
Step 1: We select an optimal (11, 6, 2; 3; 6) LHZ FHS set

X = {xi : 0 ≤ i < 3} over Z6, such that

x0 = (5, 4, 1, 3, 2, 0, 0, 2, 3, 1, 4),

x1 = (3, 2, 5, 1, 0, 4, 4, 0, 1, 5, 2),

x2 = (1, 0, 3, 5, 4, 2, 2, 4, 5, 3, 0).

So, we have m(X ) = 6.
Step 2: Select a (13, 13; 12) OC sequence set of C = {cj :

0 ≤ j < 12} over Z13, where

c0 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),

c1 = (0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11),
...

c11 = (0, 7, 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6).

For any 0 ≤ i < 3, 0 ≤ t2 < 11, a special expression of
ω = {ωi : 0 ≤ i < 3} can be given by

ω0 = (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2),

ω1 = (3, 3, 2, 3, 3, 3, 4, 4, 4, 3, 4),

ω2 = (5, 5, 4, 4, 5, 5, 6, 6, 5, 5, 6).

And l0 = 2, l1 = 3, l2 = 3.

Step 3: Choose a sequence set of G0 = {gk0 =

(gk0(0), g
k
0(1)) : 0 ≤ k < 13}, we have

g00 = (0, 0), g10 = (1, 2), . . . , g120 = (12, 11).

For any 1 ≤ i < 3, choose a set of Gi = {gki =
(gki (0), g

k
i (1), g

k
i (2) : 0 ≤ k < 13} as follows:

g0i = (0, 0, 0), g1i = (1, 2, 3), . . . , g12i = (12, 11, 10).

Step 4: For any 0 ≤ i < 3, a shift sequence set of Ei =
{eki = (eki (0), e

k
i (1), . . . , e

k
i (10)) : 0 ≤ k < 13} can be given

by

e00 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
e10 = (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2),

...

e120 = (12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11),
e01 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

...

e121 = (12, 12, 11, 12, 12, 12, 10, 10, 10, 12, 10),
e02 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

...

e122 = (12, 12, 11, 11, 12, 12, 10, 10, 12, 12, 10).

Step 5: We can construct the LHZ FHS set U = {uki : 0 ≤
i < 3, 0 ≤ k < 13} by the Construction 1.

u00 = ((0, 5), (0, 4), (0, 1), (0, 3), (0, 2), (0, 0), (0, 0),

(0, 2), (0, 3), . . . ,
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(12, 3), (12, 2), (12, 0), (11, 0), (11, 2), (11, 3),

(11, 1), (11, 4)),
...

u120 = ((12, 5), (12, 4), (12, 1), (12, 3), (12, 2), (12, 0),

(9, 0), (9, 2), . . . ,

(11, 4), (11, 1), (11, 3), (11, 2), (11, 0), (7, 0),

(7, 2), (7, 3), (7, 1)),

u01 = ((0, 3), (0, 2), (0, 5), (0, 1), (0, 0), (0, 4), (0, 4),

(0, 0), (0, 1), . . . ,

(9, 2), (11, 5), (9, 1), (9, 0), (9, 4), (5, 4), (5, 0),

(5, 1), (9, 5), (5, 2)),
...

u121 = ((9, 3), (9, 2), (9, 5), (9, 1), (9, 0), (9, 4), (2, 4),

(2, 0), (2, 1), . . . ,

(5, 2), (7, 5), (5, 1), (5, 0), (5, 4), (7, 4), (7, 0),

(7, 1), (5, 5), (7, 2)),

u02 = ((0, 1), (0, 0), (0, 3), (0, 5), (0, 4), (0, 2), (0, 2),

(0, 4), (0, 5), . . . ,

(5, 3), (5, 5), (10, 4), (10, 2), (7, 2), (7, 4),

(10, 5), (10, 3), (7, 0)),
...

u122 = ((10, 1), (10, 0), (10, 3), (10, 5), (10, 4),

(10, 2), (8, 2), (8, 4), . . . ,

(7, 0), (2, 3), (2, 5), (7, 4), (7, 2), (2, 2), (2, 4),

(7, 5), (7, 3), (2, 0)).

Then, the maximum Hamming autocorrelation and cross-
correlation of U can be seen in Figure 1.
It can be verified that the maximum Hamming correlation

Hm(U ) = 2 for the time delay τ in the low hit zone Z = 6.
Thus, the set U is an optimal (143, 78, 2; 39; 6) LHZ FHS set,
and all the FHSs in U are cyclically distinct.

V. CONCLUSIONS
In this paper, we present a general interleaved structure
of constructing optimal LHZ FHS sets based on Cartesian
product. Under the structure, we obtain infinitely many new
optimal LHZ FHS sets by combining optimal LHZ FHS sets
with some OC FHS sets. Compared with previous extension
methods, our constructions remove the constraint requiring
that the extension factor is co-prime with the length of orig-
inal FHSs and get new flexible parameters(see Table 1 and
Table 2). By using different know optimal (N , v, λ;M;Z )
LHZ FHS set and OC sequence set, we can increase the
length and alphabet size of the original LHZ FHS set by
using flexible extension factor, but preserve the maximum
Hamming correlation. We just list some of this results in this
paper. As a result, our constructions allow a great flexibility

of choosing parameters of LHZ FHS sets for a given quasi-
synchronization frequency-hopping spread spectrum system.
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