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ABSTRACT This paper analyses the impact of parametric uncertainties of a mobile robot kinematic model
on velocity and pose estimation, providing models and quantifiable knowledge about them. Most works
neglect how the uncertainty regarding the robot’s construction aspects (such as wheels radii, the distance
between them, and the robot’s center of mass) affects both velocities and pose estimation. To help readers
understand the influence of such parametric uncertainties, we performed experiments in a simulator and
used the collected data on the proposed models. The paper also analyses how the magnitude of velocities
considered by the controllers and the followed path can decrease or increase the impact of the parametric
uncertainties. The proposed models and presented analysis help understanding the influence (isolated or
simultaneous) of different sources of uncertainty in the robot’s velocities and pose estimation. This knowl-
edge can be applied to estimate uncertainties for localization methods based on data fusion, complementing
or even avoiding the experimental procedures. Also, the development of controllers, robot simulators and
new methodologies for parameters’ calibration and the design and construction of new robots can also profit
from the results presented in this paper.

INDEX TERMS Mobile robots, pose estimation, robot kinematics, uncertainty, velocity measurements.

I. INTRODUCTION
In mobile robots applications, robots must move through a
workspace in order to explore it, generate a map, or reach
specific places, where they will execute some task (clean
the floor, move an obstacle, get a tool, etc.). Among other
issues, the problem of moving a robot through the workspace
involves robot localization and control [1].

In the last decades, several methods to estimate robots posi-
tion have been proposed. Most works are based on measuring
or calculating the linear and angular velocities of the robot.
Integrating these velocities, the robot can estimate its own
position.

Due to its simplicity and low cost [2], the odometer is still
widely used to calculate the velocity of robots. To do so,
odometers can be attached to the wheels (or motors) in order
to measure their angular velocities. Based on these velocities
and the kinematic model of the robot, its angular and linear
velocities can be calculated [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Nagarajan Raghavan.

Applications that involve robot localization [4]–[10] often
use data fusion techniques to merge information from odome-
ters and other sensors, decreasing the error in pose estimation.
In most works, the authors run tests with the robot to estimate
the uncertainty propagated by the sensors to position and
orientation.

There are several methods [11]–[16] based on experimen-
tal setups that can be used to estimate position uncertainty.
These experimental evaluations of the uncertainties usually
require many trials and, sometimes, another localization sys-
tem to estimate the robot position.Moreover, they cannot sep-
arate the influence of the robotic system from the influence
of its interaction with the environment.

Other works [17]–[20] address the problem of how the
uncertainties in wheels velocities and robot model affects
pose estimation. However, even these works usually rely on
experimental analysis, instead of an analytical one. Thus,
to best of our knowledge, the area lacks formal models relat-
ing the uncertainties in the robot structure with position and
orientation uncertainties.

Besides the localization problem, robot control can also
profit from a better understanding about the impact of errors
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in the robot model on its motion. The basic idea of a controller
is to calculate, based on the robot model, current position
and destination, the set-points of the wheels velocities. Thus,
by considering the uncertainty models, one can understand
better how the difference between the set-points and the
executed velocities can affect the robot displacement. Such
knowledge can help designing better controllers and robots
or, at least, quantify the limitations of an existent one.

Moreover, several works [21]–[24] rely on simulators to
evaluate or design controllers for robots. Using simulators,
researchers can reduce significantly the cost and time nec-
essary to develop robotic systems. However, the difference
between real robots and the models used by simulators,
known as reality gap [25], can cause divergences between
the performance of simulated and real systems. In areas like
evolutionary robotics, the reality gap can make evolved con-
trollers inefficient or decrease their performance [26].

Many authors [25], [27], [28] address the reality gap prob-
lem by adding noise to the robot’s data. The main idea is
to obtain solutions (evolved controllers, for example) robust
enough to variations in the model. In this context, modeling
the influence of the robot structure on its motion can also help
decreasing reality gap.

This paper investigates how errors in the robot’s kinematic
model affects angular and linear velocities as well as the
displacement of the robot. Most works propose methods and
strategies to cope with odometry errors in specific problems
(e.g. robot localization and control) or experimental analysis
to estimate pose uncertainty regardless of its sources. Our
objective is to define a relation between uncertainties (or
variations) in different parts of the model, such as wheels
radius, distance between wheels and center of mass, and the
uncertainty in the robot’s velocity, position and orientation.

The proposed models and analysis performed in this paper
help to understand the impact (isolated or simultaneous)
of different sources of uncertainty in the robot’s velocities
and pose estimation. This knowledge can be applied on the
development of localization systems, for example to estimate
uncertainties in robot position due to odometry or another
method based on wheels velocities. Moreover, they can be
used to design motion controllers and robots more robust
to parametric uncertainties and to develop better simulators,
in order to decrease reality gap.

This paper is organized as follows. Section II presents the
related works and section III the development of new uncer-
tainty models for angular and linear velocities and robot’s
position and orientation. In section IV, we present several
experiments whose results validate the obtained models and
help the readers to understand the impact of different aspect
in velocity and pose uncertainties. Finally, section V presents
the conclusions about the work.

II. RELATED WORK
Odometry is widely used to estimate robot’s position and
orientation because it can conciliate low cost, good accu-
racy and high sampling rates [4]–[10]. However, as odometry

errors are integrated over time, pose estimation becomes less
accurate as the robot moves through the workspace.

In order to reduce pose uncertainty, some authors have
proposed different methods to cope with odometry errors.
In early works, most authors focused in developing bet-
ter methods to measuring wheel’s velocity [3], [30]–[32].
By decreasing the wheels velocities uncertainty, the position
and orientation uncertainties also decrease.

Most robotics applications, such as mapping and explo-
ration, improve pose estimation accuracy by merging data
from different sensors. To do so, authors usually need mod-
els relating position and orientation uncertainties with each
sensor’s accuracy.

Works that address this issue concentrate on two aspects:
development of new methodologies for parameters’ calibra-
tion and uncertainty estimation or development of bettermod-
els for the robot. Next, we present some of these works.

A. CALIBRATION OF ROBOT’S PARAMETERS
The robot’s pose error, as any type of error, can be separated in
two parts: systematic and non-systematic. Systematic errors
can be viewed as biases in measurements and, hence, can
be corrected. On the other hand, non-systematic errors are
random. The basic idea ofmost odometry calibrationmethods
is to estimate the systematic errors in parameters used to
calculate the robot’s velocity and position.

In [11], [33], the authors present one of the first works
on odometry calibration. Specifically, the authors pro-
pose a method to identify the systematic errors in the
wheels diameter and wheelbase (distance between wheels).
To do so, the method executes the experimental proce-
dure UMBmark [34], which consists in performing a set of
well-defined experimental runs in a 4×4 m square. Then,
the collected data (robot’s absolute and estimated positions)
are used in two equations proposed by the authors to obtain
the ‘‘actual’’ values of wheels’ diameter and wheelbase.
These values substitute the nominal ones in equations used
to calculate the robot linear and angular velocities.

Abbas et al. [12] propose a calibration method similar
to [33]. However, instead of using UMBmark, the authors
propose the execution of a circular path in clockwise and
counter-clockwise directions. Then, equations similar those
proposed in [33] are used to calculate the wheels’ diameter
and wheelbase.

A simple calibration method is presented in [13]. In this
work, the authors propose a method that uses data collected
in two simple experiments: a straight path of 5 meters and a
180Âř turn in place motion. Based on the robot’s absolute and
estimated positions, collected during the trials, two param-
eters are calculated: orientation and distance compensation
factors. These factors are added to compensate the angular
and linear displacements, respectively. To calculate both fac-
tors, the authors use an optimization package of Matlab.

In [35], [36], the authors propose an error model for a syn-
chro drive robot. Although they describe several sources of
odometry errors, such as different wheels radii and difference
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between center of mass and center of wheels, the authors
assume that these sources are negligible and concentrate on
the wheels misalignment. However, this assumption has no
formal basis, relying only on the experience of the authors.
In addition, the error model considers just the systematic
errors, being used to calibrate the robot and obtain a com-
pensating factor for the errors.

Other works [14], [15], [37]–[39] propose methods con-
sidering different types of motions and sets of equations in
order to make the calibration experiments faster or easier to
run. However, the general idea is similar to the ones discussed
above.

B. DEVELOPMENT OF ACCURATE ROBOT MODELS
Other methods focus on estimating non-systematic errors,
since they cannot be corrected. To do so, authors assume
that the systematic errors are already corrected and, based
on the robot kinematics model, propose methods to estimate
the uncertainty in robot’s pose. Data fusion methods usually
require such uncertainties estimation to merge data obtained
from different sensors and improve pose accuracy.

Chenavier and Crowley [40] presented one of the first
works on odometry error modeling for robot’s pose estima-
tion. They consider that, at each iteration, the robot posi-
tion and orientation are calculated based on their previous
values, the linear and angular displacements and sampling
interval. Based on the robot’s position and orientation equa-
tion, the authors proposed a method to calculate a covari-
ance matrix that describes its pose uncertainty. However,
the authors consider that linear and angular displacements are
uncorrelated.

In [17], the authors propose an odometry system that can
estimate the robot position with high accuracy. To do so,
they use the scheme presented in [11], [33] to calibrate the
systematic errors and propose a model that considers the
error’s propagation at each step. The main contribution is that
the model considers that errors in x and y displacements are
correlated with the previous position estimation. However,
as in [40], the authors do not present an analysis about the
influence of the model parameters in the error.

A similar method is presented by Yang et al. [41]. In addi-
tion to themodel, Yang et al. present a method for compensat-
ing slippage due to differences on thewheels radii (systematic
error). Several experiments with real robots are also presented
to evaluate the localization method in SLAM applications.

Korayem et al. [18] present an analysis of the impact of dif-
ferent parameters in robot’s pose error. To do so, the authors
ran a set of experiments with a Mrl mobile robot, which is a
triangular robot with omni-directional wheels. In the experi-
ments, the authors consider a straight line path with different
lengths and different linear velocities, robot’s orientation,
type of wheels, etc. However, other important parameters
of the robot’s kinematics model, such as wheels’ radii and
wheelbase, are not addressed. In addition, the analysis is
entirely experimental. Since no general formulas are pro-
posed, the results cannot be applied to robots with different

configurations. Also, they cannot separate the influence of the
environment.

In [42], Korayem et al. execute the UMBmark experimen-
tal procedure to evaluate the impact of differences in the
wheels radii, encoder resolution and wheelbase in position
error. However, the analysis are too simple, just comparing
the pose error before and after calibration for a particular
robot.

In [20], the authors investigate the influence of several
parameters, namely weight, linear velocity, wheel perimeter
and tire width, on odometry error. To do so, authors consider
that the robot drives a 2 m long straight path and define the
odometry error as the variation in robot orientation. Response
surface methodology is used to estimate the odometry error,
which is compared with experimental results. The authors
do not present any error models (kinematics or dynamics).
Also, they do not relate the error in the parameters with pose
error. Instead, they use optimization methods to find the set
of parameters values that minimizes orientation error.

Martinelli et al. [19], [43] propose models for both sys-
tematic and non-systematic errors. They also consider that
the robot has other sensors, such as laser range finder. The
main contribution is a method based on the error models
and data fusion techniques to calibrate the parameters in the
robot’s models, as well as estimate pose uncertainty due to
non-systematic errors.

C. OTHER APPROACHES
Some works, as [10], [17], [44], use information from addi-
tional encoders or encoders coupled in freewheels to decrease
pose uncertainty. In [16], odometry uncertainty in car-like
mobile robot is investigated.

Other works, such as [45]–[47], propose navigation con-
trollers that can cope with errors in the kinematics and
dynamics models. However, these works do not reduce pose
uncertainty. Instead, they try to compensate the model uncer-
tainties in order to follow a path as best as possible.

Rekleitis et al. [48], [49] propose the use of multi-robots
systems to decrease odometry error in localization. To do
so, each robot use sensors to estimate the position of the
others, share this information among themselves and use it
to improve pose estimation. Similar works are also presented
in [50]–[52].

III. UNCERTAINTIES ANALYSIS
When modeling a robot, several aspects are simplified in
order to reduce the complexity of the model and its analysis.
However, the accuracy of simulations and analysis performed
using the model depends on its capability to reproduce the
behavior of the real robot. Next, we present the model of
an ideal differential drive robot. Then, we analyze how the
existence of errors and uncertainties in the robot model can
increase the error in velocity, position and orientation of the
robot.

A differential drive robot has two wheels, with the same
radius, placed in a way that the center of the wheels axle

69072 VOLUME 7, 2019



J. G. N. d. Carvalho Filho et al.: Impact of Parametric Uncertainties on Mobile Robots Velocities

FIGURE 1. Ideal differential drive robot and its relative and global coordinates. (a) Ideal differential drive robot. (b) Relative
and global coordinates.

coincides with the robot’s center of mass. In addition, each
wheel is driven by a different motor. Fig. 1 presents the model
of a differential drive robot.

In Fig. 1a, P corresponds to both the center of mass of
the robot and the middle of the wheels axle. v and ω are
the linear and angular velocities of the robot. VL and VR
correspond to the linear velocities of the left and right wheels,
respectively. In turn, Fig. 1b presents the relationship between
the global reference frame, (XI ,YI ), and the robot’s local
reference frame, (XR,YR).
Let ξ̇R = [ẊR ẎR θ̇R]T and ξ̇I = [ẊI ẎI θ̇I ]T be the vectors

with the robot’s velocities in its own reference frame and in
the global one, respectively. There is a rotation matrix R(θ )
such that ξ̇R = R(θ)ξ̇I . R(θ ) is presented in equation (1).

R(θ) =

 cos(θ ) sin(θ) 0
− sin(θ ) cos(θ ) 0

0 0 1

 (1)

Due to the restriction on lateral motion, imposed by the
wheels, ξ̇R can be defined by:

ξ̇R
ideal
=

 ẊRẎR
θ̇R

 =
 v
0
ω

 (2)

Based on the model presented in Fig. 1a, v and ω are
defined as:

v =
VR + VL

2
= r

ϕ̇R + ϕ̇L

2

ω =
VR − VL

2l
= r

ϕ̇R − ϕ̇L

2l
(3)

Let r be the radius of both wheels and ϕ̇L and ϕ̇R be the
angular velocities of the left and right wheels, respectively.
ξ̇R, for the ideal differential drive robot, can be defined as:

ξ̇R
ideal
=

1
2l

 l(ϕ̇R + ϕ̇L)r0
(ϕ̇R − ϕ̇L)r

 (4)

Therefore, ξ̇I
ideal is given by:

ξ̇I
ideal
=

1
2l

 l(ϕ̇R + ϕ̇L)r cos(θ)l(ϕ̇R + ϕ̇L)r sin(θ)
(ϕ̇R − ϕ̇L)r

 (5)

A. UNCERTAINTY IN THE CENTER OF MASS
In a real robot, there is an uncertainty associatedwith the posi-
tion of the center of mass. So, using a model that considers it
as the point in the middle of wheels axle can increase both the
velocity and localization error. From this point, we use v̌ and
ω̌ to represent the linear and angular velocities expressions
based on the ideal model.

Fig. 2 shows an example representing an error, 1PX and
1PY , associated with the center of mass position. Fig. 3
presents the main parameters of the model presented in Fig. 2.

FIGURE 2. Model considering a different center of mass.

Based on the model described in Fig. 3, the contribution of
the left wheel to the robot’s velocity can be calculated by:[

VL
SL

]
=

[
1 0 −DL sin(αL)
0 1 DL cos(αL)

]
· ξ̇R (6)
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FIGURE 3. Parameters of the model considering a different center of
mass.

where DL =
√
12
PX + (l +1PY )2, sin(αL) =

l+1PY
DL

and

cos(αL) =
1PX
DL

.
Thus, equation (6) can be simplified to:[

VL
SL

]
=

[
1 0 −(l +1PY )
0 1 −1PX

]
· ξ̇R (7)

For a fixed wheel, VL = ϕ̇L · rL and SL = 0. Thus,
the contribution and restrictions equations, for the left wheel,
can be defined as in (8) and (9), respectively.[

1 0 −(l +1PY )
]
· ξ̇R − ϕ̇L · rL = 0 (8)[

0 1 −1PX
]
· ξ̇R = 0 (9)

Similarly, the contribution of the right wheel to the robot’s
velocity can be calculated by:[

VR
SR

]
=

[
1 0 (l −1PY )
0 −1 1PX

]
· ξ̇R (10)

Thus, the contribution and restrictions equations, for the
right wheel, can be defined as in (11) and (12), respectively.[

1 0 (l −1PY )
]
· ξ̇R − ϕ̇R · rR = 0 (11)[

0 −1 1PX
]
· ξ̇R = 0 (12)

Based on equations (8) and (11) and Jacobian matrix defi-
nition, the linear (ẊI and ẎI ) and angular (θ̇I ) velocities of the
robot can be related to the angular velocity of its wheels by:[
1 0 −(l +1PY )
1 0 (l −1PY )

]
︸ ︷︷ ︸

JA

·ξ̇R−

[
rL 0
0 rR

]
︸ ︷︷ ︸

JB

·

[
ϕ̇L
ϕ̇R

]
︸ ︷︷ ︸
ϕ̇

= 0 (13)

Thus, ξ̇R can be calculated based on the angular velocities
of the robot by:

ξ̇R = J−1A JBϕ̇ (14)

Since the Jacobian JA is not a square matrix, its
pseudo-inverse J†A is used instead. Equation (15) presents the
pseudo-inverse of JA.

J†A =
1
2l

 l −1PY l +1PY
0 0
−1 1

 (15)

Therefore, ξ̇R is given by:

ξ̇R =
1
2l

 l(rL ϕ̇L + rRϕ̇R)+1PY (rRϕ̇R − rL ϕ̇L)0
rRϕ̇R − rL ϕ̇L

 (16)

Since ξ̇I = R(θ)−1ξ̇R, ξ̇I is defined by:

ξ̇I =


l(rL ϕ̇L+rRϕ̇R)+1PY (rRϕ̇R−rL ϕ̇L)

2l
cos(θ )

l(rL ϕ̇L+rRϕ̇R)+1PY (rRϕ̇R−rL ϕ̇L)
2l

sin(θ )

rRϕ̇R−rL ϕ̇L
2l

 (17)

Assuming that both wheels have the same radius
(rL = rR = r), equation (17) can be simplified to:

ξ̇I =


l(ϕ̇L+ϕ̇R)r+1PY (ϕ̇R−ϕ̇L)r

2l
cos(θ )

l(ϕ̇L+ϕ̇R)r+1PY (ϕ̇R−ϕ̇L)r
2l

sin(θ )

ϕ̇R−ϕ̇L

2l
r

 (18)

Thus, the error caused by the difference in the center of
mass can be calculated by:

ξ̇I − ξ̇I
ideal
=

 σẊIσẎI
σθ̇I


=
1PY (ϕ̇R − ϕ̇L)r

2l

 cos(θ )
sin(θ )
0

 (19)

Let v = [ẊI ẎI ]T and ω = θ̇I , the error in magnitude of
the linear and angular velocities are given by:

σv = 1PY · ω̌

σω = 0 (20)

Notice, from (20), that only the vertical part of the center
of mass error (1PY ) affects the linear velocity of the robot.
In turn, equations (9) and (12) show that the error in horizon-
tal axle (1PX ) affects the restrictions in the robot’s motion.
Also, there is no error in the angular velocity.

Regarding the error in linear velocity, as it depends linearly
on the angular velocity, σv becomes zero when the robot
moves in a straight line path (ω = 0).
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B. UNCERTAINTY IN THE DISTANCE BETWEEN WHEELS
In the ideal model, we assume the distance between each
wheel and the center of mass as exactly l. However, this
distance may have a slightly different value l = l ± σl ,
where l is the base (or nominal) value and σl its uncertainty.
Next, we analyze this uncertainty considering that, despite the
difference in the distance between wheels, the center of mass
is still in the middle of wheels axle. Otherwise, we would also
be considering an error in center of mass as well.

Based on equation (5), ξ̇I with the uncertainty in l can be
described by:

ξ̇I =


r(ϕ̇R + ϕ̇L)

2
cos(θ)

r(ϕ̇R + ϕ̇L)
2

sin(θ)

r(ϕ̇R − ϕ̇L)

2(l ± σl)

 (21)

Since l has an associated uncertainty (σl), the terms of
ξ̇I (ẊI , ẎI and θ̇I ) can be represented as ẊI = ẊI ± σẊ ,
ẎI = ẎI ± σẎ and θ̇I = θ̇I ± σθ̇ .
Let a physical variable z be calculated by a function

z = f (xL , · · · , xn). If those variables xi are not correlated and
have an uncertainty associated with them, the base result of z
(z) and its uncertainty (σz) are given by:

z = f (xL , · · · , xn)

σz =

√(
∂z
∂x1

σx1

)2

+ · · · +

(
∂z
∂xn

σxn

)2

(22)

Thus, the uncertainty associated with the difference in l can
be calculated by equation (22) as:

σξ̇I =

 0
0

r(ϕ̇R − ϕ̇L)σl
2l2

 (23)

The uncertainty in the linear and angular velocities are
given by:

σv = 0

σω =
σl

l
ω̌ (24)

Notice that the uncertainty in angular velocity increases
with the ratio of σl to l and the velocity magnitude. On the
other hand, as long as the center ofmass remains in themiddle
of the wheels, there is no error in linear velocity.

C. WHEEL VELOCITY UNCERTAINTY
Due to the limitations of sensors, the wheel velocity measure-
ment has an associated uncertainty. Then, the measurement
of the angular velocity of each wheel must be represented as
ϕ̇ = ϕ̇ ± σϕ̇ , where ϕ̇ corresponds to the base result of the
measurement and σϕ̇ the uncertainty associated with it.
Let us assume that the sensors used to measure the velocity

of both wheels are similar. Thus, the measurement in both

wheels have a similar uncertainty, σϕ , and can be represented
by ϕ̇L = ϕ̇L ± σϕ̇ and ϕ̇R = ϕ̇R ± σϕ̇ .
Based on (17) and considering only the measurement

uncertainty (1PX = 0, 1PY = 0 and rL = rR = r), ξ̇I
can be calculated as:

ξ̇I =


r
(ϕ̇L ± σϕ̇)+ (ϕ̇R ± σϕ̇)

2
cos(θ)

r
(ϕ̇L ± σϕ̇)+ (ϕ̇R ± σϕ̇)

2
sin(θ)

r
(ϕ̇R ± σϕ̇)− (ϕ̇L ± σϕ̇)

2l

 (25)

Since variables ϕ̇L and ϕ̇R have an uncertainty σϕ̇ associ-
ated with them, the velocities uncertainties can be calculated,
based on the general uncertainty equation (22), as:

σξ̇I =



r
√
2σϕ
2

cos(θ )

r
√
2σϕ
2

sin(θ )

r
√
2σϕ
2l

 (26)

Therefore, uncertainties in the linear and angular velocities
are given by:

σv =
r
√
2

2
σϕ̇

σω =
r
√
2

2l
σϕ̇ (27)

Notice, from (27), that the uncertainty in velocities
increases with the wheel radius and the uncertainty of ϕ̇. For
the angular velocity (ω), the uncertainty also decreases with
the distance between wheels.

Thus, robots with larger distances between wheels have
smaller angular velocity errors. So building robots in this way,
if possible, can improve localization and control.

REGARDING THE VELOCITIES UNCERTAINTY
We considered wheels velocity uncertainty as σϕ̇ . Assuming
an encoder that discretizes wheel’s angle in h positions (h
holes, for an optical encoder), wheel’s angular displacement
during a sampling interval 1T can be calculated as:

12 = 2π
dh
h

(28)

where dh is the number of holes detected during the
interval 1T .

The displacement’s uncertainty, σ12, depends on the
encoder’s resolution (R = 2π

h ). As the probabilistic distri-
bution of a resolution error can be assumed as uniform, σ12
can be defined as:

σ12 = R
1

2
√
3
=

π

h
√
3

(29)

The wheel’s velocity is calculated as:

ϕ̇ =
12

1T
(30)
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Thus, assuming that 1T uncertainty is much smaller than
σ12, σϕ̇ can be calculated as:

σϕ̇ =
1
1T

π

h
√
3

(31)

Therefore, the uncertainty inwheel’s velocity only depends
on the number of ‘‘holes’’ (h) and sampling time (1T ).

D. WHEEL RADIUS UNCERTAINTY
In the ideal differential drive robot, bothwheels have the same
radius r . However, construction’s problems and deformations
due to the weight of the robot can make the radii of wheels
differ from their nominal values. Next, we analyze the situa-
tion in which wheels have different radii.

Based on equation (17) and considering only the wheel
radius uncertainty (1PX = 0 and 1PY = 0), ξ̇R can be
calculated as:

ξ̇I =



(
rR · ϕ̇R + rL · ϕ̇L

2

)
cos(θ )(

rR · ϕ̇R + rL · ϕ̇L
2

)
sin(θ )

rR · ϕ̇R − rL · ϕ̇L
2l

 (32)

Thus, uncertainties associated with differences in the
radius of wheels can be calculated by the general formula of
uncertainty as:

σξ̇I =


cos(θ)

2

√(
ϕ̇R · σrR

)2
+
(
ϕ̇L · σrL

)2
sin(θ)
2

√(
ϕ̇R · σrR

)2
+
(
ϕ̇L · σrL

)2
1
2l

√(
ϕ̇R · σrR

)2
+
(
ϕ̇L · σrL

)2

 (33)

Therefore, the uncertainty in linear and angular velocities
is given by:

σv =
1
2

√(
ϕ̇R · σrR

)2
+
(
ϕ̇L · σrL

)2
σω =

1
2l

√(
ϕ̇R · σrR

)2
+
(
ϕ̇L · σrL

)2 (34)

Notice, from (34), that the uncertainties in both linear (σv)
and angular velocities (σω) depends on the uncertainty of
the wheels radii and the sum of the wheels’ velocities
(ϕ̇L and ϕ̇R).
Considering that the uncertainty in the radii of both wheels

have a similarmagnitude (for instance, when theweight of the
robot causes a similar deformation in both wheels), we can
assume that rL ≈ rR ≈ r ± σr . In this case, the velocity
uncertainties can be calculated by equations (32) and (22) as:

σv = v̌ ·
σr

r
σω = ω̌ ·

σr

r
(35)

Thus, when both wheels have similar radii, the uncertain-
ties depend on the velocity (linear or angular) and the ratio
of σr to r .

It’s important to highlight that, depending on the uncer-
tainty source, the velocities magnitudes present quite dif-
ferent influences. For uncertainties in center of mass, σv
increases with the angular velocity, while σω is always
zero. On the other hand, for uncertainties in wheelbase,
σω increases with the angular velocity, while σv is always
zero. When we consider wheel’s velocity uncertainties (σϕ̇),
the magnitudes of v and ω (which can be defined as the sum
and difference between the wheels velocities) have no influ-
ence in σv and σω. Finally, for radius uncertainty, the veloc-
ities uncertainties are proportional to their own magnitude,
as indicated in (35).

E. VELOCITIES UNCERTAINTIES
Considering simultaneously all parametric uncertainties, σPY
(1PY = 0 ± σPY ), σr , σϕ̇ and σl , the linear and angular
velocities uncertainties can be calculated as:

σv =

√(
r
√
2
σϕ̇

)2

+

(
v̌
r
σr

)2

+
(
ω̌σPY

)2 (36)

σω =

√(
r
√
2l
σϕ̇

)2

+

(
ω̌

l
σl

)2

+

(
ω̌

r
σr

)2

(37)

F. ANALYSIS OF THE POSITION ERROR
Once the robot’s velocities are calculated, it can estimate its
own pose by integrating both linear and angular velocities.
Let X0, Y0 and θ0 be the initial position and orientation of
the robot in the global reference frame. The robot pose, at an
instant t , can be estimated by:

ξI (t) =


X0 +

∫ t

0

[
v(τ ) · cos

(
θI (τ )

)]
dτ

Y0 +
∫ t

0

[
v(τ ) · sin

(
θI (τ )

)]
dτ

θ0 +

∫ t

0
ω(τ )dτ

 (38)

In discrete time, we have that:

ξI [n] =


X0+

∑n
k=1

[
v[k] cos

(
θI [k−1]+

1Tω[k]
2

)]
1T

Y0+
∑n

k=1

[
v[k] sin

(
θI [k−1]+

1Tω[k]
2

)]
1T

θ0+
∑n

k=1 ω[k]1T


(39)

As each v[k] and ω[k] have different uncertainties
associated with them, they are better represented as
v[k] = v[k]± σv[k] and ω[k] = ω[k]± σω[k]. However,
equation (3) shows v and ω are correlated variables, since
they both depend on the r , ϕ̇L and ϕ̇R. Thus, we cannot use
equation (22) to calculate the uncertainties in XI (σx) and YI
(σy). Instead, we can calculate them based on:

σz =

∣∣∣∣ ∂z∂x1
∣∣∣∣ σx1 + · · · + ∣∣∣∣ ∂z∂xn

∣∣∣∣ σxn (40)

Therefore, based on equations (40) and (39) and consid-
ering that θI [k − 1] is independent of v[k] and ω[k], the
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position uncertainties, at a discrete instant n1T , are defined
as presented in equation (44), as shown at the bottom of the
next page.

As θI depends only on ω[k], σθ is calculated based on
equation (22) as:

σθ [n] = 1T

√√√√ n∑
k=1

σω[k]2 (41)

From equation (41), we can notice that uncertainty in
robot orientation is proportional to the uncertainty in angular
velocity and the time elapsed since the robot started the exe-
cution. In turn, equation (44) shows that position uncertainties
(σx and σy) depend on the uncertainty of linear and angular
velocities, time elapsed and robot orientation.

For instance, if the robot is executing a straight line path
where θ is always 0◦ (horizontal motion), the position uncer-
tainties are given by:

σx[n] = 1T

√√√√ n∑
k=1

σv[k]2

σy[n] = 1T

√√√√ n∑
k=1

v[k]2
[(1T

2
σω[k]

)2
+

(
σθI [k − 1]

)2]
(42)

As σy depends on the angular velocity and orientation
uncertainties and the magnitude of linear velocity, it can
increase much faster than σx in this type of path.

Similarly, if the robot is executing a straight line path
where θ is always 90◦ (vertical motion), the position uncer-
tainties are given by:

σx[n] = 1T

√√√√ n∑
k=1

v[k]2
[(1T

2
σω[k]

)2
+

(
σθI [k − 1]

)2]

σy[n] = 1T

√√√√ n∑
k=1

σv[k]2 (43)

Therefore, we can notice that position uncertainties tend to
grow perpendicularly to the direction of the motion.

IV. RESULTS AND DISCUSSIONS
In order to give the reader a reference about expected uncer-
tainty in different conditions, we performed experiments in a
Matlab based robot simulator, developed by the GPR-UFS1

[55]. Specifically, the experiments focus on how the magni-
tude of parametric uncertainties, the magnitude of velocities
and the executed path affects the uncertainties associated with
the velocities, position and orientation of a robot.

To do so, we perform experiments considering differ-
ent magnitudes of each parametric uncertainty, controllers
with different gains of velocities and different paths. Next,
we describe the setup used and three performed experiments.

1GPR-UFS stands for Research Group in Robotics from Federal Univer-
sity of Sergipe.

A. EXPERIMENTS SETUP
The simulator used in the experiments considers the model
of a simple differential drive robot, and allows the user to
implement different algorithms to control its angular and
linear velocities. Also, we can alter different parts of the robot
model in order to evaluate specific aspects.

In all experiments, the robot had to follow some path,
simulating real operation conditions. Based on the data col-
lected during the trials, the velocities, position and orientation
uncertainties were calculated based on equations (36), (37),
(44) and (41).

A Pure Pursuit algorithm [53], [54] was implemented and
used as a path tracking controller to allow experiments in
different paths. In the pure pursuit controller, the robot iden-
tifies the goal as a point in the path within an horizon H
(H = 0.4m in all experiments). Then, it calculates linear and
angular velocities set-points (V andW ) to drive it towards the
identified goal. The implemented controller calculates V and
W as:

V = Vmax tanh(Kv · d)

W = −Wmax tanh(Kω · θe) (45)

where d is the distance to the goal and θe is the angular
difference between the robot’s orientation and the vector from
it to the goal. The other parameters were obtained in trials to
tune the controller and are presented in Table 1.

TABLE 1. Parameters of the controller.

B. EXPERIMENT 1
The first experiment focus on evaluating how decreasing or
increasing each parametric uncertainty can affect the estima-
tion of velocities and pose. To do so, the linear and angular
velocities were measured while the robot followed the path
in Fig. 4. Based on them, we estimate the robot position and
orientation. Fig. 4 also presents the robot’s executed path and
its orientation and linear and angular velocities.

The uncertainties associated with the robot’s velocities and
pose were estimated based on the models proposed in this
paper

(
equations (36), (37), (44) and (41)

)
and the data from

the experiment.
We defined each parametric uncertainty based on the struc-

ture of a Pionner 3-DX, as presented in Table 2. For each
uncertainty, we considered fractions

( 1
2σ ,

1
3σ and 1

4σ
)
and

multiples
(
σ , 2σ , 3σ and 4σ

)
of its original value.

Figures 5, 6, 7, 8 and 9 show the uncertainties in v and ω
and in the robot’s position (X ,Y ) and orientation (θ ) during
the path execution. The results presented in these figures con-
sider a single parametric uncertainty at a time. Thus, we can
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FIGURE 4. Robot’s path and velocities in the experiment varying
uncertainties magnitude.

TABLE 2. Parameters values considering a Pioneer 3-DX.

evaluate the contribution of each of them on σv, σω, σx , σy
and σθ .
For instance, Fig. 5 shows the impact of each parametric

uncertainty (σPY , σr , σϕ and σl) in linear velocity uncertainty
(σv).

Figures 10 and 11 present the uncertainties in v and ω and
in the robot’s position (X ,Y ) and orientation (θ ), considering
all parametric uncertainties simultaneously.

In the forth frame of Fig. 11, colored ellipses indicate the
magnitude of the position uncertainty at different points of
the path. The vertices of these ellipses correspond to 2σx and
2σy, so there is a probability higher than 90% that the real
path points are within the corresponding ellipse.

FIGURE 5. Linear velocity uncertainties considering different parametric
uncertainties magnitude.

DISCUSSIONS
The results presented in Fig. 5 show that the linear velocity’s
uncertainty (σv) depends on the uncertainties associated with
the vertical component of the center of mass (σPY ) and the
wheels radii (σr ). As expected from equations (20) and (35),
the uncertainty propagated by σPY (first frame of Fig. 5)
depends on the angular velocity, while the uncertainty prop-
agated by σr (second frame of Fig. 5) depends on the linear
velocity. Both aspects can be notice, in Fig. 5, by the similar-
ity of the shape of σv with the curves of the measured ω and
v, respectively.

On the other hand, Fig. 6 shows that σω depends on σr
and the uncertainty associated with the distance between
the wheels (σl). For both uncertainties, σω depends on the
measured ω, as expected from equations (35) and (24).

Regarding the uncertainties associated with the robot pose
(σx , σy and σθ ), Figures 7, 8 and 9 show that they depend on
σr and σl . In addition, the curves of σx and σθ present steep
increasingwhenever occur peaks of angular velocity. As these
peaks occurred at instants where the robot orientation was
close to 0◦, the impact on σy was quite small. However,
as the uncertainty in σy also depends on cos(θ) and the linear
velocity (σx depends on sin(θ)), σy grows steadily with the
linear velocity and the uncertainty of θ . Thus, at the end of
the path, both σx and σy had similar magnitudes.

σx [n]

=

√√√√ n∑
k=1

[
1T

∣∣∣∣cos(θI [k−1]+1T2 ω[k]
)∣∣∣∣ σv[k]+1T 2

2

∣∣∣∣v[k] sin(θI [k−1]+1T2 ω[k]
)∣∣∣∣ σω[k]]2+[1Tv[k] sin(θI [k−1]+1T2 ω[k]

)
σθI [k−1]

]2
σy[n]

=

√√√√ n∑
k=1

[
1T

∣∣∣∣sin(θI [k−1]+1T2 ω[k]
)∣∣∣∣ σv[k]+1T 2

2

∣∣∣∣v[k] cos(θI [k−1]+1T2 ω[k]
)∣∣∣∣ σω[k]]2+[1Tv[k] cos(θI [k−1]+1T2 ω[k]

)
σθI [k−1]

]2
(44)
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FIGURE 6. Angular velocity uncertainties considering different parametric
uncertainties magnitude.

FIGURE 7. Uncertainty in X considering different parametric uncertainties
magnitude.

Let σ ij be the uncertainty of j when the only parametric
uncertainty considered is i. By analyzing Fig. 10, we can
notice that, as expected, the curve of σv has a shape similar to
σ
PY
v with the peaks from σ rv . Similarly, σω’s curve has a shape

similar to both σ rω and σ lω, with the values close to square root
of the quadratic sum of them

(
σω =

√
(σ rω)2 + (σ lω)2

)
.

In the same way, σx , σy and σθ curves have shapes similar
to those associated with both σr and σl , with values close to
the square root of the quadratic sum of them.

C. EXPERIMENT 2
The set of trials performed in experiment 2 evaluated the
influence of linear and angular velocities magnitude in posi-
tion and orientation uncertainties. To do so, we considered
controllers with different gains, presented in Table 3. Kv and

FIGURE 8. Uncertainty in Y considering different parametric uncertainties
magnitude.

FIGURE 9. Uncertainty in θ considering different parametric uncertainties
magnitude.

TABLE 3. Experiment 2 settings.

Kω are the original gains obtained during the tune step (and
already presented in Table 1).

In experiment 2.A, the influence of angular velocity was
evaluated by considering different values of Kω, while Kv
was kept as the original one. Similarly, in experiment 2.B,
the influence of linear velocity was evaluated by considering
different values of Kv, while Kω was kept as the original one.
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FIGURE 10. Velocities uncertainties considering different parametric
uncertainties magnitude simultaneously.

FIGURE 11. Position and orientation uncertainties considering different
parametric uncertainties magnitude simultaneously.

As in experiment 1, v and ω were measured during the
trials and used to estimate the robot’s position and orientation
at each instant. Based on this information, the uncertainties
associated with the velocities (σv and σω) and robot pose (σx ,
σy and σθ ) were also estimated.
Fig. 12 presents the paths, orientation and velocities in

experiment 2.A. In addition, Figures 13 and 14 present the
uncertainties, σv, σω, σx , σy and σθ .

In Figures 12, 13 and 14, we present only the curves asso-
ciated with three gains: Kω/4, Kω and 4Kω. The uncertainties
and the time necessary to complete the experiment for all
configurations are presented in Table 4.
In turn, Fig. 15 presents the paths, orientation and veloci-

ties in experiment 2.B. In addition, Figures 16 and 17 present
the uncertainties, σv, σω, σx , σy and σθ .

As in experiment 2.A, we present only the curves
associated with three gains (Kv/4, Kv and 4Kv) in

FIGURE 12. Robot’s paths and velocities in the experiment considering
different magnitudes of angular velocity.

FIGURE 13. Velocity uncertainties in the experiment considering different
magnitudes of angular velocity.

TABLE 4. Results of experiment 2.A.

Figures 15, 16 and 17. Table 5 presents the uncertainties
and the time necessary to complete the experiment for all
configurations.
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FIGURE 14. Uncertainty in X, Y and θ in the experiment considering
different magnitudes of angular velocity.

FIGURE 15. Robot’s paths and velocities in the experiment considering
different magnitudes of linear velocity.

TABLE 5. Results of experiment 2.B.

DISCUSSIONS
As expected, higher values of Kω can result in higher values
ofω and provoke steep oscillations in robot orientation, as can
be seeing in Fig. 12. Since the uncertainties associated with

FIGURE 16. Velocity uncertainties in the experiment considering different
magnitudes of linear velocity.

FIGURE 17. Uncertainty in X, Y and θ in the experiment considering
different magnitudes of linear velocity.

the robot’s velocities and pose depend on the magnitude of
angular velocity (ω), σv, σω, σx , σy and σθ can increase when
controllers produce higher values of ω.

Likewise, higher values of Kv can result in higher values
of linear velocities, as can be seeing in Fig. 15. Since the
uncertainties associated with the linear velocity and position
of the robot also depend on v, the uncertainties σv, σx and σy
can increase when controllers consider higher values of Kv.

However, while higher values of Kv allowed the robot to
complete the experiment faster, increasing Kω did not result
in significant changes in the execution time.

Another important aspect is that σθ increases when Kv
decreases. Notice in Fig. 16 that, unlike σv, the average σω
does not increase significantly with Kv. So, as σθ depends on
σω, it can increase when takes longer for the robot to execute
a path. For position uncertainties (σx and σy), the longer
execution time is compensated by smaller values of σv.
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FIGURE 18. Paths considered in experiment 3.

D. EXPERIMENT 3
A third experiment was performed to evaluate how the path’s
shape can influence the uncertainty related to the robot’s
final position and orientation. Four different paths, presented
in Fig. 18, were considered and the robot’s linear and angular
velocities were measured during the trials. The length of all
paths considered in experiment 3 is approximately 8 meters.

The shape of each path considered in experiment 3 helps
us evaluate different aspects of how the uncertainties increase.
The goal of the experiment with the line path is to show how
the uncertainty in the robot’s position increases, considering
motion in a single direction. The 90◦ curves in the square
paths help us evaluate the uncertainties in paths with steep
turns. On the other hand, experiments with the circle path
show how uncertainties increase when the robot doesn’t need
to perform steep moves.

In order to organize the obtained data, experiment 3 was
divided, considering the path executed, in 3.A, 3.B, 3.C and
3.D. Next, we present the results obtained in each experiment.

1) EXPERIMENT 3.A
In experiment 3.A, the robot performed the line path, start-
ing at position (0.5m, 4.0m) and ending at (8.5m, 4.0m).
Fig. 19 presents the path of the robot and its velocities and
orientation.

Figures 20 and 21 present the velocities and pose uncertain-
ties. The red ellipses indicate the magnitude of the position
uncertainty at different points of the path.

2) EXPERIMENT 3.B AND 3.C
In experiments 3.B and 3.C, the robot performed a square
path. The goal of this experiment was to evaluate the impact
of steep turns in the robot’s pose uncertainty, considering
different starting points. Figures 22 and 23 present the paths
of the robot and its velocities and orientation.

FIGURE 19. Robot’s executed path, orientation and velocities in the line
path.

FIGURE 20. Velocities uncertainties in the line path.

FIGURE 21. Position and orientation uncertainties in the line path.

Figures 24, 25, 26 and 27 present the velocities, position
and orientation uncertainties in the experiments. As in exper-
iment 3.A, the red ellipses indicate the magnitude of the
position uncertainty at different points of the path.
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FIGURE 22. Robot’s executed path, orientation and velocities in the
balanced square path.

FIGURE 23. Robot’s executed path, orientation and velocities in the
unbalanced square path.

FIGURE 24. Velocities uncertainties in the balanced square path.

3) EXPERIMENTS 3.D
In experiment 3.D, the robot performed the circle path.
Fig. 28 presents the executed path of the robot and its

FIGURE 25. Position and orientation uncertainties in the balanced square
path.

FIGURE 26. Velocities uncertainties in the unbalanced square path.

FIGURE 27. Position and orientation uncertainties in the unbalanced
square path.

velocities and orientation. Figures 29 and 30 present the
velocities, position and orientation uncertainties in the
experiment.

In Table 6, we summarize the results in experiment 3.
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FIGURE 28. Robot’s executed path, orientation and velocities in the circle
path.

FIGURE 29. Velocities uncertainties in the circle path.

FIGURE 30. Position and orientation uncertainties in the circle path.

4) DISCUSSIONS
Analyzing the data collected in experiment 3, we can
notice that, when the robot is performing a straight motion,
the uncertainty increases perpendicularly to the motion’s

TABLE 6. Results of experiment 3.

direction. For instance, in experiment 3.A (Fig. 21), uncer-
tainty in Y increases much faster than the uncertainty in X.
Indeed, equation (44) shows that σx increases with the v, σθ ,
σω and sin(θ ). Similarly, σy increases with the v, σθ , σω and
cos(θ ). Therefore, σx can grow significantly when the robot
performs a vertical motion, and σy in a horizontal motion.

In experiments 3.B and 3.C, the robot moves the same
length in both directions and the position uncertainties have
similar magnitudes. However, in experiment 3.C, there is a
bias and uncertainty σx is higher than σy. By considering
different starting points, we created a bias in the executed
path in experiment 3.C. Specifically, it has two steep turns
going from a motion in axis X to Y, and only one going from
a motion in axis Y to X. Also, the uncertainties in X and Y
depend on σθ and sin θ (for σx) or cos θ (for σy). So, even
when a robot moves the same distance in each direction, there
can be a bias in the uncertainty of one of them. Notice that,
by avoiding long motions in a single axis, we can decrease
the bias problem.

In experiment 3.D, where the robot doesn’t have steep
turns in its path, ω does not have significant peaks.
Thus, the uncertainties are slightly smaller than those in
experiments 3.B and 3.C.

The uncertainty regarding the orientation, in all exper-
iments, ranges from 0.0326 to 0.0504 rad (1.8◦ to 2.9◦).
The robot’s orientation should be always 0◦ in experiment
3.A; ranges from 0◦ to 360◦ in experiment 3.B and from
0◦ to 270◦ in experiment 3.C; and ranges from 90◦ to 450◦

(angular displacement of 360◦) in experiment 3.D. Compar-
ing these ranges and the uncertainties obtained during the
experiments, we can observe that, despite increasing with
the distance traveled, there is no direct relation between the
angular displacement and σθ .

Considering all experiments, we can summarize the
following aspects. Velocities and position uncertainties are
influenced, mainly, by the wheels radii uncertainty, σr , and
the uncertainty associated with the distance between the
wheels, σl . Linear velocity and position uncertainties also
depend on the angular velocity (ω) and the uncertainty asso-
ciated with the vertical component of the center of mass
(σPY ). In addition, uncertainty grows faster in the direction
perpendicular to the robots motion.

For paths with similar X and Y displacements, the mag-
nitude of uncertainties can be similar. However, unbalanced
paths (as the one in experiment 3.C) can cause a bias
in σx or σy.

The magnitude of angular velocities considered by the
robot’s controller also has a huge influence in the velocities
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and position uncertainties. Specifically, both the uncertain-
ties models and the results from experiments indicate that
robot’s localization can improve by considering controllers
that minimize angular velocity, without significant losses of
performance.

V. CONCLUSIONS
This paper investigated how errors in the robot’s kinematic
model can affect the velocities and pose estimation, providing
quantifiable knowledge about velocities and pose uncertain-
ties. The proposed models and analysis performed herein
help to understand the impact (isolated or simultaneous) of
different sources of uncertainty in robot’s velocities and pose
estimation.

Most works rely on experimental analysis and models that
cannot separate neither the contribution of each uncertainty
source nor the influence of the environment on the robotic
system. In this paper, angular and linear velocities uncertain-
ties, σω and σv, were modeled considering uncertainties in
different parameters of the robot, such as the wheel radius and
velocity and the distance between wheels and center of mass.
Based on σω and σv, the uncertainties associated with robot’s
position, σx and σy, and orientation, σθ , were also described.

Experiments were performed to corroborate the proposed
models and help understanding the contribution of each
parameter of the robot in the uncertainties. The impact of
different velocities gains and paths on the uncertainties were
also evaluated during the trials.

An important aspect observed during the experiments was
that square paths, commonly used to estimate position uncer-
tainty, can generate biased results. This fact suggest that
the impact of using such paths for experimental uncertainty
estimation should be further investigated. Also, the angular
displacement of the robot has no direct relation with the
orientation uncertainty.

The models and analysis developed in this paper can be
applied in several areas. For instance, localization methods
based on data fusion can use the proposed models to estimate
uncertainties associated with the sensors, such as odometers.
By doing so, designers can complement or even avoid the
experimental evaluation performed in most works.

Other areas, as the development of controllers and robot
simulators and the design and construction of new robots can
also profit from the results of this paper.

In future works, a path tracking controller that guarantees
convergence, while minimizes the velocities and position
uncertainties, will be proposed. In addition, a differential
drive platform that allows a controlled insertion of parametric
errors will be built and used in experiments to corroborate the
results obtained by simulation.
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