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ABSTRACT Fine-grained classification of cervical cells into different abnormality levels is of great clinical
importance but remains very challenging. Contrary to the traditional classification methods that rely on
hand-crafted or engineered features, convolution neural network (CNN) can classify cervical cells based on
automatically learned deep features. However, CNN in previous studies does not involve cell morphological
information, and it is unknown whether morphological features can be directly modeled by CNN to classify
cervical cells. This paper presents a CNN-based method that combines cell image appearance with cell
morphology for classification of cervical cells in Pap smear. The training of cervical cell dataset consists
of adaptively re-sampled image patches coarsely centered on the nuclei. Several CNN models (AlexNet,
GoogLeNet, ResNet, and DenseNet) pre-trained on ImageNet dataset were fine-tuned on the cervical
dataset for comparison. The proposed method is evaluated on the Herlev cervical dataset by five-fold
cross-validation at patient-level splitting. The results show that by adding cytoplasm and nucleus masks
as raw morphological information into appearance-based CNN learning, higher classification accuracies
can be achieved in general. Among the four CNN models, GoogLeNet fed with both morphological
and appearance information obtains the highest classification accuracies of 94.5%, 71.3%, and 64.5%,
for two-class (abnormal versus normal), four-class (“The Bethesda System™), and seven-class (““World
Health Organization classification system’) classification tasks, respectively. Our method demonstrates
that combining cervical cell morphology with appearance information can provide improved classification
performance. Although the initial results are promising, deep learning-based fine-grained cervical cell
classification remains a very challenging task for a high-precision diagnosis.

INDEX TERMS Fine-grained classification, cell morphology, deep learning, Pap smear.

I. INTRODUCTION

Cervical cancer is one of the most common lethal malignant
disease among woman [1]. The greatest factor for cervical
cancer is the infection with some types of human papilloma
virus (HPV) which may lead to dysplastic changes in cells
before development of cervical cancer [2]. These dysplastic
changes of cells typically develop over a prolonged process
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and refer to a wide spectrum of abnormality. Pap smear, one
of the most popular screening tests for prevention and early
detection of cervical cancer, has been extensively used in
developed countries and credited with reducing the mortality
rate of cervical cancer significantly [3]. However, population-
wide screening is still not widely available in developing
countries [3], partly due to the tedious and complexity nature
of manually screening of the abnormal cells from a cervical
cytology specimen [4]. Such diagnosis is also subject to error
even for experienced doctors [4].
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To address these concerns, automation-assisted reading
systems have been developed to improve efficiency and
increase availability over the past few decades. These
automation-assisted reading systems are based on automated
image analysis techniques [4]-[6], which automatically select
potentially abnormal cells from a given cervical cytology
slide for further review and fine-grained classification by
the cytoscreener or cytopathologist. According to the World
Health Organization classification system, premalignant dys-
plastic changes of cells can include four stages, which
are mild, moderate, severe dysplasia and carcinoma in situ
(CIS) [7]. The lesions are generally no more than manifes-
tations of HPV infection for the mild stage, but the risk of
progression to cancer is relatively high for the more severe
stages if not detected and treated [8]. Early staging of dysplas-
tic changes is important for preventing the developments of
precancerous cells. It is known that such a task is highly chal-
lenging and subjective. A misclassification may either cause
unnecessary biopsy (e.g., classify mild as CIS) or treatment
delay (e.g., classify CIS as moderate). Therefore, fine-grained
classification of cervical cells is highly desired in real clinical
diagnosis practice. However, almost all previous studies of
cervical cell classification focus on classification of cervical
cells into abnormal and normal groups, which is useful for
screening, but not enough for diagnosis [4]-[6], [9].

Morphological cell morphology has been widely used for
computerized cell image processing and pattern recognition
in biomedical applications, such as nuclei feature quantifi-
cation for cancer cell cycle analysis [10], hepatocellular car-
cinoma feature extraction [11] and automated classification
of blood cell [12]. For cervical cell application, automation-
assisted reading system generally comprises three steps: cell
segmentation, feature extraction/selection, and cell classifi-
cation. The feature, especially morphological feature design
and selection are also one of the most important factors for
cervical cell classification. When dysplastic changes hap-
pen, cervical cells undergo various morphological changes
which include changes in terms of size, shape, intensity and
texture. Thus, feature descriptors are designed to describe
these changes. In study of [13], twenty morphology-related
features are extracted for cervical cell classification. Auto-
matic method for cell nuclei detection in pap smear images
based on morphological analysis is proposed in [14]. Previ-
ously, the extracted features can be grouped into handcrafted
features [13], [15], [16] and engineering features [9], [17].
However, Handcrafted features are hindered by limited
understanding of cervical cytology. Engineering features are
derived from an unsupervised manner, and thus encode
redundant information. The feature selection process poten-
tially ignores significant clues and removes complementary
information.

In the past few years, deep convolutional neural networks
(CNN) have proven to be great success in many computer
vision tasks when training on large-scale annotated datasets
(i.e. ImageNet) [18]. In contrast to classical machine learning
methods that use a series of handcrafted features, CNNs
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automatically learn multi-level features from the training data
set. As the development of more powerful hardware with
higher computing power (i.e., Graphics Processing Units,
GPUs), CNN architecture has become more and more deep
and complicated. A variety of CNN models have been intro-
duced in the literatures, such as LeNet [19], AlexNet [20],
GooglLeNet [21], ResNet [22], DenseNet [23] and their vari-
ants and so on. The original LeNet only consists of 5 layers
while the ResNet has already surpassed 100 layers, even
reach to more than 1000 layers. In addition to increase
depth directly, the GoogLeNet introduces an inception mod-
ule, which concatenates feature-maps produced by filters
of different sizes, to make the network wider and deeper.
ResNets have achieved state-of-the-art performance on many
challenging image recognition, localization, and detection
tasks, such as ImageNet object detection. Large amounts of
labeled data are crucial to the performance of CNN. However,
the labeled data is limited for cervical cells images because
high quality annotation is costly and challenging even if for
experts. Fortunately, transfer learning [24] is an effective
method to address this problem. CNNs have already signif-
icantly improved performance in various medical imaging
analysis applications [25]-[29]. But it is still unclear which
network or what is the best network depth and width for
cervical cells classification given limited training data.

Besides being directly used as a classifier, CNNs can be
used as feature selectors. When training with large-scale
data, low-to-high-level features of data can be obtained from
the shallow convolutional layer to the deep convolutional
layer of CNN. Learned features extracted from pre-trained
model can be combined with existing handcrafted features,
such as local binary pattern (LBP), Histogram of Oriented
Gradient (HOG), and then fed to other classifier (e.g. support
vector machine, SVM) [30]. In study of [31], cell dynamic
morphology is classified by CNN to represent different cell
physiological states. However, it is still unknown whether
morphological features can be directly modeled by CNN to
classify cervical cells. Although CNN has recently been used
to directly classify cervical cells in a recent study [32], several
problems need more investigation: 1) it only involve raw RGB
information; 2) it only evaluates classification performance
of 2-class (normal vs. abnormal) task, while 4-class or 7-class
are more challenging and more desirable; 3) it only evaluates
AlexNet which may not represent the capability of the state-
of-art deep classification models; 4) it’s worth pointing out
that the previous method with five-fold cross-validation (CV)
does not guarantee patient-level separation on the Herlev
dataset, which does not meet the real clinical setting.

In this paper, we present a CNN-based method that com-
bines cell image appearance with cell morphology for clas-
sification of cervical cells in Pap smear. In our approach,
cell morphology was directly represented by cytoplasm and
nucleus binary masks, which were then combined with raw
RGB-channels of the cell image to form a five-channel
image, on which training data was sampled from a square
image patch coarsely centered on the nucleus (left part
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FIGURE 1. The overall flow-chart of our CNN framework for 7-class classification problem.

in Fig.1). Then this dataset was fed into CNNs for classi-
fication of cervical cell. Different CNN models (AlexNet,
GoogLeNet, ResNet and DenseNet) pre-trained on ImageNet
dataset were fine-tuned for 2-class (abnormal vs. normal) and
7-class (‘““World Health Organization classification system”)
cervical cell classification based on deep hierarchical fea-
tures. Note that the 4-class (“The Bethesda System (TBS)™")
result is derived from 7-class by combining some of the
subcategories.

The Herlev dataset consisting of 917 cervical cell images is
used to test our method. We carefully split the cells to perform
five-fold cross-validation at patient-level — this means that all
the cells from the same patient will be assigned to training
set or validation set alone. Experimental results demonstrated
that by adding cytoplasm and nucleus masks as raw morpho-
logical information into conventional appearance-based CNN
learning, higher classification accuracies can be achieved in
general. Among the four CNN models, GoogLeNet fed with
both morphological and appearance information obtains the
highest classification accuracies of 94.5% for 2-class classi-
fication task, 64.5% for 7-class classification task and 71.3%
for 4-class classification task.

Our main contributions are summarized as follows:
1) the combination of raw cytoplasm and nucleus binary
masks and RGB appearance was proposed for CNN-
based cervical cell classification. 2) State-of-the-art CNN
models were fine-tuned to evaluate and compare the
performances of cervical cell classification at patient-
level cell splitting. 3) Besides distinguishing normal and
abnormal cervical cells, the performances of 7-class and
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4-class fine-grained classification of cervical cell were also
investigated.

Il. METHODS

In this study, the cervical cell images which concatenate
cytoplasm/nucleus binary masks and raw RGB channels were
fed into CNNs, and both the 2-class and 7-class classification
performances of state-of-the-art CNN models were evaluated
and analyzed. The details are described as below.

A. DATA PREPROCESSING

1) IMAGE PATCH AND CELL MORPHOLOGY EXTRACTION
As mentioned in TBS rules, cervical cells can be categorized
into four classes: normal, Low grade Squamous Intraep-
ithelial Lesion (LSIL), High grade Squamous Intraepithelial
Lesion (HSIL) and Carcinoma-in-situ (CIS) [33]. Differ-
ent stages of cervical cytology abnormalities are associated
with different nucleus characteristics. Therefore, nucleus fea-
tures in themselves already include substantial discriminative
information. Since the main topic of this work is CNN classi-
fication, we follow the strategy in [32] to extract training sam-
ples. Specifically, image patches of size m x m centered on the
nucleus centroid and included a certain amount of cytoplasm
were extracted. This strategy allows for embedding not only
the nucleus scale/size information, but also the contextual
clues in the extracted patches. Although there are methods
for automated extraction of nucleus, we only focus on the
classification task in this paper. We directly use the centroid
of ground truth mask of nucleus to extract the image patches,
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and the corresponding morphology of nucleus and cytoplasm
can be obtained directly from the ground truth mask.

2) DATA AUGMENTATION

Data augmentation is critical to improve the accuracy of
CNNs and reducing overfitting. Because cervical cells are
rotationally invariant, each cell image is performed N, rota-
tions with an angle step of 6 degree. Zero padding is also
used to avoid region that lies outside of the image bound-
ary. Considering that detecting the centroid of the nucleus
may be inaccurate in practice, the centroid of each nucleus
was randomly translated (by up to d pixels) N; times to
obtain N; coarse nucleus centers. Accordingly, N; patches
of size m x m centered at these locations are extracted.
These patches not only simulate inaccurate nucleus center
detection, but also increase the amount of image samples for
CNNs. Other data augmentation approaches such as scale
and color transformations are not utilized, because 1) the
concern that the abnormality may be changed by changing
the cell intensity/staining, e.g., a moderate large nucleus with
dark staining tends to be abnormal but can be normal if with
light staining; 2) adding color transformation may improve
(or not) the accuracy on this dataset, but may result in lower
robustness on new data.

Note that the distribution of different types of cells in
Herlev dataset is imbalance, so classifiers have a tendency
to exhibit bias towards the majority classes. For example,
the amount of abnormal cell images is larger than that of
normal cell images in Herlev dataset. In order to balance
the proportions of positive and negative samples, we apply a
higher sampling proportion to the normal patches. For 7-class
task, similar sampling methods are utilized for balancing.

B. CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES
CNN is a deep learning model in which multiple stages of
convolution, non-linearity and pooling layers are stacked,
followed by more convolutional and fully-connected layers.
In our experiments, we mainly explore four convolutional
neural network models (AlexNet, GoogleNet, ResNet and
DenseNet) which are shown in the green part in fig.1. The
input of CNNs is image patch with five-channels which
includes two channels of binary masks of the cervical nucleus
and cytoplasm and three-channels of raw RGB image (left
part in fig.1). To demonstrate the additive value of cell mor-
phological features, raw RGB image is used as the only input
of CNNs for performance comparison. The output layer of
CNNs comprises of several neurons each corresponding to
one class. In our case, there are 2 and 7 neurons in the output
layer for 2-class and 7-class classification tasks, respectively.
The backpropagation algorithm is used to minimize the clas-
sification error on the training dataset for optimization of
weight parameters in CNNs.

AlexNet [20]: AlexNet is the winner of ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2012 and has
received extensive attention in computer vision. ImageNet
dataset consists of 1.2 million 256 x 256 images belong to
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1000 categories. AlexNet contains five convolution layers,
three pooling layers, and three full-connected layers. AlexNet
achieves 15.3% top-5 classification error.

GoogLeNet [21]: GoogLeNet is more complex and deeper
than AlexNet and is the winner of ImageNet ILSVRC 2014.
GoogLeNet introduces a new module named ‘‘inception”,
which concatenates filters of different sizes and dimensions
into a single new filter. Overall, GoogLeNet has two con-
volution layers, two pooling layers, and nine “‘inception”
layers. Each “inception” layer consists of six convolution
layers and one pooling layer. Googl.eNet obtains 6.67% top-
5 classification error on ImageNet dataset challenge.

ResNet [22]: ResNet is about 20 times deeper than
AlexNet. ResNet utilizes shortcut connections to jump over
some layers to avoid the problem of vanishing gradient.
ResNet wins the ImageNet ILSVRC 2015, and have achieved
impressive, record-breaking performance on many challeng-
ing image recognition, localization, and detection tasks [22].

DenseNet [23]: Similar but different from ResNets, direct
connections from any layer to all subsequent layers are intro-
duced in DenseNets, which encourages feature reuse through-
out the network. Moreover, the DenseNets can achieve
state-of-the-art performances with substantially fewer param-
eters and less computation than ResNet.

C. TRANSFER LEARNING
Transfer learning refers to the fine-tuning of deep learn-
ing models that are pre-trained on other large-scale image
datasets. Due to limited cervical image data in this study,
for each CNN architecture, pre-trained models trained on
ImageNet dataset are used as the basis of our network, where
the weights of the first convolution layer and last several task-
specific full-connection layers are randomly initialized, and
other network layers are transferred to the same locations of
our model. All of these layers in our models are jointly trained
on our cervical cell dataset. Note that only the first convo-
lution layer and the last several task-specific full-connection
layers are trained from scratch.

In testing, the random-view aggregation and multiple crop
testing are used following the approach in [32].

IIl. EXPERIMENTS AND RESULTS

A. DATA SET

The utilized cervical cell data is publicly available (http:
//mdelab.aegean.gr/downloads), which is col-
lected at the Herlev University Hospital by a digital camera
and microscope [13]. The image resolution is 0.201 um
per pixel. The specimens are prepared via conventional Pap
smear and Pap staining. There are 917 images in the Herlev
dataset, where each image contains one cervical cell with
its segmentation of nucleus and cytoplasm and the class
label. In order to maximize the certainty of diagnosis, cer-
vical images in Herlev dataset were diagnosed by two cyto-
technicians and a doctor and were categorized into seven
classes. These seven classes further belong to two categories:
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TABLE 1. The 917 cells (242 normal and 675 abnormal) from Herlev
dataset.

Category  Class Cell type Num.

Normal 1 Superficial squamous epithelial 74

Normal 2 Intermediate squamous epithelial 70

Normal 3 Columnar epithelial 98

Abnormal 4 Mild squamous non-keratinizing dys- 182
plasia

Abnormal 5 Moderate squamous non-keratinizing 146
dysplasia

Abnormal 6 Severe squamous non-keratinizing dys- 197
plasia

Abnormal 7 Squamous cell carcinoma in situ inter- 150
mediate

normal (class 1-3) and abnormal (class 4-7), as showed
in Table 1. For each cell image in the Herlev dataset, rotations
and translations (up to 10 pixels) are performed to yields
a relatively balanced data distribution. After augmentation,
each class has roughly 12000 images. The RGB image patch
size is set to m = 128 pixels to cover some cytoplasm region
for most cells, and to contain most of the nucleus region for
the largest one. Then segmentation masks of the nuclei and
cytoplasm with the same size and location as RGB image
patch are extracted. These image patches and masks are then
up-sampled to a size of 256 x 256 x 3 and 256 x 256 x 2 pixels
via nearest interpolation, in order to facilitate the transfer of
pre-trained CNN model. The image patches and masks are
concatenated to obtain five-channel dataset with a size of
256 x 256 x 5.

B. NETWORK ARCHITECTURES AND IMPLEMENTATION

In this study, two different inputs (i.e., raw RGB-channel
dataset and five-channel dataset) are fed into four differ-
ent CNN models, i.e., AlexNet, GoogLeNet, ResNet-50 and
DenseNet-121, and the classification performances for differ-
ent tasks (2-class and 7-class problems) are compared. Note
that there are deeper architectures for ResNet and DenseNet
(e.g. ResNet-152, DenseNet-161). However, we found that
ResNet-50 and DenseNet-121 have better performances than
their deeper versions on our dataset. Here, the base CNN
models (denoted as AlexNet-B, GoogleNet-B, ResNet-B,
and DenseNet-B) are pre-trained on the ImageNet classi-
fication dataset. AlexNet-B contains three fully connection
layer (fc6-fc8), and the number of neurons in last fully con-
nection layer is determined by the number of output class.
As shown in [32], reducing the number of neurons of fc6
and fc7 layer will tend to have slightly higher accuracy
in this cervical dataset, and the neuron number of the fc6
and fc7 layer in our AlexNet model (denote as AlexNet-T)
was set to be 1024-256. The AlexNet-T and the AlexNet-
B share the same network, except for the first convolution
layer and the three fully connection layers with weights of
random initialized Gaussian distribution. For the other net-
works, weights of the first convolution layer and the last fully
connection layer in our models (denote as GoogLeNet-T,
ResNet-T and DenseNet-T) are initialized with random
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Gaussian distribution, and the other initial weights are copied
from the same location of GoogleNet-B, ResNet-B, and
DenseNet-B, respectively. For each CNN model, we report
classification results with different inputs for 2-class and
7-class classification tasks: CNN-3C (three-channel RGB
dataset as input), CNN-2C (two-channel dataset of nucleus
and cytoplasm binary mask as input), CNN-5C (five-channel
dataset as input). Note that only CNN-3C and CNN-5C are
used for 7-class classification. Therefore, throughout this
paper, we refer to a total of twenty models. All these models
are implemented on Caffe platform [34], using two Nvidia
GeForce GTX 1080 Ti GPUs with a total memory of 22 GB.

C. TRAINING AND TESTING PROTOCOLS

From each 256 x 256 training image patch and its mir-
rored version, a 227 x 227 sub-patch is randomly cropped
for AlexNet-T, while a 224 x 224 sub-patch is randomly
cropped for the other networks in this study. Stochastic
Gradient Descent (SGD) is utilized to train the model for
30 epochs. The mini-batch sizes of training are 256, 32,
20 and 12 for AlexNet-T, GoogLeNet-T, ResNet-T and
DenseNet-T respectively. The base learning rates are 0.01,
0.005, 0.01 and 0.01 for AlexNetT, GoogLeNet-T, ResNet-T
and DenseNet-T, respectively, and are decreased by a factor
of 10 at every tenth epoch. Weight decay and momentum are
set to be 0.0005 and 0.9 for AlexNet-T, and 0.0002 and 0.9 for
the other networks.

D. EVALUATION METHODS
Most previous methods using cross validation on the Herlev
dataset are random split, including study of [32]. When using
random split, cells from the same patient may be split into
both training and testing set. While in real clinical practice,
all the cells from a testing patient are unseen to the training
set. Therefore, in this study, five-fold cross-validation is per-
formed on patient-level. In each of the 5 iterations, 4 of 5 folds
are used as the training set and the other one as validation
set. We carefully ensure that cells of the same patient can
only be in the training set or the validation set. Note that
data augmentation is performed after the training/validation
spitting of cell population. Final performances of models are
obtained by averaging the results from 5 validation sets. The
performance evaluation metrics include sensitivity (Sens),
specificity (Spec), accuracy (Acc) and area under ROC curve
(AUC), where Sens indicates the proportion of correctly
identified abnormal cells, Spec is the proportion of correctly
identified normal cells, and Acc is the global percentage of
correctly identified classified cell. The confusion matrix is
used to show the classification performance of 7-class prob-
lem. The average accuracy of classification of cervical cells
is calculated by averaging the values on the main diagonal of
confusion matrix.

According to TBS, cervical cell in Herlev dataset can be
categorized into four classes: normal (class 1-3), LSIL (class
4), HSIL (class 5-6) and CIS (class 7). Therefore, we calculate
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TABLE 2. Performance comparison of different models for 2-class classification task. 2C, 3C and 5C are corresponding two-channel dataset (binary masks
of nucleus and cytoplasm), three-channel dataset (Raw RGB data) and five-channel dataset (combining raw RGB data with binary masks of nucleus and
cytoplasm) as network input, respectively. Bold indicates the highest value in each column.

Model AUC Acc(%) Sens(%) Spec(%)

AlexNet-2C 0.946 4+ 0.022 88.8 £2.3 95.4+ 3.0 79.7+ 4.8
AlexNet-3C 0.962 + 0.008 89.7+ 1.8 94.6 £ 4.2 83.0+4.3
AlexNet-5C 0.964 + 0.016 91.5+2.8 96.5 + 2.9 84.7+4.1
GoogLeNet-2C 0.947 4+ 0.022 89.0 £ 2.0 95.0 £ 2.5 80.8 £4.3
GoogLeNet-3C 0.979 + 0.005 93.6 £ 1.1 96.2 + 2.6 90.1 £ 2.5
GoogLeNet-5C 0.984 + 0.012 94.5 + 2.8 97.4+ 2.7 90.4 + 3.1
ResNet-2C 0.950 4+ 0.022 88.9 + 2.8 96.8 £ 1.9 782+5.2
ResNet-3C 0.978 + 0.018 92.3+2.6 94.8 +£3.3 89.1 +£6.3
ResNet-5C 0.979 + 0.011 92.1+2.0 97.3+2.8 85.2+4.3
DenseNet-2C 0.934 +0.016 86.8 £ 1.3 95.1 £+ 3.6 75.5+ 4.6
DenseNet-3C 0.970 + 0.013 92.6 +£ 2.0 96.6 + 2.5 87.1+2.9
DenseNet-5C 0.980 4+ 0.009 93.3+2.0 95.6 £ 2.8 90.0 £ 3.6

(@ (b) (©

FIGURE 2. ROC curve comparison of different models for 2-class classification task. (a)-(c) are corresponding to CNN-2C model, CNN-3C model and

CNN-5C model, respectively.

a 4-class classification result based on the 7-class’s result in
order to align with TBS.

E. RESULTS

Table 2 and Fig. 2 show the classification performances
(Sens, Spec, Acc and AUC) of CNN-5C model (AlexNet-5C,
GoogLeNet-5C, ResNet-5C and DenseNet-5C) in compared
with CNN-3C model (AlexNet-3C, GoogLeNet-3C, ResNet-
3C and DenseNet-3C) and CNN-2C model (AlexNet-2C,
GoogLeNet-2C,ResNet-2C and DenseNet-2C) for 2-class
classification task. It can be seen that each of models with
five-channel dataset as input outperforms its corresponding
three-channel-input and two-channel-input model in AUC
metrics. Among them, the model GoogLeNet-5C obtains the
best performance. The mean values of Sens, Spec, Acc and
AUC for the model GoogLeNet-5C are 97.4%, 90.4%, 94.5%
and 0.984, respectively. Some classification examples can be
seen in fig. 3, where images misclassified by GooglLeNet-3C
can be correctly classified by GoogLeNet-5C. Googl.eNet-
5C also obtains the highest accuracy (67.0%).

Table 3 shows the classification performance of CNN-5C
models and CNN-3C models for 7-class problem. CNN-5C
models provide higher classification accuracy than CNN-3C
models except for DenseNet. Among these models,
GooglLeNet-5C obtains the highest accuracy (64.5%). Fig. 4
shows the confusion matrix for the model of GoogLeNet-5C,
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FIGURE 3. Examples of classified cervical cells by GoogLeNet-3C and
GooglLeNet-5C. The ground truth labels of cells in the first row are Normal
[(a) - (g) are superficial, intermediate and columnar] and the second row
are Abnormal [(d) - (g) are mild dysplasia, moderate dysplasia, severe
dysplasia and carcinoma]. Score = 1 corresponds a 100% probability of
representing an abnormal cell.

with the average accuracy (averaging the values on main
diagonal of confusion matrix) of 64.8%, which surpasses the
previous non-deep-learning result of 61.1% [13]. Table 4 and
Fig. 5 show the 4-class classification results obtained from
7-class classification results. The model of GoogleNet-5C
also achieves highest classification accuracy of 71.3%.
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TABLE 3. Accuracy comparison of different models for 7-class
classification. Bold indicates the highest value in each column.

Model Acc(%)
Benchmark [13] 61.1 +25.1
AlexNet-3C 57.8+4.4
AlexNet-5C 60.8 £4.0
GoogLeNet-3C 62.5 + 3.1
GoogLeNet-5C 64.5 + 4.2
ResNet-3C 60.8 £ 3.7
ResNet-5C 63.7 £ 3.8
DenseNet-3C 63.9+ 2.0
DenseNet-5C 61.0 £ 3.7
“ KR A
Ground Truth @

FIGURE 4. Confusion matrix of GoogLeNet-5C for 7-class classification
task.

TABLE 4. Accuracy comparison of different models for 4-class
classification. Bold indicates the highest value in each column.

Model Ace(%)

AlexNet-3C 66.5 +4.3
AlexNet-5C 68.3 £ 3.7
GoogLeNet-3C 69.7 £ 3.9
GoogLeNet-5C 71.3£2.7
ResNet-3C 67.0£ 4.6
ResNet-5C 70.3 +4.7
DenseNet-3C 71.1+2.6
DenseNet-5C 67.6 +2.1

IV. DISCUSSION

Fine-grained cervical cell classification is highly desired in
pathologistsiAZ daily diagnosis practice, which has long
been ignored by most of previous (automated) studies. Our
work raises the question that whether the state-of-the-art
deep learning could push forward this field. We investigate
the ability of deep learning in utilizing cell (raw) morpho-
logical and appearance features for classification. For the
2-class classification problem, networks only using mor-
phological information or appearance information as input,
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FIGURE 5. Confusion matrix of GoogLeNet-5C for 4-class classification
task.

are compared with networks using both morphological and
appearance information as input. As shown in Table 2,
the classification performances of morphology-based CNNs
are slightly lower than that of appearance-based CNNs,
and classification performances of appearance-morphology-
based CNNs are obviously higher, which indicates that
morphology and appearance provide complementary infor-
mation to each other, thereby improving the classification
performance.

Among CNNs-2C model, CNNs-3C model and CNNs-5C
model, the GooLeNet has the best performance, and the
GooglLeNet-5C model has the highest classification accu-
racy, sensitivity, and specificity (94.5%, 97.4%, and 90.4%).
The GoogLeNet also has the highest classification accuracy
of 64.5% and 71.3% for the 7-class and 4-class problem,
respectively. The networks deeper than GoogleNet, such as
ResNet and DenseNet, do not provide higher performance on
our task. This may due to the relatively small number of cells
in Herlev cervical cell dataset used in this study, which may
lead training on such complicate network to be overfit. For
the 2-class problem, the best previous study obtained 96.8%
classification accuracy by optimizing the features derived
from the manually segmented cytoplasm and nucleus [35].
Deep learning method has also used on this Herlev data with
an accuracy of 98.3% [32]. The performances are not directly
comparable since different data splitting methods are used,
i.e., we split data at patient-level, while previous studies are
random split. Also note that our method does not use any
feature engineering, only raw RGB image and segmentation
masks are used for CNN learning.

The Herlev dataset has 7-class cervical cells, specifically
containing four categories of cervical abnormalities, and
three categories of normal cells. There is only one previous
study (i.e., [13]) that reports the confusion matrix of fine-
grained classification result on this dataset. In our study,
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GooglLeNet-5C model obtains an average accuracy of 64.8%
for 7-class problem, which is 3.7% higher than that of 61.1%
in [13]. As shown in the confusion matrix in Fig. 4, some cells
are easier to be classified, while some are harder; superficial
and intermediate cells are classified with the highest accu-
racy. Some columnar cells are wrongly classified as severe
dysplasia cells because severe dysplasia cells have similar
characteristics in appearance and morphology with columnar
cells (e.g., dark nuclei and small-sized cytoplasm); This is
indeed a difficult point in the identification of cervical cells,
but it may be possible to improve this difficulty by adding
nuclear size characteristics. The fine-grained classification
of abnormal cells (i.e., mild dysplasia, moderate dysplasia,
severe dysplasia and carcinoma) remains very challenging.
In general, such a task is hard even for cyto-pathologists but
highly desirable and with significantly clinical value; The
most difficult case is moderate abnormal cell with correct
classification rate of only 37%.

Similar results can also be observed in Fig. 5 (i.e., 4-class
TBS). Only about 1% of Normal and LSIL cervical cells are
misclassified as cancer cells, which is potentially meaningful
for reducing unnecessary biopsy. The accuracy rate of cancer
cell classification is 54%. Improving of which is the direction
of future research effort.

The segmentation of nucleus and cytoplasm are pre-
required for applying our method. This is directly obtained
from the ground truth segmentation in this paper. Note that
screening of abnormal of cells in practice using the proposed
method requires automated segmentation of the nucleus and
cytoplasm. If the segmentation results are not reliable, it may
affect the classification performances. But our goal here is
fine-grained classification of the cervical cells, which is even
a very difficult task for experienced doctors. In order to
improve the classification accuracy first, we do not consider
the problem of automatic segmentation. The task of automatic
segmentation may be achieved by using fully convolutional
networks (e.g., U-Net) [36] or specifically designed algo-
rithm [37] for semantic segmentation of cervical cells. The
effects of automated segmentation on classification perfor-
mance still need to be analyzed in future study. Nevertheless,
the current results demonstrate that fine-grained classifica-
tion of cervical cells into different abnormal levels remains
to be very challenging even with accurate cell segmentation
available.

V. CONCLUSION

This paper proposes an appearance and morphology based
convolutional neural network method for cervical cell
fine-grained classification. Unlike the previous CNN-based
method which only uses raw image data as network input,
our method combines the raw image data with segmenta-
tion masks of the nucleus and cytoplasm as network input.
Our method consists of extracting cell image/mask patches
coarsely centered on the nucleus, transferring features from
another pre-trained model into a new model for fine-tuning on
the cervical cell image dataset, and forming the final network
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output. State-of-the-art CNN networks including AlexNet,
GooglLeNet, ResNet and DenseNet are trained for perfor-
mance comparison. The results show that the combination
of raw RGB data with segmentation masks of nuclei and
cytoplasm as network input can provide higher performance
in the fine-grained classification of cervical cells. Although
the initial results are promising, deep learning based fine-
grained cervical cell classification remains a very challenging
task for high precision diagnosis. Moreover, the effects of
automated segmentation of nucleus and cytoplasm on classi-
fication performance still need to be analyzed in future study.
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