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ABSTRACT The evolution of the smart cities’ research and the relevant discussion on well-being is
challenging the design of policies, information systems, and computational methods toward the alignment to
Sustainable Development Goals (SDG) of the United Nations. Sustainable GOAL 7—Affordable and Clean
Energy—is the focus of this paper. The requirement to integrate certain levels of renewable energy sources
into the electricity grids tomeet sustainabilitymeasures creates unfavorable variability in the entire electricity
supply chain and delays the integration of renewable energy sources into the energy systems. This paper
introduces a methodology and an optimization model for the electricity supply chain that allows reducing the
variability of the renewable energy sources supply by optimal planning of the supply chain operations. The
methodology supports electricity decision makers to identify the optimal operation of the electricity supply
chain, taking into account multiple objectives and supply chain designs, including innovative architectures.
Themulti-objective linearized optimizationmodel allows regulating the flow rates of energy andwater for the
electricity supply chain. Themethodologywas evaluated, considering three possible integration architectures
for the loads and real-time electricity pricing. For each of the studied architectures, the analysis showed the
optimal dispatching to reduce the energy variation due to the increasing renewable energy penetration into the
grid. The results show how themethodology can present decisionmakerswith optimal operation of the supply
chain, such that a minimum energy variation is achieved at a minimum cost. The key contribution of this
paper to the agenda of the special section entitled ‘‘Urban Computing&Well-being in Smart Cities: Services,
Applications, Policymaking Considerations’’ is multifold: It sets a scientific framework for the promotion of
the SDG #7 and innovates in the design and deliverable of a fully functional eco-system for the optimization
of the electricity supply chain. It also defines well-being as an affordable and clean energy primer.

INDEX TERMS Electricity supply industry, decision making, optimization, renewable energy sources,
power-generation economics, power grids.

I. INTRODUCTION
Integrating renewable energy sources into the electricity
grid provides immense opportunity to address many vital
energy-related issues including increasing climate change
and greenhouse gas emissions, reliance on fossil fuels, as well
as the volatility of energy prices because of highly variable

The associate editor coordinating the review of this manuscript and
approving it for publication was Anna Visvizi.

fossil fuel prices. However, due to the variability of renewable
energy sources, the increased adaption of renewable energy
comes at the expense of adding significant variability to
the electricity grid leading to generation concerns, increased
operational costs andmany other challenges facing electricity
supply chain [1].

The energy supply from renewables can be typically pre-
dicted given the installed systems capacity, efficiency levels,
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and the natural and climate characteristics of the geographical
sites such as temperature, Direct Normal Irradiance (DNI),
and wind speed. The variation of the supply significantly
affects the operations of the electricity utilities, particu-
larly as the portfolio of renewable energy sources increases.
For example, California Publicly Owned Utilities (POUs)
required to participate in the country’s largest renewable
energy purchase program. The POUs are required since early
2000s to source 33% of their electricity from renewables by
2020. This mandate was increased recently to reach 50% [2].
This level of adoption creates a major impact on electric-
ity supply chain operating costs. To lessen the impact of
renewables integration several control measures and tech-
niques involving additional costs are employed. Some of
the most commonly techniques include energy storage sys-
tems, operational balancing techniques, and many innova-
tive approaches including water desalination and electrical
vehicles [3].

This paper proposes an optimization modeling approach to
support decision making in the electricity supply chain. The
optimizationmodel allows for identifying efficient operations
to absorb the variability of the supply from the renewable
energy sources and thus allowing optimum integration of
renewables into the electricity grid. The main goal is to
optimize the operations such that the net load variations
caused by renewable energy over time is minimized. To prove
the concept of this approach, the paper investigates various
integration levels of renewables into the electricity supply
chain. In addition, the paper investigates various supply chain
design options (i.e., architectures) traditional and innovative
non-traditional solutions proposed in the literature to lessen
the impact of the integration of the renewables on the electric-
ity grid. These design options are investigated with various
integration control measures and techniques. These design
options vary from incorporating simple water desalination
system (i.e., reverse osmosis), to those with integrated energy
storage (i.e., batteries), to a reverse osmosis desalination
integrated with pumped hydro system. The proposedmodel is
unique in providing means to incorporate innovative and non-
traditional architectures, which are specifically important for
the electricity grid adaption to renewable energy sources. The
optimization results can be used to show that for a certain pen-
etration level of renewable sources, a range of load variation
reduction can be achieved for the range of design options of
the electricity supply chain.

Specifically, the main contributions of the current work
include. First, a methodology that supports electricity deci-
sionmakers to identify the optimal operation of the electricity
supply chain taking into account multiple objectives and sup-
ply chain designs including innovative architectures. Second,
a multi-objective linearized optimization model that allows
regulating the flow rates of energy and water for the design
components of the electricity supply chain.

The remaining sections of the paper are organized as fol-
lows. Section II provides a background discussion including
the techniques used to lessen the renewable energy impact on

the electricity grids. Section III discusses research questions.
Section IV provides details on the investigated architectures.
Section V discusses the proposed methodology to evaluate
the performance of the electricity supply chain. Section VI
proposes the mathematical model. Section VII presents a real
world case and its results. Section VIII concludes the paper
with discussion and future directions.

II. BACKGROUND
Renewable energy power plants generate electricity only
when the natural source is available unlike the conventional
power plants which are turned on and off by operators at will.
The direct relationship between renewable power generation
and weather conditions is inevitable. Control measures are
required to allow renewables full integration with the elec-
tricity grid and to lessen the impact of this integration on the
grid.

A. INTEGRATION TECHNIQUES
Some of the techniques commonly used to lessen the impact
of renewable energy integration on the electricity grid include
Energy Storage Systems, Operational balancingmethods, and
a variety of innovative solutions.

Energy Storage is mainly a controlled reservation of energy
in some form that can be released when needed. Electri-
cal energy can be converted into other forms of energy
for storage. Modern Storage Technologies can be grouped
into six main categories according to storage medium. The
most developed energy storage systems include Pumped
Hydro Storage, Compressed Air Energy Storage, Flywheels,
Lead-acid and Lithium-ion Batteries, High Temperature Bat-
teries, and Flow Batteries [4]–[6]. The design options dis-
cussed in this paper incorporate two of these systems,
PumpedHydro Storage (PHS) and the traditional Lithium-ion
Batteries (LiB). In the PHS, the electrical energy is used to
pump water to a higher elevation reservoir. Natural force of
gravity is used to allowwater to flow back to a lower elevation
water reservoir passing through turbines to generate power.
In spite of the high initial costs of the PHS, it can achieve an
efficiency of about 78% with low operating and maintenance
costs in addition to its long economic life span of about 50
years. The LiB falls under the highly mature technology (over
150 years) and stores electricity as a chemical potential to be
released later when needed as electricity [4]–[6].

It is very critical for the electricity grid operators to fore-
cast renewable energy variabilities in order to maintain an
adequate electricity availability to end user and to maintain a
certain required balance to the electricity grid. Several physi-
cal and statistical forecasting methods for weather conditions
are implemented to determine the amount of renewable elec-
tricity generated that will be injected into the electricity grid.
Operational practices also contribute to controlling the vari-
able generation of renewables. These practices are different
from one country to another due to differences in renewable
energy development, grid structure, market and institutional
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environments. Some of these practices include giving priority
to renewable energy generation to be injected into the grid and
enforcing upper limits on renewables generation [7], [8].

As more renewable energy penetrates the electricity
grid, improved stability and reliability of electricity sup-
ply becomes more critical. More flexibility needed to be
introduced to the electricity supply chain in order to pro-
vide the necessary balance between supply and demand of
electricity. This may include developing advanced renew-
able energy generating units, having a centralized renewable
energy generators control, and renewable energy modeling
improvement. Moreover, the fact that flexibility of renewable
energy systems is not mature yet and still under develop-
ment, increasing the flexibility in conventional power plants
(i.e. Hydro, crude oil, natural gas, coal, and nuclear) allows
finding the adequate capacity and the flexibility for the elec-
tricity grid. In addition, large-scale transmission network
expansions reduce the forecast errors for flexibility of renew-
able energy and enhance the balance between interconnected
areas. Penetrating the electricity grid with large amounts of
renewable energy creates sharp peaks that can be smoothened
by load shifting giving better opportunity for grid control [8].
Many of the demand side loads can be used as a deferrable
load such as water heating and desalination [9]–[11], elec-
trical vehicles and manufacturing systems battery charg-
ing [12]–[14]. The current work assumes that a combination
of storage systems and innovative techniques are being used
to address the variability issues. Specifically, the optimiza-
tion model assumes incorporating batteries, pumped hydro
storage, and water desalination solutions. The following sub-
section describes the optimization modeling approaches used
in the literature.

B. OPTIMIZATION MODELLING
Many researchers focused on optimizing the system design
of the electricity supply chain when integrating renew-
able energy sources. Connolly et al. [15] provides a review
of 37 computer-based tools for analyzing the integration of
renewable energy into various energy systems with different
objectives. Only a small number of these tools are focused
on optimizing energy system operations to accommodate
fluctuations of renewable energy generation mostly using
deterministic models, linear network models, and simulation
models. These tools are Energy plan [16], MesapPlaNet [17],
H2RES [18], and SimREN [19].

Many researchers developed optimization models to opti-
mize the system design. This requires taking into account
existing power sources, renewable sources, and energy stor-
age systems. These researchers primarily used nonlinear
models to solve sizing problems while the energy system
was modeled as a finite state machine. These models mainly
employ Genetic and Evolutionary algorithms and use Pareto
fronts to explore the possible solutions [20]–[22]. The other
approach focuses on optimizing operating conditions of the
system for each time step bymodeling them as decision space

variables and use in addition to Evolutionary and Genetic
algorithms Linear and Mixed Integer Linear Programming
in a two-level problem solving [23]–[26]. The later approach
can be used to solve for small-scale problems or for global
large size problems. The first approach requires precisely
defining the operating conditions for the electricity plants
and the storage. In addition, the number of the system states
increases exponentially with the number of the system com-
ponents. The second approach has its limitations as well spe-
ciallywhen solving a problemwith a large number of decision
space variables, which is reflected on the time requirement.
This paper addresses the issues in the current approaches
in the literature by providing a linearized model with three
decision variables that capture the flow rates between the
system components.

The approach followed in this paper optimizes the oper-
ating conditions specifically when both traditional and inno-
vative non-traditional solutions are employed as part of the
system design. These innovative solutions include desali-
nation systems and pump hydro systems. The linearized
multi-objective model used in this paper employs three deci-
sion variables to represent the flow rates from and to system
components. The objective function minimizes the undesir-
able variation of the load caused by the renewable generation
over time and the annualized costs associated with the system
design. Pareto efficiency is used to generate optimal solutions
capturing the multiple objectives of the decision makers (ben-
eficiaries) utilities. A Pareto frontier is composed by multiple
optimization runs evaluating the two objectives in which each
of the runs provides a Pareto efficient solution. A value (i.e.,
alpha) is used to allow the users to vary the weight of the two
objectives according to his/her priorities.

III. RESEARCH QUESTIONS
Within the overall context of smart cities and well-being
research, the issue or Energy Consumption & Optimization
towards affordable and clean energy for social inclusive eco-
nomic growth has a central position. The purpose of this
research study is to analyze the issue of Electricity Sup-
ply Chains as a Well-Being primer. Towards this direction,
the following are the key questions:

Research Question 1: How advanced computing methods
can promote optimization techniques towards Sustainable
GOAL 7: Affordable and Clean Energy?

Research Question 2: Which are the components of a
methodological framework and an optimization model for the
electricity supply chain that allow reducing the variability of
the renewable energy sources supply by optimal planning of
the supply chain operations?

Research Question 3:Which are the implications for Smart
Cities Research and well-being? It also defines well-being
as an Affordable and Clean energy primer. In our future
research, we are targeting the exploitation of machine learn-
ing computational intelligence for the improvement of the
performance.
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IV. ARCHITECTURES
The paper assumes three different design options or architec-
tures of the supply chain. These architectures are among the
most recommended innovative solutions to lessen the impact
of renewable energy integrations into the grid. They vary from
electricity grid with integrated simple Reverse Osmosis (RO)
desalination, to RO desalination integrated energy storage
(i.e., batteries), and an RO desalination integrated Pumped
Hydro. All three architecture operated by electricity grid that
is assumed to have various penetration levels of renewable
energy generated from solar photovoltaic fields. Figures 1
to 3 provide simple block diagrams to describe the three
architectures. The oval shapes are used for the energy source,
rectangle shapes for the mechanical components of the archi-
tecture, and rounded rectangle shapes for the energy storage
components. The decisions on optimal energy resource dis-
patching, and water and energy flow rates for each of these
architectures can then be used to demonstrate the optimal
performance for each architecture.

FIGURE 1. Electricity supply chain with solar source and simple RO
desalination (Architecture 1).

A. INTEGRATION USING SIMPLE RO DESALINATION
This architecture incorporates a simple RO desalination plant
used as a control measure to manage the energy flow. The
RO desalination system consists of three main parts, con-
ventional pumps, desalination unit (RO pre-treatment, mem-
brane, post treatment), and water tanks for operational stor-
age. The plant operated using electricity directly from the
grid. The water flow rates to pumps and RO desalination
units are variable depending on the operational decisions.
This variability of water flow rates is used to compensate
for the variability in the solar generation to the electricity
grid. Fig. 1 below shows a simple block diagram of this
architecture.

B. INTEGRATION USING RO DESALINATION
AND ENERGY STORAGE SYSTEM
The second architecture also incorporate a simple RO desali-
nation plant operated using electricity directly from the grid.
However, this architecture employs an energy storage sys-
tem. The system consists of four main parts, conventional
pumps, desalination unit (RO pre-treatment, membrane, and
post treatment), water tanks for operational storage, in addi-
tion to Lithium-Ion batteries as the energy storage system.
The water flow rates to pumps and RO desalination units
are variable depending on the operational decisions. The
variability of water flow rates and the energy storage levels
are both used to compensate for the variable generation of

FIGURE 2. Electricity supply chain with solar source, simple RO
desalination, and energy storage (Architecture 2).

solar energy. Fig. 2 below shows a simple block diagram of
this architecture.

C. INTEGRATION USING RO DESALINATION
AND PUMPED HYDRO STORAGE
The third architecture assumes an RO desalination plant inte-
grated with Pumped Hydro System. The RO plant is operated
using power directly from the grid. The system consists of
three main parts, pumps, two water reservoirs on two ele-
vations (high and low), and RO desalination unit. While the
water flow rate to RO unit is constant, the water flow rates
to pumps and water reservoirs are variable and depend on
the operational decisions to compensate for the variability
of solar generation. The constant flow rate to desalination
plant provides the advantages of steady operation and lower
operation and maintenance costs. Fig. 3 below describes the
architecture components.

FIGURE 3. Electricity supply chain with solar source and integrated RO
desalination and pumped hydro system (Architecture 3).

V. METHODOLOGY
The proposed methodology supports decision makers to
identify the optimal performance of the electricity supply
chain taking into account multiple objectives and supply
chain designs (i.e., architectures). The next five sub-sections
describe the methodology in details.

A. DESCRIPTION OF METHODOLOGY AND PARETO
OPTIMAL SOLUTIONS
The proposed methodology addresses two objectives. The
first objective minimizes the variation of the load caused by
the renewable generation over time. This objective addresses
the net load variability by using the flexibility inherent to
water desalination process. The flexibility is employed to
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obtain smoother net load profiles. The second objective min-
imizes the annualized costs associated with the solution. The
amount of variation reduction of each architecture is calcu-
lated from the historical load profiles and solar generation
versus operation with optimal planning of desalination load.
The details on how variation reduction is calculated are pro-
vided in the next sub-section. The cost of the solution of each
architecture is calculated based on the solution annualized
costs including its operational costs. The optimization runs
are used to generate the points of the Pareto front. The users
can use a small value to vary the weight of the objectives in
the objective function according to the user priorities. The
following describes the methodology in steps from the user’s
(i.e., the decision maker) point of view.

Given a certain set of architectures, we vary a small value
(α), solar energy penetration rate (P), and the size of the
desalination capacity (S).
• α ranges from 0 to 1 to represent the weight factor of the
two main optimization objectives, the variation and the
overall costs.

• P ranges from 0 to 100%, representing the percentage of
solar generation in respect to the overall load.

• S vary between medium, large, or very large with the
actual capacity depends on the location being investi-
gated.

For each architecture,
a) Set all user parameters but α (i.e., P and S) and run

first two runs with α set to 0 then to 1 to find the
value β which is a scaling factor used in the objective
function to compensate for the value variation in the
two objectives.

b) Use β value to run the optimization problem over
the full range of user parameters to find values of
Variation-Cost pairs.

c) Run the optimization problem for the optimal desalina-
tion operation with a single objective of cost minimiza-
tion. This means that α would be set to give full weight
to cost objective. Run the optimization for a range
of penetration rate values to find optimal annualized
cost for steady hourly RO desalination production. The
additional cost encountered to achieve the variation
reduction is then calculated by comparing the costs for
optimal desalination steady operation versus the costs
in step (b) above. The percentage of variation reduction
achieved and the cost of each unit of reduction is cal-
culated by comparing the variation levels for optimal
desalination steady operation versus the variation in
step (b).

B. ENERGY VARIATION REDUCTION
The impact of solar energy variability and various mitigation
strategies on the electricity grid was quantified by calculating
the degree to which the net load varied over a 24-hour period.
This difference, MAD, is defined as the net energy demand
deviation from the daily mean.MAD denotes the mean abso-
lute deviation i.e., the total deviation of F from the average

FIGURE 4. Net load variation over time.

F as shown in (1).

F =
1
24

24∫
0

F(t)dt (1)

MAD =
1
24

24∫
0

∣∣F(t)− F∣∣ dt (2)

This is shown graphically in Fig. 4, where the function F(t)
represents the net load over time and the shaded area is equal
to MAD according to (2).

Mitigation techniques, including deferring desalination
operation, will be evaluated in part on their ability to reduce
MAD, thereby reducing the impact on the utility. Quantifying
the energy demand variation in this manner allows the impact
of desalination plant operation to be demonstrated in one
number and simply incorporated into a multi-objective cost
function.

C. SOLAR ENERGY GENERATION CALCULATION
One of the goals of this work is to consider the impact of
ever increasing renewable penetration on the grid, where
penetration is defined as the fraction of yearly electricity load
met by renewable generation, i.e., solar generation in this
work. As such, solar penetration, P, is a variable input into
themodel allowing various scenarios to be considered. Yearly
solar generation, Gy, for a given scenario, is calculated as
P multiplied by the yearly load demand, Ly. Hourly solar
generation, Gh, can then be calculated using hourly solar
insolation values, Sh, and the total yearly insolation, Sy by
the following equation:

Gh = Gy ·
Sh
Sy
= P · Ly ·

Sh
Sy

(3)

Using (3), all that is needed to determine the amount of solar
generation in a given hour is (a) hourly solar insolation data,
(b) the total yearly load and (c) the degree of solar penetration

D. AVERGING TECHNIQUES
Optimizing operation over an entire year on an hourly
basis, while possible, is computationally expensive. How-
ever, capturing solar variation throughout the year is essential
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in determining the annual cost of operation. To this end,
the model input data is comprised of hourly data that has
been averaged over a given month. The model then considers
12 ‘‘days’’ of activity, where each ‘‘day’’ demonstrates the
average hourly behavior for a month of the year. For instance,
on the day representing January, the data used at 1am would
be the average behavior at 1am taken over the entire month
of January. While this averaging method does not account
for daily variation in solar generation, loads and pricing,
it does capture the more variable monthly variation and is
appropriate as a proof of concept for this approach.

E. COST MODEL
The cost model breaks down the cost by major system com-
ponents for each of the three architectures examined in this
work. The system total cost is defined as the annualized costs
of all system components in addition to the annual energy
consumption by each architecture. Table 1 shows the major
components considered in the model.

TABLE 1. Major architecture components.

Annuity factor is used in the model to adjust the value of
the capital investment to the present value. The total system
costs exclude the revenues of the system product, which is
the desalinated water. Water revenues are calculated from
the amounts of the water produced multiplied by the water
selling price. The hourly flow rate of each system component
determines the operational costs of the component. The oper-
ational costs are defined as the specific operational costs of a
system component multiplied by the flow rates in addition to
the replacement and maintenance costs. The specific capital
and operational costs for RO were estimated at $1320.86 and
$0.5 per cubic meter according to ADC low estimates for RO
in California [28]. These values were divided between system
components according the table below. The specific energy
consumption was estimated at 2.642 kWh per cubic meter of
water produced in California [28].

TABLE 2. RO Desalination cost and energy consumption breakdown [29].

The system cost of a specific architecture CA is defined
as the annualized costs of all system components, C(m),
in addition to the annual energy consumption of the system,
CE (m), and excluding the revenues of the desalinated water.
Water revenues are calculated from the amount of the water
produced, WP, multiplied by the water selling price, PW .

CA =
∑

m∈M
[C(m)+ CE (m)]+WP · PW (4)

The amount of water produced WP depends on the flow
rates of the last system component in each hour during
the system operation, depending on the architecture. The
monthly cost of the system energy consumption is defined as
the total hourly energy consumption of the system by energy
hourly price in addition to the monthly demand cost. Demand
costs are calculated from specific utility defined demand
charge ($/kWh) multiplied by the maximum load occurred
that month.

When batteries are used, the system cost would also
include battery cost CB. Battery cost depends on Battery
capital costs AB, battery capacity IB, battery usage UB and
battery lifespan capacity LB as follows.

CB =
AB · IB · UB

LB
(5)

where battery lifespan capacity LB depends on battery capac-
ity IB and number of cycles to failure of battery at 80% depth
of discharge FB and assuming 90% efficiency this value is
multiplied by 90%

LB = 0.9IB · FB (6)

The annualized costs of a system component combine the
investment and the operational costs. The investment costs of
a system component m depends on the cost of purchasing or
acquiring this component, N (m), which depends in return on
the maximum desalination capacity for the specific location,
Dmax , adjusted to the Annuity Factor f . The operational costs
of a system component m depend on the specific operational
cost of this component Hoc(m, h, t) and the number of days
in month t . Then the annualized costs of a system component
is defined as

C(m) = N (m).Dmax/f +
∑

t∈T
[Hoc(m, h, t).dt ] (7)

where the Annuity Factor depends on the interest rate i and
the time periods in the time horizon h. Then f is defined as

f =
1
i

[
1−

1

(1+ i)h

]
(8)

The hourly operational costs of a system component at a
specific time period, Hoc, is defined as the specific opera-
tional costs of a system component SC(m) multiplied by the
flow rates V of this system component at the specified time
period in addition to the hourly replacement and maintenance
costs and defined as N (m).Dmax .R(m). Then the hourly oper-
ational costs of a system component is defined as

Hoc(m, h, t)=SC(m).V (m, h, t)+N (m) · Dmax · R(m) (9)
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The cost of the energy consumption of the system depends
on the hourly consumption Hec and the price of energy at
the specific time period. The hourly energy consumption of
a system component at a specific time period, Hec defined
as the specific energy consumption of the system component
SE (m) multiplied by the flowrate of this system component
at the specific time period V (m, h, t) divided by the energy
efficiency of the system component, n(m).

Hec(m, h, t) =
SE (m) · V (m, h, t)

n(m)
(10)

When batteries are used, the hourly energy consumption
Hec(m, h, t) is adjusted by adding the battery current at the
specific time periodCH (h, t) to reflect the actual energy used
from the grid as follows.

Hec(m, h, t) =
SE (m) · V (m, h, t)

n(m)
+ CH (h, t) (11)

VI. MATHMATICAL MODEL
Consider a set of architectures A such that each architecture
defines a subset of system components from the component
setM={Pump, RO, Tank, Battery, PHS}. The setT represents
sample days each representing a month of the year. T = {1,
2, . . . .12} and the set H represents the hours of that sample
day H = {1, 2, . . . , 24}. The next sub-sections describe
the optimization model variables, objective functions, and
constraints.

A. DECISION VARIABLES
The following are the decision variables related to the flow
rates of system components:
V (m, h, t): the water flow rate of system component m in

hour h at sample day of the month t ∀m ∈ M , h ∈ H , t ∈ T
The model also defines two decision variables related to

battery operations:
So(h, t): the battery state of charge at the beginning of hour

h sample day of the month t ∀h ∈ H , t ∈ T
C H(h, t): the battery current resulting from charge / dis-

charge at the beginning of hour h at sample day of the month
t ∀h ∈ H , t ∈ T

B. MULTI-OBJECTIVE MODELLING
The model considers two objectives both are minimized. The
total net variation in the load and the total investment and
annualized costs of an architecture. The parameter α is used
to allow the decision maker to provide preference towards
one objective over the other. In case of α = 0 or α = 1 the
following objective function is used.

minObj = (1− α) · CA + α · Nvar (12)

The β is used as a scaler for the two objectives in the case
of 0.1 ≤ α ≤ 0.9. This parameter is needed to normalize
the values of the two objectives and its value is determined
by running the optimization for the extreme case of each

objective. The objective function is adjusted to

minObj=
1− α
β
·
(
CA−CA,α=0

)
+ α ·

(
NVar − NVar,α=1

)
(13)

C. CONSTRAINTS DEFINITION
The following constraints represent the limitations on the
operations of the system. The upper bound on the desalination
capacity, which is the flowrate of the system component at
a specific time period, V is defined as the maximum design
capacity Dmax adjusted to the desalination system capacity
factor DCF .

V (m, h, t) ≤ Dmax ∗ DCF (14)

In addition, another two simple constraints are used to
enforce the flow of water in the system. All desalinated
water should be sent to the storage tanks and all the pumped
water should be sent to RO unit at water recovery rate r .
In order to guarantee fixed water flowrate from RO unit while
considering the water losses fromRO unit in the case of A= 3
these operational constraints are replaced with the following
constraint.

V (m = RO, h, t) =
Dmax · DCF
r(m = RO)

(15)

The flowing constraint is used to guarantee fixed water
flowrate from PHS unit to RO unit.

V (m = PHS, h, t) = V (m = RO, h, t) (16)

and to pump up a day’s worth of water every day (plus
considering PHS water losses) the following constraint is
used

V (m = pump, h, t) ≥
24

r(m = PHS)
· V (m = PHS, h, t) (17)

The system energy consumption, Hec, should not exceed
the total load ξ (h, t) and the solar generation ζ (h, t).

Hec(m, h, t) ≤ ξ (h, t)+ ζ (h, t) (18)

The following constraints represent the limitations on the
operations of the batteries when used. The rates of charging
and discharging the battery CH are limited by the battery
defined maximum charging rates CD

−CD < CH (h, t) < CD, ∀h ∈ H , t ∈ T (19)

The battery of state of charge is defined as follows.
Case 1: the start of optimization period i.e., h = 1, t = 1,

then state of charge is always at 80% of the battery capacity.

SO(h, t) = 0.8 · IB, ∀h = 1 and t = 1 (20)

Case 2: the first hour of each sample day (except first
sample day covered above) h = 1, t ∈ T\{1}, then the state
of charge SO is equivalent to the last hour of the previous day
in addition to the battery current for this period

SO(h, t) = SO(h = 24, t − 1)+ CH (h, t) with h = 1,

∀t ∈ T\{1} (21)
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Case 3: the very last hour of each sample day h = 24,
t ∈ T , then battery is prepared to recharge for the first hour
next period cycle

SO(h, t) = SO(h = 1, t)− CH (h, t) with h = 24, ∀t ∈T

(22)

All other cases: the state of charge in a period SO is defined
as the state of charge in the previous period in addition to
changes in the battery current

So(h, t) = SO(h− 1, t)+ CH (h, t), with ∀h ∈ H , t ∈ T

(23)

The battery state of charge SO must be always between
0 and 95% of the battery capacity IB so that it is not degraded
and it is used efficiently

0 ≤ SO(h, t) ≤ 0.95 · IB

VII. CASE STUDY AND RESULTS
This section provides a real-world case from the state of
California to show the proposed methodology and the imple-
mentation of the mathematical model to optimize the perfor-
mance of the system against the three possible integration
architectures.

A. LOADS AND PRICING INPUT DATA
The case study considers the loads of a large section of
California by considering the publicly available hourly loads
of the entire PG&E network in 2015 [32]. This network
covers much of California going as north as Humboldt Coun-
try and as south as Santa Barbara County. Pricing data was
estimated by using the real-time pricing of the ZP-26 region
of CALISO [33] which includes the coastal region around
Los Angeles and Santa Barbara. In addition to real-time
pricing an estimated transmission and distribution charge of
$16.16/MWh was applied, consistent with what could be
expected for a customer attaching at 50 kV or above. As an
industrial customer, the desalination plant would also be
charged a demand charge, estimated as $4.50 per kW of peak
demand in a given month.

B. SOLAR ENERGY GENERATION
Solar insolation values were obtained from National Solar
Radiation Database for Los Angeles [34] in half hour incre-
ments for the year 2014. For this analysis solar insolation was
defined as the diffuse normal irradiance. The amount of solar
generation used in the model is a function of the desired level
of solar penetration, where solar penetration is defined as the
percentage of total load that is served by solar energy. For
the purpose of this analysis it was assumed that enough area
exists for solar panels to be deployed and serve this level of
generation. Three levels of solar penetration were considered
ranged between 10 and 30% maximum. As 30% of direct
integration on renewable energy sources is considered high
level and still beyond the reach of the grid in its current
status [35].

FIGURE 5. Architecture 1 results.

C. RESULTS
The results in this section organized by the integration
architecture, the solar penetration rates, and the size of
total installed desalination capacity. The range of the size
of installed desalination capacity was set to 10,000 Acre-
feet/year to represent Medium size, 150,000 Acre-feet/year
to represent Large size and 1M Acre-feet/year to represent
the Very Large size. For reference, the Carlsbad Desalination
Plant [36] in Carlsbad, CA, which is considered medium to
large size plant, generates 56,000 Acre-ft/year. The operation
costs for such system were not divided into the costs for indi-
vidual plants, but rather for the entire desalination network.
The results obtained in this section came from applying the
proposed methodology and running the optimization model
with the various design options as described above. The
generation of the Pareto front allows capturing both objec-
tives of the optimization to give the decision maker a clear
understanding of the trade-offs for each alternative solution.

1) ARCHITECTURE 1 OPTIMAL PERFORMANCE
Architecture 1 is the simplest architecture investigated, using
a desalination plant to defer load in an attempt to decrease
energy variation. Fig. 5 shows the result of themulti-objective
optimization of the yearlong dispatching for this architecture.
At each of the solar penetration levels investigated (i.e., 10,
20 and 30%) the optimized points were similar, with the 10%
penetration results yielding slightly better energy variation
reduction. The cost of reducing energy variation was between
$130-240/MWh. The Pareto fronts generated for Architec-
ture 1 considering the various solar penetration levels, give
the decision maker an understanding of the trade-off between
the energy variation reduction that can be achieved in return
of the increase in the operating costs. The highest reduction
with lowest cost increase is achieved with the Very Large
desalination capacity at 10% penetration level. However,
the decision maker might decide to go to higher penetration
levels or lower desalination capacities given the strategic
directions.

The impact of a medium sized desalination capacity is
minimal as it is only able to reduce energy variation by
a fraction of a percent. However, a Very Large desalina-
tion capacity, equivalent to 18 Carlsbad Desalination plants,
is capable of completely reducing the energy variation due to
10% solar penetration. The hourly dispatching of Architec-
ture 1 during an average day in July under 10% penetration
is shown in Fig. 6. Architecture 1 dispatching in July under
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FIGURE 6. Architecture 1 dispatching in july under 10% solar penetration.

10% solar penetration. The results show that when variation
is minimized the desalination flow rate goes to zero during
the period of high load and low solar generation (i.e., what is
known as the ‘‘neck’’ of the duck curve).

2) ARCHITECTURE 2 OPTIMAL PERFORMANCE
In Architecture 2, a 500MW battery farm was added and
made available as an additional source for load deferment.
This large battery farm was required to see any appreciable
difference from Architecture 1, with smaller batteries having
little to no impact in comparison with deferring desalina-
tion production. The addition of a battery farm this size
allowed for greater ability to defer load and to reduce net
energy variation as shown in Fig.7, and potentially a cheaper
energy variation reduction costs at a minimum of $106/MWh.
The Pareto fronts generated for Architecture 2 show that
the highest reduction with lowest cost is achieved with the
Very Large desalination capacity at 10% penetration level.
The Pareto fronts show the decision maker the trade-offs if
he/she decides to go to higher penetration levels or lower
desalination capacities.

FIGURE 7. Architecture 2 results.

Once again, when energy variation is minimized,
the desalination plant flow rate goes to zero during the period
of high load/low solar generation as shown in Fig. 8.

3) ARCHITECTURE 3 OPTIMAL PERFORMANCE
In Architecture 3, water is no longer pumped directly to
the desalination plant, but released from a Pumped Hydro
Storage system at a fixed rate, allowing the desalination plant
to run optimally at all times under all optimization conditions.
In this case, load deferment is achieved solely via the Pumped

FIGURE 8. Architecture 2 dispatching in july under 10% solar penetration.

FIGURE 9. Architecture 3 results.

FIGURE 10. Architecture 3 dispatching in july under 10% solar
penetration.

Hydro Storage. For the purpose of this case, the size is not
restricted, allowing for maximum impact on energy variation
reduction. This analysis does not consider the cost of creating
the necessary reservoir as the price of land is highly variable
depending on the location. Given the infinite size of the
reservoir, 100% energy variation reduction can be achieved
by any desalination plant size as shown in Fig.9. However,
the effective cost ranges several orders of magnitude with the
cheapest being $0.60/MWh of reduced energy variation.

The values of the objectives of the three architectures were
plotted in Fig.11 to allow a comparison of their performance.
Fig. 11 shows that Architecture 3 achieves the lowest cost for
reduced energy variation while Architectures 1 and 2 would
provide reasonable alternatives given the decision maker
preferences. However, Architectures 1 and 2 are the most
readily applied architectures and have a minimum energy
variation cost of $100-200/MWh reduced annual energy vari-
ation. It may be possible to achieve more cost effective
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FIGURE 11. Cost of energy variation reduction.

reduction with a Pumped Hydro Storage system employed in
Architecture 3 but the constraints on a PumpedHydro Storage
reservoir location added significant costs not included in this
analysis.

VIII. CONCLUSION AND FUTURE WORK
This work generated a methodology and a model apply-
ing multi-objective function and considering several supply
chain architectures to optimize both total cost and energy
variation in the electricity grid. It was shown the degree to
which the proposed methodology and model would assist
the decision maker in investigating possible non-traditional
alternatives for renewable integration in the electricity supply
chain. For each of the three studied innovative architectures,
the analysis showed the optimal dispatching to reduce energy
variation due to increasing solar energy penetration into the
grid. For each architecture, a family of results was generated
as the value of cost over energy variation reduction was
varied. By considering the trade-off between annual operating
costs and energy variation reduction, the price of variation
reduction was determined for the case. Through optimal
planning of water and energy flow rates and energy source
dispatching the minimum energy variation reduction along
with the minimum associated costs were achieved for each
architecture. It is very important to understand that address-
ing the well-being of cities’ inhabitants in smart cities can
be achieved only by bringing together city planners, practi-
tioners, policymakers, and researchers and using advanced
urban computation and innovative techniques such as the ones
discussed in this work and discussed by other researchers who
address the emerging topics in smart cities [37]–[39].

For future work, the models demonstrated in this paper
can be further expanded to include the details of a proposed
architecture, in addition to refining the economic model to
include more specific costs. As a future work, the model can
implement clustering algorithms on historical data in order
to extract representative days of solar production. This allows
incorporating the details of the solar profile variations instead
of averaging over one month. In addition, the objective of
minimum variation reduction can be enhanced by including
more complicated approaches according to the electrical

power system needs to provide more load flexibility. These
approaches might include price signal for rewarding flexibil-
ity and allowing plant operators to bid on various electric-
ity markets. In addition, the stochastic aspects of renewable
energy production and demand can be modeled using differ-
ent optimization formulations such as robust optimization,
chance-constrained optimization, or stochastic optimization
to include these uncertainties directly into the optimization
procedure. The key implications of this research in relevance
to the research objectives are provided as follows:

Research Question 1: How advanced computing methods
can promote optimization techniques towards Sustainable
GOAL 7: Affordable and Clean Energy?

Our unique value added contribution justifies advanced
computational methods and optimization research towards a
holistic ecosystem of determining factors. In a future direc-
tion, the proposed methodology and model will be supported
by machine learning techniques.

Research Question 2: Which are the components of a
methodological framework and an optimization model for the
electricity supply chain that allow reducing the variability of
the renewable energy sources supply by optimal planning of
the supply chain operations?

Our unique value added contribution justifies an integrated
approach: We proposed and justified with empirical testing a
methodology supports electricity decision makers to identify
the optimal operation of the electricity supply chain taking
into account multiple objectives and supply chain designs
including innovative architectures. We also integrated the
methodology with a multi-objective linearized optimization
model allows regulating the flow rates of energy and water
for the electricity supply chain.

Research Question 3:Which are the implications for Smart
Cities Research and well-being?

Our key methodological contributions defines well-being
as an Affordable and Clean energy primer.

The continuation of this study will focus on the integra-
tion of our methodological framework with Business Intel-
ligence and Analytics research, towards a fully functional
Energy Supply Chains optimization dashboard. In our future
research, we are targeting the exploitation of machine learn-
ing computational intelligence for the improvement of the
performance.
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