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ABSTRACT This paper presents a course following control method for ships based on optimized back-
stepping (OB) technology. The backstepping technology is employed as the main control framework since
the ship course can be modeled in the strict feedback form. Based on the actor-critic architecture and radial
basis function (RBF) neural network (NN), the reinforcement learning (RL) strategy is introduced to avoid
the difficulty in solving the traditional Hamilton-Jacobi-Bellman (HJB) equation directly. The actor NNs
are used for carrying out the control law, while the critic NNs aim at evaluating the tracking performance.
An auxiliary design system and Gaussian error function are employed to handle the practical problem of
input saturation. The stability of the closed-loop system can be guaranteed via Lyapunov theory. Finally,
simulation examples and comparison are provided to demonstrate and verify the superior performance and
advantages on course following and energy saving of the control scheme proposed in this paper.

INDEX TERMS Actor-critic architecture, Gaussian error function, input saturation, optimized backstepping,
ship course following.

I. INTRODUCTION
Due to the rising demands for higher safety level and energy
saving, ship motion control has attracted ubiquitous attention
for decades. As an important research branch in ship motion
control, the ship course following control is also investigated
in numerous literature [1]–[4]. The dynamic characteristics
of ship rudder, which is the vital equipment for steering ship
course, vary as soundings, navigational status, loading condi-
tions, exogenous disturbances (wind, current and wave, etc.),
so it is challenging to achieve satisfactory course following
performance by means of ship steering control because of
maneuverability difficulties [5] and high inherent nonlinear-
ity, especially in combination with consideration of energy
saving. Until now, backstepping has been one of the most
powerful and popular control scheme in the context of lower
triangular and strict feedback systems. Its basic principle is
to view the state variables as ‘‘virtual controls’’ and then
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to systematically design the virtual control laws and final
actual control law in a recursive design process. Backstep-
ping has also been widely applied in ship course following
control [6]–[8]. Although good tracking performance can be
achieved, the optimization of backstepping is not involved.

Since the ship sailing and maneuvering are at the cost of
massive energy consumption, which is more prominent and
conspicuous for larger ships, it is vitally necessary to take
the optimization and energy saving into consideration for
ship course following control. The optimal control is usually
achieved in the way of solving corresponding Hamilton-
Jacobi-Bellman (HJB) equation. However, it is very difficult
to solve the HJB equation directly due to its intractability
and inherent nonlinearity. To conquer the difficulty in solving
HJB equation, a novel optimized backstepping (OB) technol-
ogy is firstly put forward in [9] to achieve optimized control
by fusing optimization into backstepping technology based
on the actor-critic architecture. OB is applied in the ship
tracking control in [10]. However, the practical problem of
input saturation is not considered in [9], [10].
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Actuator saturation is a practical problem in ship course
control system due to the rudder angle limitation The satura-
tion constraints of actuator may deteriorate and degrade the
control performance, or even make system lose stability if
handled improperly [11]. On the other hand, violation of input
saturation may result in system damage and failure. Thus,
it is necessary to consider actuator saturation in the controller
design. Input saturation is usually expressed by the sign and
saturation functions [6]–[12], asymmetric non-smooth input
saturation [13]. In order to overcome the disadvantages of
sharp corner existing in general saturation functions when
reaching the saturation limits, the saturation is approximated
by a smooth hyperbolic functions [14]–[18] or Gaussian error
function [19].Moreover, an auxiliary design system [20], [21]
is further employed for the controller design with input satu-
ration and further stability analysis.

Model predictive control (MPC) is an important nonlinear
control technique to handle input constraints while consid-
ering optimality simultaneously. MPC has been applied to
a thrust allocation [22] and path following [23], [24] for
marine vessels to minimize the power consumption. How-
ever, the main drawback of MPC is the computational burden
of the optimization problem at each step [25].

Inspired by above-mentioned discussions, this manuscript
constructs an OB control scheme for ship course following
with actuator saturation. Two radial basis function (RBF)
neural networks (NNs) are constructed to execute the rein-
forcement learning (RL) algorithm, and actor NNs are
employed for executing the control law to obtain satisfied
tracking performance, and critic NNs are used for evaluat-
ing the tracking performance by minimizing Bellman error.
So the optimized control and Lyapunov stability can be guar-
anteed and balanced simultaneously, while the difficulty in
solving HJB equation can be well avoided by applying RBF
NNs with universal approximation ability [26].

Specifically, the main contributions of the paper are listed
as follows.
(1) By integrating the actor-critic architecture into back-

stepping, the OB control technique adopted by this
paper can minimize unnecessary energy losses and
prolong the service life of rudder by optimizing the
amplitude and operation frequency of rudder, which
may produce tremendous benefit on energy saving and
environment protection in maritime industry.

(2) The auxiliary design system and Gaussian error func-
tion are employed together to handle the physical
problem of actuator saturation, which is more appli-
cable and consistent to the actual ship manoeuvring
situation.

(3) Numerical simulation is implemented to illustrate the
effectiveness of the OB control technique. In addition,
comparative simulations with direct NN control and
MPC control are carried out to further demonstrate the
advantages of proposed control scheme.

The rest sections of the manuscript are organized as fol-
lows. Problem formulation including the ship course model,

RBF NNs and Gaussian error function are introduced briefly
in the Section II. In Section III, ship course following con-
troller is developed based on OB control approach, and the
stability analysis is presented. A simulation example and
comparisons are shown in Section IV to illustrate the satis-
factory tracking performance and energy saving performance
of the controller. Finally, the paper is concluded in Section V.

II. PROBLEM FORMULATION
A. NOTATIONS
Following notations will be used throughout the paper, || rep-
resents the absolute value of a scalar and ‖‖ denotes the
Euclidean norm of a vector or the Frobenius norm of a matrix.
Rn represents the n-dimensional Euclidean space.

B. MATHEMATICAL MODEL OF SHIP COURSE CONTROL
The mathematical model with respect to ship steering control
can be described as following [27]:

T ψ̈ + ψ̇ + αψ̇3
= Kδ (1)

The corresponding system parameters involved in equa-
tion (1) are listed in Table 1.

TABLE 1. Parameters of the ship course model.

By defining x1 = ψ , x2 = ψ̇ = r , Kδ/T = u,
the ship steering control model (1) can be transformed into
the following form:

ẋ1 = x2
ẋ2 = f2(x2)+ u
y = x1

(2)

where f2(x2) = −x2
/
T − αx32

/
T
.

Remark 1: Noted that the input controller u is developed
for the ship course model (2), so the actual control law δ for
system (1) can be derived by multiplying T/K .

C. SATURATION NONLINEAR MODEL
Definition 1[19]: Gaussian error function erf (x) is a class
of nonelementary function with sigmoid shape, it can be
defined as

erf(x) =
2
√
π

∫ x

0
e−t

2
dt (3)
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Remark 2 [19]: Gaussian error function is real-valued and
continuous differentiable, it has no singularities except at
infinity, and its Taylor expansion always converges.

According to definition 1, a smooth saturation nonlinearity
model can be expressed as following:

u(v) = uM × erf (av) (4)

where a =
√
π
/
(2uM ). The bounds of u(v) can be easily

adjusted by changing the value uM in the equation (4) to
match the input saturation.

To promote the successive controller design, construct a
function as following:

1v = uM × erf(av)− v(t) (5)

Then system (2) can be rewritten as
ẋ1 = x2
ẋ2 = f2(x2)+ (v+1v)
y = x1

(6)

D. RBF NN
RBFNN is usually utilized as a solution for modelling contin-
uous nonlinear functions due to its universal approximation
ability on a compact set [28]–[31].

In the manuscript, the following RBF NN [32], [33]
is employed to approximate any continuous function h(z):
Rq→ R

h(z) = W ∗T S(z)+ ε, ∀Z ∈ �z (7)

where Z =
[
z1, z2, · · · , zq

]T
∈ �z ⊂ Rq is the input

vector, W ∗ =
[
w∗1,w

∗

2, · · · ,w
∗
l

]T
∈ Rl is the vector of

ideal constant weight, l > 1 is the number of NN nodes;
‖ε‖ < εM is the corresponding approximation error with
a positive constant εM [34], [35]. Each si(Z ) in S(Z ) =
[s1(Z ), s2(Z ), · · · , sl(Z )]T is selected as the commonly used
Gaussian functions with following form

si(Z ) = exp

[
−(Z − µi)T (Z − µi)

η2i

]
, i = 1, 2, · · · , l (8)

where µi =
[
µi1, µi2, · · ·µiq

]T is the center of the receptive
field and ηi is the spread of the Gaussian function.

E. USEFUL LEMMAS
The following lemma will be used to simplify the stability
analysis.
Lemma 1 [36]: G(t) ∈ R is a continuous and positive

function with bounded initial value G(0). If the inequality
Ġ(t) ≤ −aG(t) + c holds, where a and c are constants, then
following inequality can be obtained:

G(t) ≤ e−atG(0)+
c
a
(1− e−at ) (9)

III. OB CONTROLLER DESIGN
An OB controller is designed in this section to track the refer-
ence course signal with superior performance and minimize
the energy cost in the condition of input saturation.
Step 1: Define the error variable z1 = x1 − yd , then

differentiate z1 with respect to time along (2), one has

ż1 = ẋ1 − ẏd = x2 − ẏd (10)

where yd is the desired course signal, and x2 is treated as the
intermediate controller.

Construct the infinite horizon value function as following

V1(z1) =
∫
∞

t
r1(z1, α1)ds (11)

where α1(z1) is the virtual control for the subsystem, and
r1(z1, α1) = z21 + α

2
1 is the cost function.

View α∗1 (z1) as the optimal virtual control to obtain the
following optimal value function.

V ∗1 (z1) = min
α1∈9(�1)

(∫
∞

t
r1 (z1, α1) ds

)
=

∫
∞

t
r1
(
z1, α∗1

)
ds (12)

where 9(�1) is the domain of admissible control policies
over the compact set �1.
The Hamiltonian function with respect to the value

function (12) is

H1(z1, α1,
∂V1
∂z1

) = r1(z1, α1)+
∂V1
∂z1

ż1 (13)

where ∂V1
/
∂z1 denotes the gradient of V1 associating

with z1.
The following HJB equation is defined based on

(12) and (13),

H1(z1, α∗1 ,
∂V ∗1
∂z1

) = z21 + α
∗2
1 +

∂V ∗1
∂z1

(α∗1 − ẏd ) = 0 (14)

Under the assumption that the solution for equation (14)
uniquely exists, the optimal virtual control α∗1 can be achieved
by solving ∂H1(z1, α∗1 , ∂V

∗

1

/
∂z1)

/
∂α∗1 = 0.

α∗1 = −
1
2

∂V ∗1
∂z1

(15)

Substituting (15) into (14), the following HJB equation
yields:

z21 −
∂V ∗1
∂z1

ẏd −
1
4
(
∂V ∗1
∂z1

)2 = 0 (16)

To facilitate the optimal virtual control design later, decom-
pose the optimal value function into two items as:

V ∗1 (z1) = β1z
2
1 − β1z

2
1 + V

∗

1 (z1) = β1z
2
1 + V

o
1 (z1) (17)

where β1 is a positive constant to be determined, and
V o
1 (z1) = −β1z

2
1 + V

∗

1 (z1).
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Inserting (17) into (15), it can be achieved that

α∗1 = −
1
2

∂V ∗1
∂z1
= −β1z1 −

1
2

∂V o
1 (z1)

∂z1
(18)

Considering the difficulty in solving the equation due to the
strong nonlinearities, the actor-critic architecture based RL is
proposed by means of the excellent approximating ability of
RBF NN as following:

∂V o
1 (z1)

∂z1
= W ∗T1 S1(z1)+ ε1(z1) (19)

where W ∗1 ∈ Rn is the ideal constant NN weight, n is the
neuron number; S1(z1) ∈ Rn is the Gaussian function vector;
the approximation error ε1(z1) ∈ R and its first derivative are
required to be bounded.

According to (19), the optimal value function and optimal
virtual control are rewritten as

∂V ∗1 (z1)

∂z1
= 2β1z1 +W ∗T1 S1(z1)+ ε1(z1) (20)

α∗1 = −β1z1 −
1
2
(W ∗T1 S1(z1)+ ε1(z1)) (21)

Substituting (20) and (21) into the HJB equation (14),
we have

H1(z1, α∗1 ,W
∗

1 ) = −(β
2
1 − 1)z21 − 2β1z1ẏd

−W ∗T1 S1(z1)(β1z1 + ẏd )

−
1
4
(W ∗T1 S1(z1))2 + ρ1 = 0 (22)

where ρ1 = ε1(α∗1 − ẏd )+ (1
/
4)ε21 ≤ 91 is bounded with a

positive constant 91.
Since W ∗1 is unknown, the following critic and actor NNs

are constructed to approximate the gradient term of optimal
value function and the optimal virtual control respectively:

∂V̂ ∗1 (z1)

∂z1
= 2β1z1 + Ŵ T

1cS1(z1) (23)

α̂∗1 = −β1z1 −
1
2
Ŵ T

1aS1(z1) (24)

where V̂ ∗1 (z1) and α̂
∗

1 are the estimations of V ∗1 (z1) and α
∗

1 ,
Ŵ T

1c and Ŵ T
1a are the critic and actor NN weights to esti-

mate W ∗1 , respectively.
Inserting (23) and (24) into (14), the approximated HJB

equation can be derived as

H1(z1, α̂1, Ŵ1c) = z21 + (β1z1 +
1
2
Ŵ T

1aS1(z1))
2

− (2β1z1 + Ŵ T
1cS1(z1))

×(β1z1 +
1
2
Ŵ T

1aS1(z1)+ ẏd )

= −(β21 − 1)z21 +
1
4
(Ŵ T

1aS1(z1))
2

− 2β1z1ẏd + σT
1 Ŵ1c (25)

where σ1 = −S1(z1)(β1z1 + (1/2)Ŵ T
1aS1(z1)+ ẏd ).

According to (22) and (25), the Bellman residual error is
yielded as

e1 = H1(z1, α̂1, Ŵ1c)− H1(z1, α∗1 ,W
∗

1 )

= H1(z1, α̂1, Ŵ1c) (26)

Define a positive definite function with respect to the
Bellman residual error as following:

E1 =
1
2
e21 (27)

Based on the gradient descent algorithm, the following
updating law for critic NN weight is yielded to minimize the
Bellman residual error:

˙̂W1c = −
γ1c

1+ ‖σ1‖2
∂E1

∂Ŵ1c
= −

γ1c

1+ ‖σ1‖2
e1
∂e1
∂Ŵ1c

= −
γ1c

1+ ‖σ1‖2
H1(z1, α̂1, Ŵ1c)σ1

= −
γ1c

1+ ‖σ1‖2
σ1(σ T1 Ŵ1c

− (β21 − 1)z21 − 2β1z1ẏd +
1
4
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a)

(28)

where the learning rate γ1c is positive.
The updating law for actor NN weight is denoted as

following:

˙̂W1a =
1
2
S1(z1)z1 − γ1aS1(z1)ST1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
S1(z1)ST1 (z1)Ŵ1aσ

T
1 Ŵ1c (29)

where the learning rate γ1a is positive.
Assumption 1 ([37] Persistence of Excitation (PE)): The

signal of σ1σ T1 should satisfy persistent excitation over the
interval [t, t + tσ1], with positive constants kσ1, kσ1, tσ1 for
all t to satisfy:

kσ1In ≤ σ1σ
T
1 ≤ kσ1In (30)

where In ∈ Rn×n is identity matrix.
Define the error variable z2 = x2 − α̂∗1 , the error dynamic

(10) changes to

ż1 = z2 + α̂∗1 − ẏd (31)

Design the positive definite Lyapunov function as
following

L1 =
1
2
z21 +

1
2
W̃ T

1aW̃1a +
1
2
W̃ T

1cW̃1c (32)
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where W̃1c = Ŵ1c − W ∗1 , and W̃1a = Ŵ1a − W ∗1 . The time
derivative of L1 along (29), (30), and (32) is

L̇1 = z1(z2 + α̂∗1 − ẏd )+ W̃
T
1a × (

1
2
S1(z1)z1

− γ1aS1(z1)ST1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
S1(z1)ST1 (z1)Ŵ1aσ

T
1 Ŵ1c)

−
γ1c

1+ ‖σ1‖2
W̃ T

1cσ1

×(σ T1 Ŵ1c − (β21 − 1)z21 − 2β1z1ẏd

+
1
4
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a)

(33)

Substituting (24) into (33), we have

L̇1 = −β1z21 + z1z2 − z1ẏd −
1
2
z1Ŵ T

1aS1(z1)

+
1
2
W̃ T

1aS1(z1)z1 − γ1aW̃
T
1aS1(z1)S

T
1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)S
T
1 (z1)

·Ŵ1aσ
T
1 Ŵ1c −

γ1c

1+ ‖σ1‖2
W̃ T

1cσ1(σ
T
1 Ŵ1c

− (β21 − 1)z21 − 2β1z1ẏd

+
1
4
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a) (34)

By applying W̃1a = Ŵ1a−W ∗1 , the following results yield:

−
1
2
z1Ŵ T

1aS1(z1)+
1
2
W̃ T

1aS1(z1)z1

= −
1
2
z1W ∗T1 S1(z1)− γ1aW̃ T

1aS1(z1)S
T
1 (z1)Ŵ1a

= −
γ1a

2
W̃ T

1aS1(z1)S
T
1 (z1)W̃1a

−
γ1a

2
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a +

γ1a

2
W ∗T1 S1(z1)ST1 (z1)W

∗

1

(35)

Substituting above results into (34), one has

L̇1 = −β1z21 + z1z2 − z1ẏd −
1
2
z1W ∗T1 S1(z1)

−
γ1a

2
W̃ T

1aS1(z1)S
T
1 (z1)W̃1a−

γ1a

2
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a

+
γ1a

2
W ∗T1 S1(z1)ST1 (z1)W

∗

1

+
γ1c

4(1+ ‖σ1‖2)
· W̃ T

1aS1(z1)S
T
1 (z1)Ŵ1aσ

T
1 Ŵ1c

−
γ1c

1+ ‖σ1‖2
W̃ T

1cσ1(σ
T
1 Ŵ1c − (β21 − 1)z21

− 2β1z1ẏd +
1
4
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a) (36)

The following facts can be obtained according to the
Young’s inequality:

z1z2 ≤
1
2
z21 +

1
2
z22

− z1ẏd ≤
1
2
z21 +

1
2
ẏ2d

−
1
2
z1W ∗T1 S1(z1) ≤

1
4
z21 +

1
4
(W ∗T1 S1(z1))2 (37)

Based on aforementioned inequalities, the equation (36)
can be rewritten as:

L̇1 ≤
1
2
z22 − (β1 −

5
4
)z2

1
−
γ1a

2
W̃ T

1aS1(z1)S
T
1 (z1)W̃1a

−
γ1a

2
Ŵ T

1aS1(z1) · S
T
1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)S
T
1 (z1)Ŵ1aσ

T
1 Ŵ1c

−
γ1c

1+ ‖σ1‖2

·W̃ T
1cσ1(σ

T
1 Ŵ1c − (β21 − 1)z21 − 2β1z1ẏd

+
1
4
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a)

+
1
2
ẏ2d +

1+ 2γ1a
4

(W ∗T1 S1(z1))2 (38)

The following fact can be derived according to
equation (22):

− (β21 − 1)z21 − 2β1z1ẏd

= −σ T1 W
∗

1 −
1
2
Ŵ T

1aS1(z1)S
T
1 (z1)W

∗

1

+
1
4
W ∗T1 S1(z1)ST1 (z1)W

∗

1 − ρ1 (39)

Inserting (39) into (38) yields

L̇1 ≤
1
2
z22 − (β1 −

5
4
)z2

1
−
γ1a

2
W̃ T

1aS1(z1)S
T
1 (z1)W̃1a

−
γ1a

2
Ŵ T

1aS1(z1) · S
T
1 (z1)Ŵ1a

+
γ1a

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)S
T
1 (z1)Ŵ1aσ

T
1 Ŵ1c

−
γ1c

1+ ‖σ1‖2
W̃ T

1c · σ1(σ
T
1 W̃1c −

1
2
Ŵ T

1aS1(z1)S
T
1 (z1)W

∗

1

+
1
4
W ∗T1 S1(z1)ST1 (z1)W

∗

1+
1
4
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a − ρ1)

+
1
2
ẏ2d +

1+ 2γ1a
4

(W ∗T1 S1(z1))2 (40)

Considering the following facts:

−
1
2
Ŵ T

1aS1(z1)S
T
1 (z1)W

∗

1 +
1
4
W ∗T1 S1(z1)ST1 (z1)W

∗

1

+
1
4
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a =

1
4
W̃ T

1aS1(z1)S
T
1 (z1)Ŵ1a

−
1
4
W ∗T1 S1(z1)ST1 (z1)W̃1a (41)
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γ1c

1+ ‖σ1‖2
W̃ T

1cσ1ρ1 ≤
γ1c

2(1+ ‖σ1‖2)
ρ21

+
γ1c

2(1+ ‖σ1‖2)
W̃ T

1cσ1σ
T
1 W̃1c (42)

The inequality (40) can be expressed as

L̇1 ≤
1
2
z22 − (β1 −

5
4
)z2

1
−
γ1a

2
W̃ T

1aS1(z1)S
T
1 (z1)W̃1a

−
γ1a

2
Ŵ T

1a · S1(z1)S
T
1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)S
T
1 (z1)Ŵ1aσ

T
1 Ŵ1c

−
γ1c

1+ ‖σ1‖2
W̃ T

1cσ1σ
T
1 W̃1c

−
γ1c

4(1+ ‖σ1‖2)
W̃ T

1cσ1W̃
T
1aS1(z1)S

T
1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
W̃ T

1cσ1W
∗T
1 S1(z1)ST1 (z1)W̃1a

+
1+ 2γ1a

4
(W ∗T1 S1(z1))2 +

γ1c

2(1+ ‖σ1‖2)
ρ21

+
γ1c

2(1+ ‖σ1‖2)
W̃ T

1cσ1σ
T
1 W̃1c +

1
2
ẏ2d

=
1
2
z22 − (β1

−
5
4
)z2

1
−
γ1a

2
W̃ T

1aS1(z1)S
T
1 (z1)W̃1a

−
γ1c

2(1+ ‖σ1‖2)
· W̃ T

1cσ1σ
T
1 W̃1c

−
γ1a

2
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1) · S
T
1 (z1)Ŵ1aσ

T
1 Ŵ1c

−
γ1c

4(1+ ‖σ1‖2)
W̃ T

1cσ1W̃
T
1aS1(z1)S

T
1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
W̃ T

1cσ1W
∗T
1 S1(z1)ST1 (z1)W̃1a

+
1+ 2γ1a

4
(W ∗T1 S1(z1))2 +

γ1c

2(1+ ‖σ1‖2)
ρ21 +

1
2
ẏ2d

(43)

Based on the following conclusion:

γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)S
T
1 (z1)Ŵ1aσ

T
1 Ŵ1c

−
γ1c

4(1+ ‖σ1‖2)
W̃ T

1cσ1W̃
T
1aS1(z1) · S

T
1 (z1)Ŵ1a

=
γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)Ŵ
T
1cσ1S

T
1 (z1)Ŵ1a

−
γ1c

4(1+ ‖σ1‖2)
· W̃ T

1aS1(z1)W̃
T
1cσ1S

T
1 (z1)Ŵ1a

=
γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)W
∗T
1 σ1ST1 (z1)Ŵ1a (44)

The inequality (43) becomes:

L̇1 ≤
1
2
z22 − (β1 −

5
4
)z2

1
−
γ1a

2
W̃ T

1aS1(z1)S
T
1 (z1)W̃1a

−
γ1c

2(1+ ‖σ1‖2)
W̃ T

1cσ1σ
T
1 W̃1c−

γ1a

2
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)W
∗T
1 σ1ST1 (z1)Ŵ1a

+
γ1c

4(1+ ‖σ1‖2)
W̃ T

1cσ1W
∗T
1 S1(z1)ST1 (z1)W̃1a

+
1+ 2γ1a

4
(W ∗T1 S1(z1))2 +

γ1c

2(1+ ‖σ1‖2)
ρ21 +

1
2
ẏ2d

(45)

Following inequalities yield by using Young’s inequality:

γ1c

4(1+ ‖σ1‖2)
W̃ T

1aS1(z1)W
∗T
1 σ1ST1 (z1)Ŵ1a

≤
1
32
W̃ T

1aS1(z1)W
∗T
1 σ1σ

T
1 W

∗

1 S
T
1 (z1)W̃1a

+
γ 2
1c

2
Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a (46)

γ1c

4(1+ ‖σ1‖2)
W̃ T

1cσ1W
∗T
1 S1(z1)ST1 (z1)W̃1a

≤
1

32(1+ ‖σ1‖2)
· W̃ T

1cσ1W
∗T
1 S1(z1)ST1 (z1)W

∗

1 σ
T
1 W̃1c

+
γ 2
1c

2
W̃ T

1aS1(z1)S
T
1 (z1)W̃1a (47)

Adding above inequalities into (45), we have

L̇1 ≤
1
2
z22 − (β1 −

5
4
)z2

1
− (

γ1a

2

−
γ 2
1c

2
−

1
32
W ∗T1 σ1σ

T
1 W

∗

1 ) · W̃
T
1aS1(z1)S

T
1 (z1)W̃1a

−
1

1+ ‖σ1‖2
(
γ1c

2
−

1
32
W ∗T1 S1(z1)

·ST1 (z1)W
∗

1 )W̃
T
1cσ1σ

T
1 W̃1c

− (
γ1a

2
−
γ 2
1c

2
)Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a

+
1+ 2γ1a

4
(W ∗T1 S1(z1))2 +

γ1c

2(1+ ‖σ1‖2)
ρ21 +

1
2
ẏ2d

(48)

Rewrite above inequality to following compact form

L̇1 ≤ −ξT1 A1ξ1 + C1 +
1
2
z22

− (
γ1a

2
−
γ 2
1c

2
)Ŵ T

1aS1(z1)S
T
1 (z1)Ŵ1a (49)

where

ξ1 = [z1, W̃ T
1a, W̃

T
1c]

T

A1 =

β1 −
5
4

0 0

0 a22 0
0 0 a33


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a22 = (
γ1a

2
−
γ 2
1c

2
−

1
32
W ∗T1 σ1σ

T
1 W

∗

1 )S1(z1)S
T
1 (z1)

a33 =
1

1+ ‖σ1‖2
(
γ1c

2
−

1
32
W ∗T1 S1(z1)ST1 (z1)W

∗

1 )σ1σ
T
1

C1 =
1+ 2γ1a

4
(W ∗T1 S1(z1))2 +

γ1c

2(1+ ‖σ1‖2)
ρ21 +

1
2
ẏ2d

According to assumption 1, the above matrix A1 can be
positive definite by choosing appropriate design parameters
under following conditions:

β1 >
5
4

γ1a > γ 2
1c +

kσ1
16

W ∗T1 W ∗1

γ1c >
1
16

sup
t≥0

{
W ∗T1 S1(z1)ST1 (z1)W

∗

1

}
(50)

Remark 3: Above requirements listed in (50) for design
parameters are only for theoretical analysis to prove the
existence of corresponding parameters. The actual value may
be allowed to be smaller than above limits, especially for the
parameter β1. Better tracking performance may be obtained
by setting smaller value for β1 due to the huge inertia of
ship. Based on above analysis and trial and error, the value
of β1 should be small enough to resist the overshoot, other-
wise, the actual trajectory will fluctuate sharply around the
reference signal.

Then (49) can be further rewritten as:

L̇1 ≤
1
2
z22 − a1 ‖ξ1‖

2
+ c1 (51)

where a1 = inft≥0 {λmin {A1}}, c1 = supt≥0 {C1}.
Step 2: Differentiate the error variable z2 and obtain

ż2 = ẋ2 − ˙̂α∗1 = f2(x2)+ v− ˙̂α∗1 (52)

The optimal cost function is defined as

V ∗2 (z2) = min
v∈9(�v)

(
∫
∞

t
r2(z2, v)ds) =

∫
∞

t
r2(z2, v∗)ds (53)

where r2(z2, v) = z22 + v
2, �v is a compact set, v∗ is the cor-

responding optimal control without considering saturation.
Next, the HJB equation is constructed as

H2(z2, v∗,
∂V ∗2
∂z2

) = z22 + v
∗2
+
∂V ∗2
∂z2

ż2 = z22 + v
∗2

+
∂V ∗2
∂z2

(f2(x2)+ v∗ − ˙̂α∗1 ) = 0 (54)

The optimal control v∗ can be calculated by solving
(∂H2

/
∂v∗) = 0.

v∗ = −
1
2

∂V ∗2
∂z2

(55)

Decompose the optimal cost function as

V ∗2 (z2) = β2z
2
2 −

∫
∞

0
2eż2dt−β2z22 +

∫
∞

0
2eż2dt

+V ∗2 (z2) = β2z
2
2 −

∫
∞

0
2eż2dt + V o

2 (z2) (56)

where β2 is a positive constant to be designed, and V o
2 (z2) =

−β2z22 +
∫
∞

0 2eż2dt + V ∗2 (z2).
Substituting (56) into (55), the optimal control can be

transformed into following form:
∂V ∗2
∂z2
= 2β2z2 − 2e+

∂V o
2 (z2)

∂z2

v∗ = −β2z2 + e−
1
2

∂V o
2 (z2)

∂z2
(57)

Approximate the uncertain term ∂V o
2 (z2)

/
∂z2 by NNs as

∂V o
2 (z2)

∂z2
= W ∗T2 S2(z2)+ ε2(z2) (58)

whereW ∗2 ∈ R
m is the ideal constant weight; and S2(z2) ∈ Rm

is the Gaussian function vector; ε2(z2) ∈ R is approximation
error.

The equation (57) can be rewritten as
∂V ∗2 (z2)

∂z2
= 2β2z2 − 2e+W ∗T2 S2(z2)+ ε2(z2) (59)

v∗ = −β2z2 + e−
1
2
(W ∗T2 S2(z2)+ ε2(z2)) (60)

where ε2 is bounded and satisfies ‖ε2‖ ≤ δ2, with the positive
constant δ2.

Substituting (52), (59) and (60) into (54), we have

H2(z2, v∗,W ∗2 ) = z22 + (−β2z2 + e−
1
2
W ∗T2 S2(z2)

−
1
2
ε2(z2))v∗ + (2β2z2 − 2e+W ∗T2 S2(z2)+ ε2(z2))

·(f2(x2)+ v∗ − ˙̂α∗1 ) = z22 − β
2
2 z

2
2 − e

2

−
1
4
(W ∗T2 S2(z2))2 −

1
4
ε2(z2)2 + β2z2e−

1
2
β2z2W ∗T2

S2(z2)−
1
2
β2z2ε2(z2)+ β2z2e+

1
2
W ∗T2 S2(z2)e

+
1
2
ε2(z2)e−

1
2
β2z2W ∗T2 S2(z2)+

1
2
W ∗T2 S2(z2)e

−
1
4
W ∗T2 S2(z2)ε2(z2)−

1
2
β2z2ε2(z2)+

1
2
ε2(z2)e

−
1
4
W ∗T2 S2(z2)ε2(z2)+ (2β2z2 − 2e+W ∗T2 S2(z2)

+ ε2(z2))(f2(x2)− ˙̂α∗1 ) = −(β
2
2 − 1)z22 + 2β2z2

(f2(x2)− ˙̂α∗1 )+W
∗T
2 S2(z2)(f2(x2)− ˙̂α∗1 − β2z2 + e)

−
1
4
(W ∗T2 S2(z2))2 + ε2(z2)(f2(x2)− ˙̂α∗1 + v

∗)

+
1
4
ε2(z2)2 + e(2β2z2 − e− 2f2(x2)+ 2 ˙̂α∗1 )

= −(β22 − 1)z22 + 2β2z2(f2(x2)− ˙̂α∗1 )+W
∗T
2 S2(z2)

(f2(x2)− ˙̂α∗1 − β2z2 + e)−
1
4
(W ∗T2 S2(z2))2 + ρ2(t)

+ e(2β2z2 − e− 2f2(x2)+ 2 ˙̂α∗1 ) = 0 (61)
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where ρ2 = ε2(f2(x2)− ˙̂α∗1 + v
∗)+ (1

/
4)ε22 . Due to all terms

included in ρ2 are bounded, it is obviously that ρ2 is also
bounded, i.e., |ρ2| ≤ 92.
Considering the ideal weightW ∗2 is not known, the gradient

term of optimal value function and optimal control can be
approximated by employing critic and actor NN respectively.

∂V̂ ∗2 (z2)

∂z2
= 2β2z2 − 2e+ Ŵ T

2cS2(z2) (62)

v = −β2z2 + e−
1
2
Ŵ T

2aS2(z2) (63)

where V̂ ∗1 (z1) and v are the estimations of V ∗1 (z1) and v∗,
Ŵ T

1c and Ŵ T
1a are the critic and actor NN weights to esti-

mate W ∗1 , respectively.
Inserting (62) and (63) into (61), the approximated HJB

equation can be derived as

H2(z2, v, Ŵ2c) = z22 + (−β2z2

+ e−
1
2
Ŵ T

2aS2(z2))
2

+ (2β2z2 − 2e+ Ŵ T
2cS2(z2))× (f2(x2)− ˙̂α∗1 − β2z2

+ e−
1
2
Ŵ T

2aS2(z2)) = −(β
2
2 − 1)z22 + 2β2z2(f2(x2)

− ˙̂α∗1 )+
1
4
Ŵ T

2aS2(z2))
2
+ Ŵ T

2cσ2

+ e
[
2β2z2 − e− 2(f2(x2)− ˙̂α∗1 )

]
(64)

where

σ2 = S2(z2)(f2(x2)− ˙̂α∗1 − β2z2 + e−
1
2
Ŵ T

2aS2(z2)) ∈ Rm

Similar with step 1, introduce a positive definite function
asE2 = (1

/
2)e22, then construct the updating law for the critic

NN weight by using gradient descent algorithm:

˙̂W2c = −
γ2c

1+ ‖σ2‖2
e2
∂e2
∂Ŵ2c

= −
γ2c

1+ ‖σ2‖2
σ2{

σ T2 Ŵ2c − (β22 − 1)z22 + 2β2z2(f1(x2)− ˙̂α∗1 )

+
1
4
Ŵ T

2aS2(z2)S
T
2 (z2)Ŵ2a

+ e
[
2β2z2 − e− 2(f2(x2)− ˙̂α∗1 )

]}
(65)

where the learning rate γ2c is positive.
The updating law for actor NN weights

˙̂W2a =
1
2
S2(z2)z2 − γ2aS2(z2)ST2 (z2)Ŵ2a

+
γ2c

4(1+ ‖σ2‖2)
S2(z2)ST2 (z2)Ŵ2aσ

T
2 Ŵ2c (66)

where the learning rate γ2a is positive.
Construct the Lyapunov function for the whole system as

follows:

L(t) = L1 +
1
2
z22 +

1
2
W̃ T

2aW̃2a +
1
2
W̃ T

2cW̃2c +
1
2
e2 (67)

where W̃2c = Ŵ2c − W ∗2 and W̃2a = Ŵ2a − W ∗2 are
approximation errors for the critic and actor NN weights
respectively. The e is an auxiliary design system to handle the
practical problem of input saturation, it has following form:

ė =

−ke−
|z21v| + 0.51v2

e2
e+1v, |e| ≥ ε

0, |e| < ε

(68)

The following results can be obtained:

eė =

−ke2 − |z21v| −
1
2
1v2 + e1v

0
(69)

By using the Young’s inequality, we have

e1v ≤
1
2
e2 +

1
2
1v2 (70)

Expression (69) can be rewritten as

eė ≤

{
−ke2 − |z21v| + 1

2e
2

0

=

{
−(k − 1

2 )e
2
− |z21v|

0
(71)

Differentiate L(t) along (52), (65), and (66), then obtain
following result:

L̇(t) = L̇1 + z2(f2(x2)− ˙̂α∗1 + v+1v)+ W̃
T
2a(

1
2
S2(z2)z2

− γ2aS2(z2)ST2 (z2)Ŵ2a +
γ2c

4(1+ ‖σ2‖2)
S2(z2)ST2 (z2)

·Ŵ2aσ
T
2 Ŵ2c)−

γ2c

1+ ‖σ2‖2
W̃ T

2cσ2(σ
T
2 Ŵ2c−(β22 − 1)z22

+ 2β2z2(f2(x2)− ˙̂α∗1 )+
1
4
Ŵ T

2aS2(z2)S
T
2 (z2)Ŵ2a

+ e(2β2z2 − e− 2f2(x2)+ 2 ˙̂α∗1 ))+ eė (72)

Similar with the process from (34) to (48) in step 1, the
following inequality can be ultimately derived.

L̇(t) ≤ L̇1 − (β2 −
5
4
)z22

+
1
2
f2(x2)2 +

1+ 2γ2a
4

(W ∗T2 S2(z2))2

+ z2e+
1
2
˙̂α∗21 − (

γ2a

2
−
γ 2
2c

2

−
1
32
W ∗T2 σ2σ

T
2 W

∗

2 )W̃
T
2aS2(z2)

·ST2 (z2)W̃2a −
1

1+ ‖σ2‖2
(
γ2c

2
−

1
32
W ∗T2 S2ST2 W

∗

2 )

·W̃ T
2cσ2σ

T
2 W̃2c − (

γ2a

2
−
γ 2
2c

2
)Ŵ T

2aS2(z2)S
T
2 (z2)Ŵ2a

+
γ2c

2(1+ ‖σ2‖2)
ρ22 − (k −

1
2
)e2 (73)
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The following results can be easily obtained according to
the Young’s inequality:

γ2c

1+ ‖σ2‖2
W̃ T

2cσ22ef2(x2) ≤ γ2c(f2(x2)W̃
T
2cσ2)

2
+ γ2ce2

(74)

−
γ2c

1+ ‖σ2‖2
W̃ T

2cσ22e ˙̂α
∗

1 ≤ γ2c( ˙̂α
∗

1W̃
T
2cσ2)

2
+ γ2ce2

(75)

The inequality (73) can be further transformed into the
following form:

L̇(t) ≤ L̇1 − (β2 −
7
4
)z22 +

1
2
f2(x2)2

+
1+ 2γ2a

4
(W ∗T2 S2(z2))2 +

1
2
˙̂α∗21

−(
γ2a

2
−
γ 2
2c

2
−

1
32
W ∗T2 σ2σ

T
2 W

∗

2 )W̃
T
2aS2(z2)S

T
2 (z2)W̃2a

− (
γ2c

2
−

1
32
W ∗T2 S2ST2 W

∗

2 )W̃
T
2cσ2σ

T
2 W̃2c

− (
γ2a

2
−
γ 2
2c

2
)Ŵ T

2aS2(z2)S
T
2 (z2)Ŵ2a

+
γ2c

2(1+ ‖σ2‖2)
ρ22 − (k − 1)e2

≤ L̇1 − (β2 −
7
4
)z22 − (

γ2a

2
−
γ 2
2c

2

−
1
32
W ∗T2 σ2σ

T
2 W

∗

2 )W̃
T
2aS2(z2)

ST2 (z2)W̃2a − (
γ2c

2
−

1
32
W ∗T2 S2ST2 W

∗

2 )W̃
T
2cσ2σ

T
2 W̃2c

+
γ2c

2(1+ ‖σ2‖2)
ρ22 +

1
2
f2(x2)2

+
1
2
˙̂α∗21 +

1+ 2γ2a
4

(W ∗T2 S2(z2))2−(k − 1)e2 (76)

Based on previous results, (76) can be denoted in a compact
form as

L̇(t) ≤ −a1 ‖ξ1‖2 + c1 − ξT2 A2ξ2 + C2 (77)

where

ξ2 = [z2, W̃ T
2a, W̃

T
2c, e]

T

A2 =


β2 −

9
4

0 0 0

0 b22 0 0
0 0 b33 0
0 0 0 k − 1


b22 = (

γ2a

2
−
γ 2
2c

2
−

1
32
W ∗T2 σ2σ2W ∗2 )S2(z2)S

T
2 (z2)

b33 = (
γ2c

2
−

1
32
W ∗T2 S2(z2)ST2 (z2)W

∗

2 )σ2σ
T
2

C2 =
1+ 2γ2a

4
W ∗T2 S2(z2)ST2 (z2)W

∗

2 +
1
2
f 22 (x2)

+
γ2c

2(1+ ‖σ2‖2)
ρ22 +

1
2
˙̂α∗21

The matrix A2 can be guaranteed positive definite by
adjusting the design parameters to satisfy the following
conditions:

β2 >
9
4

γ2a > γ 2
2c +

kσ2
16

W ∗T2 W ∗2

γ2c >
1
16

sup
t≥0

{
W ∗T2 S2(z2)ST2 (z2)W

∗

2

}
(78)

where kσ2 are kσ2 are positive constants defined according to
assumption 1 to satisfy the PE condition and kσ2I3 ≤ σ2σ

T
2 ≤

kσ2I3 for all t over the interval [t, t + tσ2], tσ2 > 0.
Then (77) can become:

L̇(t) ≤ −a1 ‖ξ1‖2 − a2 ‖ξ2‖2 + c1 + c2 (79)

where a2 = inft≥0 {λmin {A2}}, c2 = supt≥0 {C2}.
Based on above main results, the following theorem can be

deduced.
Theorem 1: Considering the ship steering model (1) with

bounded initial condition and desired course signals, the OB
control scheme uses the critic and actor NNs weight updating
laws (28), (29) for the virtual control (24), and (65), (66) for
the actual control (4), (63), and the design parameters satisfy
(50), (78), and PE conditions(Assumption 1) are satisfied,
then:

1) all error signals of the OB control are semi-globally
uniformly ultimately bounded (SGUUB);

2) the ship can track the reference course signal to desired
accuracy.

Proof :
Taking a = min {a1, a2} and c = c1 + c2, then (79) can be

expressed as

L̇(t) ≤ −aL(t)+ c (80)

Based on Lemma 1, the following inequality can be derived
directly:

L(t) ≤ e−atL(0)+
c
a
(1− e−at ) (81)

It can be concluded obviously that all error signals, z1, z2,
W̃1a, W̃1c, W̃2a, W̃2c, e included in L(t) are SGUUB.

Let Lz(t) = 1
2 z

2
1 +

1
2 z

2
2, its time derivative along (31) and

(52) is

L̇z(t) = z1(z2 + α̂∗1 − ẏd )+ z2(f2(x2)+ v+1u− ˙̂α
∗

1 ) (82)

Substituting (24) and (63) into (82), we have

L̇z(t) = −β1z21 −
1
2
z1ST1 (z1)Ŵ1a + z1z2 − z1ẏd + z2f2(x2)

−β2z22 + z2e−
1
2
z2ST2 (z2)Ŵ2a + z21u− z2 ˙̂α∗1

(83)

By applying the Young’s inequality, one has following
inequality

L̇z(t) ≤ −(β1 −
5
4
)z21 − (β2 −

11
4
)z22 + P(t) (84)

73524 VOLUME 7, 2019



Y. Bai et al.: OB Design for Ship Course Following Control Based on Actor-Critic Architecture

where

P(t) = 1/2ẏ2d+1/2 ˙̂α
∗2
1 +1/2(f2(x2))

2
+1/2e2 + 1/21u2

+1/4
∥∥∥ST1 (z1)Ŵ1a

∥∥∥2+1/4 ∥∥∥ST2 (z2)Ŵ2a

∥∥∥2 .
BecauseW̃1a, W̃2a, e are SGUUB, ST1 (z1)Ŵ1a, ST2 (z2)Ŵ2a

and 1u are bounded. Since each term in P(t) is bounded,
it can be easily deduced that P(t) is also bounded by a positive
constant ζ , i.e., |P(t)| < ζ .
Thus, the following inequality in compact form holds:

L̇z(t) ≤ −βLz(t)+ ζ (85)

where β = min
{
2(β1 − 5

/
4), 2(β2 − 11

/
4)
}
.

By applying Lemma 1 again, we have

Lz(t) ≤ e−βtLz(0)+
ζ

β
(1− e−βt ) (86)

Based on the above conclusion, the system tracking errors
can be limited to arbitrary small extent by choosing appropri-
ate β, it implies that the ship can follow the reference course
signal to desired accuracy.

IV. SIMULATION AND COMPARISO
In this part, to further illustrate the effectiveness and track-
ing performance of the controller proposed in Section III,
M.V. ‘‘YU LONG’’ is taken as the simulation plant of
interest with following ship particulars: length between
perpendiculars (LPP) 126m, moulded breadth (B) 20.8m,
summer draught 8.0m, block coefficient 0.681, forward
speed 7.72m/s. According to above ship particulars, the ship
nonlinear motion model parameters can be obtained K =
0.478, T = 216, α = 30 [27].
The desired course signal is chosen by a representative

practical mode as follows:

φ̈m(t)+ 0.1φ̇m(t)+ 0.0025φm(t) = 0.0025φr (t) (87)

where φm is the ideal ship course performance; φr (t) is com-
mand input signal, which varies between 0◦ and 30◦ with
period 500s. In the following simulation, the sample time
is 100ms.

For step 1, the critic and actor NNs both include 25 nodes,
where centers µi are evenly distributed in the scope [− 7,7],
the widths are φi = 1, i = 1, . . . , 25. The initial conditions
for critic and actor NNs weight are 0.01 with learning rates
γ1c = 0.2 and γ1a = 5 respectively. The design parameter β1
is 0.08, the initial conditions are x1(0) = 10◦, x2(0) = 0.
For step 2, the critic and actor NNs are designed to

include40 nodes, where centers µi are evenly spaced in
[−7, 7], and the widths are φi = 1, i = 1, . . . , 40. The
learning rates for critic and actor NNs weights are γ2c =
0.3 and γ2a = 5, and initial weights are 0.03.The design
parameter β2 is 4.

To further demonstrate the superior performance on opti-
mization of the proposed control law, a comparison study
with the direct adaptive NN ship course control approach

FIGURE 1. Tracking performance based on OB, direct NN and MPC.

FIGURE 2. Inputu with saturation based on OB, direct NN and MPC.

designed in [6], and MPC ship course control approach is
conducted. The corresponding control parameters and RBF
NN parameters included in [6] are adopted the same value
as the above simulation example to enhance the persuasion
of the comparison. The rest parameters mentioned in [6] are
c1 = 0.08, c2 = 100, 01 = 02 = 0.01 and σ1 = σ2 = 30
respectively. For the MPC approach, the prediction horizon
Np = 130, the control horizon Nc = 3.

Figures 1–7 show the results of simulation based on
above parameters and the OB technology utilized by this
manuscript, and some comparisons with Direct NN and
MPC control approaches are also presented in Figures 1-5.
Figure 1 presents that satisfactory ship course tracking per-
formance can be achieved based on above three control
approaches. The OB can track the reference signal more
quickly with less overshoot. The actual input with saturation
is demonstrated in Figure2. The input saturation can be both
well handled by the way adopted in this paper and MPC.
Course tracking errors z1(t) are illustrated in Figure3. The OB
control scheme can obtain a higher precision. The tracking
errors in the second step based on backstepping are illustrated
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FIGURE 3. Tracking errors in course based on OB, direct NN and MPC.

FIGURE 4. Tracking errors in the second step based on OB and direct NN.

FIGURE 5. Cost functions in two step based on OB and direct NN.

in Figure 4. The error in OB is also smaller than that of
Direct NN. The cost functions r1(z1, α1) and r2(z2, u) with
saturation are presented in Figure5. It is obviously that the
proposed control scheme in this paper is lower cost while
having almost the same tracking performances. Figure 6 and
Figure 7 show the L2 norms of actor NN and critic NN
weights in the first step and second step respectively.

FIGURE 6. L2 norms of the NN weights in the first step.

FIGURE 7. L2 norms of the NN weights in the second step.

TABLE 2. Numerical comparison between the OB control and direct
adaptive NN control.

It should be pointed out that although the optimized con-
trol is not considered in literature [6], the corresponding
calculation in the same form of cost function r1(z1, α1) and
r2(z2, δ) = z22 + δ2 are still carried out to facilitate the
comparison.

To demonstrate the optimizing advantage of the OB con-
troller proposed in this paper more clearly and precisely,
a further numerical statistic comparison with Direct NN is
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performed and the corresponding results are listed in the
Table 2. The total rudder, tracking error, total cost function
are the sum of corresponding absolute value at each sample
time, the mean rudder is the result of total rudder divided by
the sample times.

From Table 2, all terms based on the OB are better than
that of Direct NN. The course tracking error in first step z1 is
almost the same, so it implies that the tracking performance
is similar. But the cost function and rudder based on OB are
much lower. It is obvious and incontrovertible that the OB
can achieve a superior control performance in combination
of tracking accuracy and energy saving.

V. CONCLUSION
By employing the OB technique, the ship course follow-
ing control is well developed and optimized. In the control
scheme, the actor NNs are used to implement the control
law, the critic NNs are used for evaluating the tracking
performance and then feedback to actor NNs training for
optimizing the control behavior further. Moreover, an auxil-
iary design system and Gaussian error function are utilized
together to deal with the limit of rudder angle in marine
practice. Combining above control schemes, the desired ship
course can be tracked in high precision and the abrasion of
the rudder machine can be reduced and optimized simultane-
ously. In the future work, the external disturbances including
wind and wave and system uncertainty should be taken into
consideration.
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