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ABSTRACT Diffusion kurtosis imaging (DKI) is an advanced diffusion imaging method that captures
complex brain microstructural properties; however, it often has a lengthy acquisition time compared to
conventional diffusion tensor imaging (DTI). Recently, a deep learning-based method has shown the
potential for reducing the number of diffusion-weighted images (DWIs) required to compute the rotationally
invariant scalar measures to twelve. In this study, we propose a three-dimensional (3D) convolutional neural
network (CNN) to estimate the scalar measures. This network further improves the performance of the
deep learning-based method with a largely reduced number of required DWIs. In our approach, all the
DTI and DKI measures were estimated using a single network, and a hierarchical structure was introduced
to customize the outputs based on their computational complexities and to learn the commonalities of the
measures. Moreover, 3 x 3 x 3 convolution kernels were introduced to extract features from the 3D input
patches and utilize the spatial context from adjacent neighborhoods, which also strengthened the network’s
robustness against noise. The proposed method was evaluated with two datasets. The results showed that,
compared with the previous method that used an artificial neural network, our proposed hierarchical CNN
provided enhanced efficiency for estimating all eight diffusion measures. It also improved the robustness
against noise and retained the fine structures with only a few DWIs (as few as eight). This result suggests
that it is possible to achieve kurtosis mapping in most clinical scanners within one minute, which could

significantly extend the clinical utility of the DKI.

INDEX TERMS

3D convolutional neural networks, deep learning, diffusion kurtosis imaging,

diffusion-weighted magnetic resonance imaging, hierarchical structure.

I. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (MRI) is
a technique sensitive to the Brownian motion of water
molecules and the microenvironment in which diffusion takes
place [1]. By acquiring dozens of diffusion-weighted images
(DWIs) for different diffusion gradient weightings and
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directions, and resorting to diffusion models, various
microstructural tissue properties can be inferred from the
estimated metrics. Diffusion model-derived measures of
microstructural properties have been helpful in clinical
practice for evaluating structural integrity or damage to
it by multiple diseases, including stroke [2], epilepsy [3],
brain tumors [4], [5], amyotrophic lateral sclerosis [6], [7],
and neurodegenerative disorders [8]. For instance, the dif-
fusion tensor (DT) model based on a Gaussian probability
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distribution assumption is one of the most popular mod-
els [9]-[11]. However, as the motion of the water molecules
in neuronal tissues is generally restricted by cell mem-
branes and compartments of different sizes, the Gaussian
approximation is often oversimplified and is unable to accu-
rately characterize the tissue microstructures except in cases
in which diffusion in an unrestricted space (such as in
cerebrospinal fluid) is considered. In this regard, diffusion
kurtosis imaging (DKI) is a successful extension of con-
ventional diffusion tensor imaging (DTI) that accounts for
non-Gaussian diffusion by using an additional term of a
fourth-order kurtosis tensor (KT) [12], [13]. The KT allows
several rotationally invariant kurtosis-related metrics to be
calculated [14], [15], some of which are more sensitive to
the microstructural pathological changes that occur during
stroke [16], glioma [17], and traumatic brain injury [18] than
are DTI measures. These DKI measures are believed to reflect
the heterogeneity of the intra-voxel diffusion environment;
therefore, they are indicators of microstructural complexity
in many diseases [19] and significantly extend the DTI-based
biomarkers.

In a typical DKI study, a mapping model is designed
to map the raw image signals to voxel-wise model-derived
measures. The accuracy of these measures can be strongly
dependent on the quality of the acquired MR images,
including diffusion directions, strengths (b-values) of the
diffusion-weighting gradients, signal-to-noise ratio (SNR),
etc. It has been proposed that an optimized DKI proto-
col would require a sample of 140 directions at three dif-
ferent non-zero b-values [20]. More modest protocols use
30 directions at each b-value and two non-zero b-values
in total to achieve a good approximation [21]. Theoreti-
cally, the fourth-order kurtosis tensor contains 15 indepen-
dent components that reflect the non-Gaussian property of
water diffusion in brain tissue. When the other six indepen-
dent elements of the ordinary diffusion tensor are added,
21 parameters needed to be estimated from the DWIs. How-
ever, routine applications are solely interested in the scalar
measures that are further computed from these model param-
eters. For instance, eight scalar measures often include mean
diffusivity (MD), radial diffusivity (RD), axial diffusivity
(AD), fractional anisotropy (FA), mean kurtosis (MK), radial
kurtosis (RK), axial kurtosis (AK), and kurtosis fractional
anisotropy (KFA) [20], [22], [23]. Although the last step in
computing scalar measures is simple, the entire model estima-
tion process may take approximately an hour [13]. Therefore,
lengthy acquisition and post-processing have become obsta-
cles to the clinical use of DKI.

Several attempts have been made to improve the viabil-
ity of DKI by applying advanced algorithms. For instance,
compressed sensing (CS) theory [24] has been considered to
take advantage of the implicit sparsity in MR images. It can
recover an under-sampled dataset below the Nyquist rate as
far as possible to provide the needed DWIs for the subsequent
model-fitting method [25]. However, despite its apparent suc-
cess, the CS reconstruction method is complicated and can
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even fail due to convergence problems. Selection and tuning
CS hyperparameters are also challenging in practice [26].
An analytical solution for scalar measures has been dis-
cussed in recent literature. The MK and MD measures could
be directly estimated with a specially designed acquisition
of 13 [27] or 19 DWIs [28] and with simple post-processing.
Nevertheless, to fully derive all the DKI-derived measures,
fast estimation relies on an approximation of axially symmet-
ric DKI and a model-fitting process must still be performed
with 19 DWIs [29].

Recently, deep learning has undergone rapid development
and attracted substantial attention [30], [31]. It has demon-
strated remarkable potential for image analysis and has sig-
nificantly improved the performance of a variety of medical
imaging applications [32]-[37]. Instead of requiring hand-
crafted features, deep learning-based methods automatically
detect and generate features from raw data inputs by adjust-
ing network weights using back-propagation and stochastic
gradient descent algorithms [30], [38], [39]. Studies have
shown that there is redundant information in g-space and that
the most relevant information of diffusion scalar measures
can be recovered from only a few DWIs [27], [40], [41].
Based on this observation, Golkov et al. [42] proposed an
artificial neural network (ANN)-based g-space deep learning
(q-DL) framework for scalar measure estimation. According
to their results, it is possible to reduce the number of DWIs
to as few as twelve using an ANN, and to output scalar
measure estimates with limited global error [43], [44]. This
result generally far outperformed both the CS method and
the analytical solution. It should be noted, however, that
limited studies are available regarding evaluating the region-
level error, which is particularly important in diffusion MRI
because significant inhomogeneity exists among tissues and
structures. This provided part of the motivation for the present
study.

Meanwhile, human brain structures are strongly related
to both brain functions and activities, and the adjacent
voxels in DWIs may contain contextual information that
is inadvisable to ignore [45], [46]. Recently, many stud-
ies have used convolutional neural networks (CNNs) to
consider spatial correlations in the surrounding areas and
to provide sufficient contextual information for classifica-
tion tasks [34]-[37]. Such contextual information among the
neighborhood voxels could also be beneficial for regression
tasks (e.g., the DKI estimation task) and could improve the
deep learning-based estimation of DKI measures. In addition,
it appears from the investigations mentioned above that deep
neural networks are quite powerful; however, most of the
relevant studies paid little attention to the complexity of the
model-derived measures to be estimated. Several papers have
reported that a partially shared network can learn the common
features among several related tasks through their shared
layers and use these features to learn specific tasks through
the remaining layers [47], [48]. In DKI analysis, the non-
Gaussian kurtosis-derived measures are higher-order non-
linearity compared to those tensor-model measures. In this
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respect, we believed that a single CNN-based network for all
scalar measures with consideration of the network structure
could further improve the deep learning-based estimation of
all DKI measures.

In this study, we propose a hierarchical structured convo-
lutional neural network (H-CNN) to efficiently estimate DKI
scalar measures that simultaneously outputs the DKI-derived
measures at different depths. Specifically, the eight target
measures were separated into two groups and output at
two different depths within the hierarchical structure. The
partially shared hierarchical structure was introduced to
capitalize on the relationship between the target measures
while preserving the individualities between different targets.
We further extended the training inputs into two-dimensional
(2D) and three-dimensional (3D) voxel patches and used
convolution kernels to automatically learn the cross-voxel
information from the adjacent neighborhoods. The methods
were tested on two independent datasets to demonstrate their
performances, including an open-access dataset from the
Human Connectome Project (HCP) [49].

The remainder of this paper is organized as follows: Sec-
tions II and III present the proposed H-CNN network archi-
tecture along with the descriptions of the datasets and the
experimental setups. The results are presented and discussed
in Sections IV and V. Finally, some general conclusions are
drawn in Section VI.

Il. METHODS AND MATERIALS

The task of estimating the rotationally invariant scalar mea-
sures that quantify tissue properties from a few DWIs involves
finding a function that maps the DW signals to the corre-
sponding scalar measures. In the DKI model, the DW signal
S of voxel v is expressed as a function of b along a given
gradient g in direction n:

3
Sy(b,m) = S, 0 exp(—b Z ninDy jj
ij=1
1 2 s
+ 6b2Dv Z ninjrem Wy i), (1)

ijk =1

where Sy is the signal in the absence of the diffusion encoding
gradient g, and n; represents the element of the direction n.
This equation has a diffusion term, that spans a symmetric,
positive definite 3 x 3 DT with six independent elements D;;
and mean D (i.e., the mean of the eigenvalues of DT), and a
kurtosis term, which spans a symmetric 3 x 3 x 3 x 3 KT
with 15 independent elements Wjj; [50]. Given DT and KT,
the diffusion coefficient and diffusion kurtosis in an arbitrary
direction can be calculated. The eight important rotationally
invariant scalar measures are defined in Table 1.

The conventional algorithm usually optimizes the estima-
tion of the signal equation parameters and the calculation
of the scalar measures independently, and information is
lost at each step [51]. However, in the deep learning-based
method, the scalar measures in the DKI model can be directly
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TABLE 1. Equations of all eight DKI measures.

Measures Equations

Axial diffusivity (AD) D=\

Radial diffusivity (RD) D), =(A2+X3)/2

Mean diffusivity (MD) D=\ +X2+2X3)/3

3 v/ (01-D)>+(A2—D)2+(A3-D)2
2

Fractional anisotropy (FA)

NEYESTESY:
Axial kurtosis (AK) K(v1)
Radial kurtosis (RK) % 02” K(vacosp + visinp)dep

Mean kurtosis (MK) = [fz K(n)dS2
IW-WI|| ¢

Kurtosis fractional anisotropy (KFA) TWir

Note: \; and v; are the eigenvalues and corresponding eigenvectors of DT,
with A1 being the largest eigenvalue. S is the unit sphere. /& (n) is
diffusion kurtosis along directon n. W is the kurtosis tensor, and W is
equal to ﬁ J fS2 W (n)dS2. Iis a fully symmetric, rank 4 isotropic tensor
whose element is defined as [ ;51 = %(513‘51@1 + 0ikdj1 + 0;19,1 ), where
;5 is the Kronecker delta. |||| 7 denote the Frobenius norm.

estimated and jointly optimized by training a network with the
raw DWIs as the input and the target measures as the output.
Once the network is trained, the input-output relationship is
learned and can be applied quickly.

To exploit the commonalities among the scalar measures
and improve the generalization ability, all eight measures are
estimated by a single network. However, considering that the
diffusivity-related scalar measures (MD, RD, and AD) are
low-order scalar measures and thus comparatively simpler
than the other measures, we customized the output structures
and designed a hierarchical network structure that simulta-
neously outputs the three diffusivity-related measures from
a shallow layer and the other five measures (FA, MK, RK,
AK, and KFA) from a deeper layer. Because adjacent voxels
typically share similar microtissue structures, better statistical
power is achieved using the intrinsic spatial correlation of
neighboring voxels [37], [52]. Thus, small convolution ker-
nels were introduced to take the neighboring voxels into
consideration. Moreover, the fully connected (FC) layer in the
ANN can be treated as a cross-channel parametric pooling
layer that performs weighted linear recombination on the
input feature maps, which is equivalent to a convolutional
layer with multiple 1 x 1 convolution kernels [53]. The entire
network, therefore, becomes a sequence of convolutional
layers capable of being fed with all the 3D brain voxels
and directly estimating the scalar measures within a single
forward propagation [54].

Taking the above as a whole, we propose a CNN-like
network with a partially shared structure that makes use of
the correlations of spatial neighborhoods and among target
measures, which we call an H-CNN. The structure of the
H-CNN is illustrated in Fig. 1 and described in more detail
below.
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3 (MD,RD,AD)
FIGURE 1. The inference process of the proposed network. The shape of
theinputsis L x W x H x N, where L x W x H is the size of the 3D brain
volume, and N is the number of down-sampled DWiIs (the H dimension is
not shown). The diffusivity-related scalar measures, MD, RD, and AD, are

outputted at the penultimate hidden layer, and the other five measures
are outputted at the last hidden layer.

A. NETWORK ARCHITECTURE

A standard neural network consists of an input layer, an out-
put layer, and several hidden layers. Typically, each hidden
layer performs nonlinear transformation:

y = g(f(x; W)), @)

where the vectors x and y are the input and output of the hid-
den layer, respectively, f and g are the mapping and activation
functions that perform linear and nonlinear transformations,
respectively, and W is the weight matrix. To approximate
the relationship between the input and the output, the cost
function, which is defined as the difference between the
desired output y; and the network’s output y;, is minimized
by solving the following optimization problem:

arg min Z cost(yi, Vi), 3)
W
where the sum is taken over all the training samples i. During
the training stage, all the adjustable network weights are
updated by a gradient-based optimizer [S5]-[57] that oper-
ates on the back-propagated gradients [58].

ANNS use dense mapping [f (x; W, b) = Wx + b] (which
is also called the FC layer) in all the hidden layers and have
been proven to be universal approximators that can uniformly
approximate any continuous function, even with only a single
hidden layer [59], [60]. CNNs use sparse mapping by intro-
ducing convolutional kernels, which take local patches as
input and output a feature map by performing a convolution
operation on the input patches [61].

An overview of the proposed H-CNN is presented in Fig. 1.
The proposed network includes one input layer, several hid-
den layers, and two output layers. The first hidden layer is a
convolutional layer, which operates as a feature extractor that
learns spatial information from the input voxel patches. The
shapes of the convolution kernels canbe 3 x 3 or3 x 3 x 3,
and the corresponding network is known as 2D H-CNN or 3D
H-CNN, respectively. The other hidden layers and the output
layers are all FC layers along the DWI dimension and take the
form of convolutional layers with 1 x 1 kernels for scalability,
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and that also accelerate the inference stage. The rectified
linear unit (ReLU) activation [62]: g(x) = max(x, 0) is
adopted in each hidden layer. All the hidden layers except
the last one are shared by the two output layers. The shallow
output layer is connected to the penultimate hidden layer with
three kernels and is responsible for the diffusivity-related
measures, whereas the deeper output layer is connected to
the last hidden layer with five kernels and is responsible for
the other scalar measures with higher complexities. To pre-
vent overfitting, a dropout layer [63] was inserted before
each output layer. The number of kernels in each hidden
layer and the dropout fraction were chosen as 150 and 0.1,
respectively [42].

B. DATASETS

1) DATASET 1

This dataset consisted of data from three healthy subjects,
collected using a MAGNETOM Prisma 3T scanner (Siemens
Healthcare, Erlangen, Germany) equipped with a 64-channel
RF coil. Each subject was scanned three separate times
over approximately one week. The local ethics committee
approved this human study, and written informed consent was
obtained from each participant.

The DWIs were obtained using a simultaneous multi-slice
(SMS) diffusion echo-planar imaging sequence. Diffusion
weightings of b = 1000, 2000, and 3000 s/mm? were applied
in 30 different directions, with six b = 0 images equally
temporally separated in the scheme, resulting in a total
of 96 DWIs. Uniform coverage across multiple shells and
an incremental scheme were ensured using a generalization
of electrostatic repulsion [64]. All images with two opposite
phase encoding directions (AP and PA) were acquired for dis-
tortion correction. Other imaging parameters were as follows:
repetition time, 5400 ms; echo time, 71 ms; field-of-view,
220 mm x 220 mm; resolution, 1.5 mm x 1.5 mm x 1.5 mm;
number of slices, 93; bandwidth, 1712 Hz/Px; partial Fourier,
6/8; in-plane acceleration factor, 2; and SMS factor, 3. The
size of each DWI is 146 x 146 x 92.

2) DATASET 2

To evaluate the generalization capability, we validated the
proposed method on a dataset with a larger sample size of 30
randomly selected subjects from the HCP. The HCP datasets
were acquired at a 1.25 mm isotropic resolution with diffu-
sion weightings of b = 1000, 2000, and 3000 s/mm? applied
in 90 directions, respectively. Eighteen » = 0 s/mm? images
were equally temporally separated in the scheme, resulting
in a total of 288 DWIs [49]. The size of each DWI is 145 x
178 x 145. This dataset also offered a chance to statistically
analyze the performance of the 3D H-CNN.

Ill. EXPERIMENTS

A. DATA PROCESSING

Dataset 1 was first preprocessed for motion and distor-
tion correction [65], followed by an alignment across the
three scans for each subject [66]. The preprocessing was
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implemented in FSL (FMRIB Software Library, University of
Oxford, UK). For both datasets, model fitting was conducted
using a constrained weighted linear least square method
implemented in DKE (The Center for Biomedical Imaging,
Medical University of South Carolina, USA), which ensured
physically and/or biologically plausible tensor estimates, thus
increasing the model’s robustness against noise, motion,
and imaging artifacts [15]. The model-fitting results with all
DWIs included were defined as the reference standards and
were used as training and test labels in all the subsequent
experiments. For Dataset 1, averaging the results of multiple
repetitions resulted in a high SNR and improved the robust-
ness of the reference standards.

1) PATCH EXTRACTION

The 3 x 3 patches for 2D H-CNN were extracted by expanding
each voxel to include its eight adjacent neighbors in the same
slice. The 3 x 3 x 3 patches for 3D H-CNN were extracted
by expanding each voxel to include its 26 adjacent neighbors
in all directions.

2) DOWN-SAMPLING

Two down-sampling schemes were used to down-sample the
training and test data for all the networks. The index of the
DWI was defined following the DWI acquisition order in all
the DWIs.

e Sequential scheme: This scheme was performed by
taking the first N DWIs sequentially from the
dataset because the diffusion space acquisition schemes
were incremental to ensure that any first N DWIs
would result in reasonably uniform coverage of the
sampling domains. This scheme ensured effective
down-sampling with all three shells included, which
is beneficial to the model-fitting process and may also
benefit the learning process.

o Selective scheme: This scheme was performed by spec-
ifying certain numbers of different b-values and ran-
domly taking the N DWIs that satisfied the specified
combination of b-values.

B. EXPERIMENTAL SETTINGS

We constructed a 2D H-CNN and a 3D H-CNN as described
in subsection II-A with three hidden layers. For comparison
purposes, we also constructed an ANN following the q-DL
framework [42] (three hidden layers; 150 hidden units in each
layer; 0.1 dropout fraction; ReLU activation) and normal
CNNs without hierarchical structures.

1) EXPERIMENTS ON DATASET 1

Voxels or voxel patches of two randomly chosen subjects
were used as a training set in all the experiments. The pro-
posed H-CNNs and the qg-DL ANN were trained and tested
with different numbers of down-sampled DWIs from 96 to 4
(the maximum number of down-sampled DWIs was 30 for 3D
H-CNN, owing to the limitation of computer random-access
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memory). The model-fitting method was also conducted on
different down-sampled DWIs. Normal CNNs and ANNs
with different numbers of hidden layers were trained and
compared. The inputs were down-sampled to eight DWIs for
all the networks when performing the depth evaluation. All
the previous down-samplings were performed following the
sequential scheme.

The effects of the b-values were evaluated by performing
the estimation task on the input DWIs down-sampled by the
selective scheme.

2) EXPERIMENTS ON DATASET 2

Ten randomly chosen subjects were used to form the training
dataset, from which one or several subjects were selected.
Then, voxel patches of the selected subjects were used to train
the networks. The estimation tasks were performed using the
model-fitting, 3D H-CNN, and ANN methods, and the DWIs
were down-sampled following the sequential scheme. The
estimated scalar measures were first registered to the standard
space [66]; then, statistical tests (paired ¢-test and coefficient
of variation (CV)) were performed on the registered results.
A one-tailed paired -test was adopted in these experiments,
and the significance level was set to 0.01. To maximally
visualize the differences of different methods, all the results
were calculated without applying a correction for the false
positive rate to show all the positive voxels.

C. NETWORK SETTINGS
1) TRAINING AND INFERENCE PROTOCOL
In the training stage, the extracted 3 x 3 x 3 and 3 x
3 patches were used as the training inputs for the 3D CNNs
and 2D CNNG, respectively. All the trainable weights of the
proposed networks were initialized using the Xavier uniform
initializer [67]. The gradient-based Adam optimizer [57] was
used to train the network (first moment value = 0.9, second
moment value = 0.999, and initial learning rate = 0.001).
The mini-batch size was set to 256. A simple learning rate
scheduler, which decays the learning rate at a decay fac-
tor of 0.5 when the reduced value of the training set error
in 10 epochs does not exceed a threshold of 0.0001, was
used to improve the training performance. Ten percent of the
training set was used as a validation set to prevent overfitting.
An early termination strategy was also introduced to prevent
overfitting when the validation set error stopped decreasing
or started increasing within 30 epochs. Both the training and
test data were normalized to have zero mean and unit standard
deviation to achieve good learning performance. The training
parameter settings were based on Bengio’s suggestion [68].
In the inference stage, all voxels of the 3D brain volume
were fed into the trained network to directly estimate the
scalar values.

2) EVALUATION METRIC
The primary evaluation metric was the root-mean-squared
error (RMSE) between the estimated scalar measures and
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standard

Model fit,
N=24

ANN,
N=12

3D H-CNN,
N=8

0 3 0
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]

MK AK KFA

1 —_—
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FIGURE 2. Maps of the eight scalar measures with different methods. Slice 49 was visualized for all the measures. From top to bottom: reference
standards, results of model fitting with 24 DWIs, results of the ANN with twelve DWIs, and results of the 3D H-CNN with eight DWIs. From left to right:

MD, RD, AD, FA, MK, RK, AK, and KFA.

their reference standards over all voxels within the entire
brain mask [69]:

YL (i — vg)?
1%

RMSE = , 4
where V is the total number of voxels, V; is the predicted
scalar value, vy, is the reference standard, and b; — vy, is
defined as the error of the estimation result. The RMSEs over
all the scalar measures are called the overall RMSEs.

3) IMPLEMENTATION

All the experiments were performed under Linux OS on a
desktop computer with 20 x Intel® Core " i7-6950X @
3.0 GHz CPU, 2 x NVIDIA® GeForce® GTX 1080 Ti
graphics card, and 32 GB DDR3 RAM. All the neural net-
works were implemented in Python using the Keras [70]
framework with a Tensorflow [71] back-end.

IV. RESULTS

A. RESULTS ON DATASET 1

Fig. 2 displays the typical results for the maps of the refer-
ence standards and the estimation results of the model-fitting
method, the ANN, and the proposed H-CNNs. Notably,
the 3D H-CNN demonstrated the best results; the 3D H-CNN
with only eight DWIs showed similar fine structure visual-
izations compared to the ANN results with twelve DWIs.
The overall RMSEs of the scalar measures estimated by
these methods were also compared (Fig. 3), and our pro-
posed 3D H-CNN achieved the lowest RMSE at an equiv-
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FIGURE 3. Overall RMSEs of different methods with different numbers of
DWIs down-sampled following the sequential scheme. All the networks
contain three hidden layers. The baseline error was defined as the RMSE
between the results of the model fitting with 96 DWIs and their reference
standards.

alent number of DWIs. The difference between the over-
all RMSEs of the 2D H-CNN and the ANN was rather
small (0.0003) when fully sampled DWIs were used. As the
number of DWIs decreased, this difference continued to
increase; it finally reached 0.027 when four DWIs were used.
With more neighboring voxels introduced, the 3D H-CNN
slightly outperformed the 2D H-CNN; its overall RMSE was
0.0765 when only eight DWIs were used, which was smaller
than the RMSE of the ANN with twelve DWIs (0.0852). Both
the graphical and numerical results demonstrated that the
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TABLE 2. RMSEs of each scalar measure estimated by 3D CNNs trained with eight DWIs down-sampled by the sequential scheme. Best results are

highlighted in bold.

RMSEs
Method
MD RD AD FA MK RK AK KFA overall
3D CNN with 2 hidden layers 0.07075  0.07618 0.09472 0.05182 0.06455 0.11442 0.06608 0.06446  0.07765
3D CNN with 3 hidden layers 0.07205 0.07736  0.09473  0.05109 0.06383  0.11376  0.06520 0.06412  0.07757
3D CNN with hierarchical structure ~ 0.07169  0.07713  0.09382  0.05013  0.06230 0.11162 0.06385 0.06363  0.07654

TABLE 3. RMSEs of each scalar measure estimated by the 3D H-CNN trained with eight DWIs down-sampled by the selective scheme. Best results are

highlighted in bold.

Combination of RMSEs
b-values MD RD AD FA MK RK AK KFA overall
1 0.07615  0.08020 0.09654  0.04771 0.07286  0.11964 0.07110  0.06240  0.08093
2 0.07383  0.07889  0.09426  0.04934  0.06987 0.11675 0.06835 0.06610  0.07949
3 0.08927  0.09235 0.11274 0.05189  0.06167 0.11096  0.06402  0.06964  0.08438
4 0.07087  0.07680  0.09316 0.05040 0.06742 0.11785 0.06738 0.06313  0.07834
5 0.07718  0.08194 0.09909  0.05091 0.06107 0.11057 0.06305 0.06634  0.07859
6 0.07169  0.07713  0.09382  0.05013  0.06230 0.11162  0.06385 0.06363  0.07654

The chosen combinations of b-value in the eight DWIs: 1) seven b = 1000 s/mm? with single b = 0 s/mm?; 2) seven b = 2000 s/mm? with single b = 0 s/mm?;
3) seven b = 3000 s/mm? with single b=0 s/mm?; 4) four b = 1000 s/mm?, and three b = 2000 s/mm?, with single b=0 s/mm?; 5) four b = 2000 s/mm?, and
three b = 3000 s/mm?2, with single b=0 s/mm?; 6) two b= 1000 s/mm?, three b = 2000 s/mm?2, and two b = 3000 s/mm?, with single b=0 s/mm?;
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FIGURE 4. Overall RMSEs of networks with different numbers of hidden
layers. The number of DWIs were down-sampled to eight by the
sequential scheme for all the networks.

3D H-CNN maintained comparable performance even under
largely reduced DWIs.

As shown in Fig. 4, with the 3D convolution kernels, the
best overall RMSE of the 3D CNN was over 20% lower than
that of the ANN when eight DWIs were used. Thus, the intro-
duced convolution kernels improved the robustness against
noise by considering the spatial information of the adjacent
voxels, which reduced the overall RMSE. Meanwhile, all the
networks achieved their best performances when the number
of hidden layers was two or three; their performances deteri-
orated as the number of hidden layers continued to increase.
This result indicates that networks with more than three
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hidden layers have higher capacities than required for the
estimation task; such networks may become highly sensitive
to subtle differences and unable to capture the general sim-
ilarity between voxels, thus leading to overfitting [61]. We
conducted a detailed comparison between the convolutional
networks with two and three hidden layers. Table 2 shows
the RMSEs of each single scalar measure estimated by the
3D CNNs. The diffusivity-related measures estimated by the
network with two hidden layers had smaller RMSEs than
those estimated by the network with three hidden layers; the
opposite results occurred for the other measures. With the
partly shared hierarchical structure, the proposed network
outperformed the CNNs with two or three hidden layers on
the estimation of almost all the scalar measures.

Table 3 shows the RMSEs of the DKI measures estimated
by the 3D H-CNN trained with DWIs down-sampled follow-
ing the selective scheme. The overall RMSEs were slightly
higher when trained with DWIs from a single b-value. For
individual measures, a single low b-value of 1000 s/mm? can
provide a good estimation of DT-based measures. However,
for some KT-based measures, a higher b-value is needed.
In general, the lowest overall RMSE and more balanced
performance were achieved when all the b-values were intro-
duced in combination 6. The results, therefore, offer a trade-
off between performance and the choice of b-values.

B. RESULTS ON DATASET 2

Fig. 5 shows the RMSEs of all the subjects as a heat map.
When performing estimation tasks on the test subjects, the 3D
H-CNNs trained with data from a single subject had sim-
ilar (or even lower) RMSEs compared to the model-fitting
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FIGURE 5. Heat map of the overall RMSEs of DKI measures evaluated with different methods on all 30 subjects. From top to bottom: Model fitting with
96 DWIs, ten versions of 3D H-CNNs pre-trained on different individuals, 3D H-CNN pre-trained on four subjects, and 3D H-CNN pre-trained on eight
subjects. The subjects selected for training are masked in blue. The number of DWIs for each training subject was down-sampled to eight.

results with 96 DWIs. Moreover, selecting different training
subjects had little effect on the RMSEs of the test results,
which implies that the 3D H-CNNs could learn the underlying
mapping of the estimation tasks even with a single training
subject. When trained with four subjects, the RMSEs of
the test subjects decreased distinctly, which demonstrated
that using data from more subjects can improve the training
results. However, when the number of subjects was further
increased to eight, no substantial improvement occurred in
the RMSE means compared to the results with four subjects.

Fig. 6 (a) visualizes the paired ¢-test results of the DKI mea-
sures. Similar to the visualization results in Fig. 2, the pro-
posed 3D H-CNN demonstrated the best results. For the
model-fitting method, a large percentage of the voxels were
significantly higher (33% of MD, 15% of RD, 46% of AD,
14% of FA, and 64% of KFA) or lower (31% of MK, 23%
of RK, and 24% of AK) than the reference standards when
32 DWIs were used. When the number of DWIs increased
to 96, 22% and 47% voxels in AK and KFA, respectively,
were still significantly different from the reference standards.
However, in the results of the 3D H-CNN trained with twelve
DWIs, only approximately 7% of the voxels were signifi-
cantly different from the reference standards for all mea-
sures; moreover, the proportion remained below 10% when
the number of DWIs was reduced to eight. In the visual-
izations, slight group-level differences were observed in the
sub-cortical regions and the complex crossing-fiber structures
(e.g., caudate body, putamen, and sub-gyral white matter in
the temporal and frontal lobe from the Talairach atlas [72])
in the proposed method. These differences could be due to
the complex structures, relatively smaller number of voxel
samples available for training, and the large variability among
subjects. We further evaluated those regions that showed
many significant differences with the deep learning-based
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methods by performing a region-wise analysis. The mean
absolute error (MAE) of all 30 subjects in those regions
was calculated and visualized. As shown in Fig. 7, although
significant deviations exist, our proposed 3D H-CNN with
eight DWIs had fewer MAEs in most regions than did the
ANN method with twelve DWIs. The paired r-test results
on the absolute difference from the reference standard are
visualized in Fig. 6 (b). In the results of the 3D H-CNN
trained with twelve DWIs, only 2% of the voxels had signif-
icantly higher absolute error than did the model fitting with
96 DWIs, and 15% of the voxels were significantly lower in
the KFA measure. When the DWI number was reduced to
eight, the high-order measures still maintained an acceptable
performance (below 5%)—especially KFA, where 12% of the
voxels had significantly lower absolute differences from the
reference standard.

To validate the ability of H-CNN to capture inter-subject
variability, the CV (defined as the ratio of the standard
deviation to the mean) maps of the DKI measures on the
30 subjects in Dataset 2 were calculated. The CV maps of
the RK measure are displayed in Fig. 8. As shown, the CV
maps of the 3D H-CNN with eight DWIs were similar to the
CV map of the model fitting with 288 DWIs (the reference
standard). When compared in detail (e-g), the performance
of the 3D H-CNN with eight DWIs was comparable to that
of the model fitting with 96 DWIs. In addition, the number of
subjects in the training set had little effect on the CV values.
This result indicated that the inter-subject variability would
not be significantly reduced in the proposed 3D H-CNN
method.

In the experiments, the proposed method took approx-
imately 30-60 s per epoch (depending on the number of
DWIs) at the training stage and less than 10 s (with coverage
of the entire brain volume) at the test stage.
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FIGURE 6. Pairwise t-test statistics at group level. Voxels with |t-score| > 2.75 (P < 0.01) were colored, and slice 65 was selected to be visualized for all
the measures. The percentages of colored voxels were calculated and displayed. (a) Comparison of DKI scalar measures by the evaluated methods
(annotated on the left side) with those by the reference method (model fit, N = 288); Regions with over-estimated measures are in hot color while
underestimated regions are shown in blue; (b) Comparison of the absolute deviation from the reference standard of the evaluated methods (annotated
on the left side) with that of the model fitting (N = 96); Regions with higher deviation are shown in hot color while those with lower deviation are shown
in blue. From left to right: MD, RD, AD, FA, MK, RK, AK, and KFA.

V. DISCUSSION used. It became underdetermined when fewer than 24 DWIs
As shown in Fig. 3, the model-fitting method was easily (including images with O b-value) were used, whereas the
affected by noise when a reduced number of DWIs was deep learning-based methods still achieved good estimation
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FIGURE 8. Maps of the CV results of RK. Slice 65 was selected for
visualization. (a-d) Model fitting results with 288 and 96 DWIs, 3D H-CNN
with eight DWIs trained with only one subject and four subjects; (e-g)
distributions of CV map (b-d) against the reference standard (a).

performances (the fourth row). As described in Table 1,
the eight target measures are highly correlated (all the mea-
sures are calculated based on the 21 independent elements
of DT and KT, and the AD, MD, and RD measures are
linearly dependent on each other), which indicates that redun-
dant information exists among these measures. With deep
learning-based methods, these relationships could be used to
help learn the underlying mapping functions. By defining the
baseline error as the overall RMSE between the model-fitting
results with 96 DWIs and the reference standards, we found
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that the smallest number of DWIs required to maintain the
same RMSE as the baseline error was 25 for the 3D H-CNN
in Dataset 1, whereas the 3D H-CNN with eight DWIs had
smaller RMSEs than the baseline error in Dataset 2 (Fig. 5).
A reasonable explanation for this result is that the reference
standards were of different qualities. The reference standard
for Dataset 2 was estimated with 288 DWIs; thus, it had
better quality than the reference standard for Dataset 1, which
was the average of three repetitions with 96 DWIs. Finally,
compared to the model-fitting method, better results were
achieved for the network trained on Dataset 2. Thus, it is
reasonable to conclude that better training dataset leads to
better training results.

It is notable that there are small “holes” in the maps of
the reference standards in Fig. 2, particularly in the maps
of the MK, RK, and AK measures, which were ‘‘recov-
ered” in the deep learning-based method results. Because
information regarding only a single voxel was used in the
model-fitting method, signal noise may have had a strong
influence on the estimation results and caused the zero val-
ues in the measures. For the deep learning-based meth-
ods, the weights learned during the training stage may
provide extra information and strengthen their robustness
against noise; thus, signal noise had a smaller effect on
the estimation results. Moreover, the proposed H-CNNs fur-
ther improved the robustness by considering the neighbors,
which further reduced the “‘holes” in the visualized measure
maps.
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In the current study, the networks took only raw DWIs as
input; they were unaware of the b-value or b-direction of each
DWI. However, the same indexes of the DWIs were used dur-
ing the training and test stages in the experiments described
above, which provided the same b-values and similar
b-directions. Therefore, training a network that understands
the input scheme by using b-values and b-directions as auxil-
iary information may further improve the generalizability of
the method, which can be a subject of future research.

The deep learning-based methods require a large amount of
labeled data to feasibly train the network. In our experiments,
approximately 0.3 million samples were gathered from each
subject (Dataset 1), which seemed to be sufficient, and the
results achieved a good performance. However, the distri-
butions of training set were unbalanced. Fig. 9 provides a
visualization of the distributions of Dataset 1 and shows that
the measures’ values of most voxels lay within a small range,
particularly for MR, RD, AD, and AK. In the RMSE curves
of the 2D H-CNN, almost all the local minima occurred in the
bins containing the highest number of voxels in the training
set; these were also lower than the corresponding RMSEs
of the model-fitting results. For those bins that contained
few voxels in the training set, the RMSEs of the test voxels
were higher, and the measures’ values were biased to the
values of most voxels, which smoothed over the measure
maps. A similar phenomenon occurs in the classification task
called the “class imbalance problem,” in which the classifiers
tend to be overwhelmed by the majority class and ignore the
minority class [73]. Because of the similarity among human
brains, all the subjects’ data shared a similar distribution;
thus, the biased results can still achieve lower RMSEs on the
test subjects’ data. Introducing data from multiple subjects
eliminated the distribution differences between different sub-
jects, and a relatively diverse training set could be provided.
However, because of the similarity, the dataset could not be
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further improved (balanced) by adding more training subjects
(Fig. 5). Resampling the data is the most direct solution for
this ““class imbalance problem.”

In the current study, we employed data from healthy sub-
jects to demonstrate our proposed method; however, because
pathological alterations could change the tissue properties,
the values of some scalar measures may appear in the bins
with only a small number of voxels in the distribution. Thus,
the trained network may not be directly applicable to diseased
cases. However, our study explored the ability of neural net-
works to learn the features of structure-associated tissue prop-
erties in DWIs. Therefore, the network could also be trained
to reflect abnormal changes of tissue structure—providing
sufficient voxel samples can be gathered to learn the possible
features of the diseased tissues. This is similar to the problem
of finding a more balanced dataset as discussed above, and it
is an important aspect of our future work.

Beyond the eight scalar measures discussed here, there
have been other DKI-related measures in the literature but
not included in the present study. For example, the mean of
the kurtosis tensor (MKT) is an efficient analytical solution
introduced by fast kurtosis technique. MKT provides a good
approximation to the MK measure and shares similar con-
trast information with MK [27]. As a fast kurtosis technique,
its estimation needs only acquisition of 13 DWIs, and the
computation could be done in seconds without any burden
in data-training as neural network method does. It would
be more complete to include all these measurements in the
neural network in further studies. Additionally, the current
network was designed for the DKI model. In theory, many
other informative diffusion models, such as CHARMED [74]
and AxCaliber [75], could also be treated as mapping tasks
from the input DWIs to some outputs that reflect differ-
ent tissue properties. However, considering that those mod-
els may have different complexity or model assumptions,
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different network structures should be designed and tuned
for those models. Nevertheless, it is definitely worth trying to
apply neural networks to other clinically important diffusion
models using this method in future work.

VI. CONCLUSIONS

In this study, we proposed a hierarchical CNN to esti-
mate DKI-derived scalar measures. The proposed method
introduced small convolution kernels to learn the spatial
information among the neighboring voxels and improve the
robustness against noise. The experimental results demon-
strated that by introducing the convolution kernels and the
partially shared structure, the proposed network outper-
formed previous methods from the literature and achieved
efficient estimation. This highly accelerated DKI estimation
method may provide a clinically feasible acquisition scheme
that could promote clinical applications of DKI. The hier-
archical structure could also be applied to other complex
models with multiple related targets, thus further extending
its potential applications.
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