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ABSTRACT Compositional models are meant for human pose estimation (HPE) due to their abilities to cap-
ture relationships among human body parts. Deeply learned compositional model (DLCM) utilizes deep neu-
ral networks to learn compositionality of human body parts and has achieved great improvements in human
pose estimation. The DLCM has a hierarchical compositional architecture and bottom-up/top-down infer-
ence stages. The previous works have proven that multi-scale deep features are beneficial for computer vision
tasks, such as classification and human body keypoints detection. However, learningmulti-scale feature pyra-
mids in DLCM has not been well explored. In this paper, we propose a new method to apply the multi-scale
feature pyramid module to further improve the performance of the DLCM, which is named as deeply learned
multi-scale compositional model (DLMSCM). We design multi-scale residual modules as the basic blocks
to learn multi-scale deep features which can capture the scale variations of different body parts. With the
multi-scale mechanism in the framework of the DLCM, the model can not only deal with scale variations of
body parts but also find joints dependencies, therefore enforce the entire body joints structural constrains.
As a result, more precise body keypoints detection can be acquired. Our approach outperforms the other
state-of-the-art methods on two standard benchmarks datasets MPII and LSP for human pose estimation.

INDEX TERMS Compositional models, human pose estimation, multi-scale residual modules, scale
variations, joints structural constrains.

I. INTRODUCTION
Human pose estimation (HPE) aims to predict the locations of
body joints from a single image. It is a challenging problem
due to the limited information of 2D images and the large
variations in configuration and appearance of body parts.
Early works often tackles the problem using graphical mod-
els [1] with hand crafted image features. Those methods often
lack effective feature representations to characterize complex
appearance variations of different people, so they are hard to
be improved further.

Recently, many deep learning [2]–[7] based human pose
estimation models have been proposed and their perfor-
mances are improved continuously. Deep convolutional neu-
ral networks (CNNs) can learn rich feature representations
directly from data.

The recent proposed approach, stacked hourglass net-
work [2], achieves state-of-the-art performance without use
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of hand designed priors or graphical-model-style inference.
The architecture supports repeated bottom-up, top-down
inference across scales for large receptive field, so the model
can capture relationships among body parts.

However, Hourglass networks still have some limitations.
First, the model only learns features from one image scale.
In many cases, in the same image, different human body
parts may have different scales. So it is necessary to incorpo-
rate feature pyramid into hourglass networks to capture the
characteristic of scale variations of body parts [3]. Second,
when there exist self-occlusion among human body parts
or overlapping with other people nearby, the model may
predict implausible human pose. Because, in such situations,
the model is trying to find similar features which might be in
the background or belong to another person.

By contrast, human visions [8], [9] have the concepts of
the structure and constraint of body parts, and can associate
these with observed image features.

In this paper, as [10], we take advantage of Deeply Learned
Compositional Model (DLCM) for human pose estimation.
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We use key points coding to represent a part and supervise its
score map during the training step. This strategy compactly
encodes the orientation, scale and shape of a part, in which
to check the structural constraints of human body pose. The
network is a 5-stacked Hourglass networks in which the basic
blocks of the first three are the feature pyramid units.

The Deeply Learned Compositional Model (DLCM) with
feature pyramid module strategy enables the model to cor-
rect implausible poses and urge the model to improve its
prediction.

II. RELATED WORK
Recently, many methods [11], [12] have been developed by
taking advantage of the deep Convolutional Neural Networks
(CNNs). DeepPose [13] is the first deep learning based
approach for human pose estimation, which takes the pose
estimation as a body keypoints regression problem using
convolutional Neural Networks, and outperforms previous
classical approaches. Latter methodsmostly predict heatmaps
that characterize the probabilities of each keypoint at differ-
ent locations [14]–[17]. The exact location of a keypoint is
further estimated by finding the maximum in an aggrega-
tion of heatmaps. Compared with direct-regression methods,
heatmap-based methods better leverage the distributed prop-
erties of convolutional networks and are more suitable for
training human pose estimation models.

Some works combine graphical models with CNN.
Tompson et al. [18] apply MRF as a post-processing step,
while others embed deformable mixture of parts [19]
or CRF [17] into the network for end-to-end learning.
Convolutional PoseMachines (CPM) [15] and Stacked Hour-
glass Network (Hourglass) [2] achieve state-of-the-art perfor-
mance without hand designed priors or graphical model-style
inference. Both CPM and Hourglass employ a multi-stage
scheme, using intermediate supervision to produce increas-
ingly refined heatmaps for joints locations through differ-
ent stages. The design of Stacked Hourglass Network [2]
is motivated by FCN (Fully Convolutional Networks) [20]
and ResNet [21]. Its powerful and well-designed architecture
consists of multiple stacked hourglass modules which allow
for repeated bottom-up, top-down inference [20]. Features
are processed across all scales and consolidated to best
capture the various spatial relationships associated with
the body. Each Hourglass module contains several residual
modules [21].

In order to obtain higher accuracy, image pyramids
are adopted to produce multi-scale feature representations.
Tompson et al. [18] propose a multi-branch network trained
on three scales of image pyramid to learn a model with strong
scale invariance. However, computation and memory will
increase dramatically with the increase of scale, if image
pyramids are directly used for training.

Yang et al. [3] propose the feature pyramid networks. They
design the pyramid residual modules (PRMs) to effectively
learn multi-scale deep features. The cost of computation and
memory is greatly reduced.

Someworks use bone-based part representations [22], [23].
The heatmaps of limbs between each pair of adjacent key-
points are taken as supervision in training.

Tang et al. [10] propose a Deeply Learned Compositional
Model (DLCM) for Human Pose Estimation. It exploits
CNNs to learn the compositionality of human bodies. The
network has a hierarchical compositional architecture and
bottom-up/top-down inference stages. In the bottom-up stage
of DLCM, Hourglass is used to predict human pose. And
subsequently the top-down stage plays the role to refine the
predicted pose in bottom-up stage.

In summation: (1) Recent state-of-the-art human pose esti-
mation methods are either improved Hourglass [3], [4], [10],
or take ResNet as their backbone [5], [6], [24]; (2)Multi-scale
feature can improve pose estimation; (3) Bone-based part rep-
resentation can make entire body joints structural constrains
more precise.

In this paper, we focus on 2D single person pose esti-
mation from RGB images. Our work focuses on the design
of bone-based part representation with feature pyramids to
improve the accuracy of pose estimation.

III. OUR APPROACH
A. NETWORK ARCHITECTURE
We use the state-of-the-art hourglass architecture [2] as our
base network. It is a fully convolutional network with residual
modules as its building blocks. The network starts with an
initial process of a 7× 7 convolution with stride 2, followed
by several residual modules and max-pooling layers.

The initial process reduces the resolution of the feature
maps from 256 to 64. Then, a sequence of hourglass modules
are stacked to predict the keypoint heatmaps.

A single hourglass module is a bottom-up and top-down
design to extract the features at every scale. For human pose
estimation, it is essential to explore both the local evidence,
such as a small region around the wrist, and the long-range
relationships between joints.

We adopt the 5-Stacked Hourglass Networks as the basic
network structure. The 5-stack hourglass architecture is
shown in Fig. 1. The first three Hourglass Networks imple-
ment feature pyramid learning by applying multi-scale resid-
ual modules (MSRMs), which will be described in detail
in the next section (Fig.3 (b)). The Hourglass network with
MSRMs is interpreted in Fig. 2. The last two hourglass net-
works are standard hourglass without MSRMs. At the end of
each hourglass network, score maps of body joint locations
are generated and a squared-error loss is computed.

In this paper, we use compositional models and bone-based
part representation (See Section C, D) to represent human
body joints as different levels (See Fig.4). For example,
the 16 basic body joints (such as right shoulder, right elbow,
etc.) belong to level-0, right upper arm (composite of right
shoulder and right elbow) belongs to level-1, and right
arm (composite of right upper and lower arm) belongs to
level-2.
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FIGURE 1. The framework of our network.

FIGURE 2. Overview of Hourglass network with multi-scale residual modules.

To maintain the information and to integrate global and
local context concurrently, skip connections are used, and
features at each resolution can be better preserved. In practice,
the first three hourglass networks with multi-scale residual
blocks play a role in bottom-up phase. Score maps of target
keypoints are first regressed directly from the image observa-
tions to form level-0 maps. Then, the higher-level maps are
estimated recursively from the lower-level maps. The succe-
dent two hourglass networks enroll in a top-down phase. The
lower-level maps are refined recursively using higher-level
maps and high-level semantic information.

B. MULTI-SCALE RESIDUAL MODULE
For these deep convolutional neural networks based human
pose estimation methods, the input images are first warped to

the similar scale based on human body size. During the test
phase, the test image should also be warped to the same scale
as that for training images. Due to the changes of observation
points and the joints of the body, the scales of different parts
of the human body may still be inconsistent, which makes it
difficult for the body parts detector to localize the key points.

In DCNNs, the problem of scale change occurs not only
in the deeper layers with high-level semantics, but also in the
shallower layers with low-level features.

In order to enhance the scale invariance, we adopt pyramid
features as inputs of the network in the process of pose esti-
mation. Specifically, the pyramid residualmodule (PRMs) [3]
are used to construct the convolution filter of the feature pyra-
mid. Given the input features, the pyramid residual module
obtains features of different scales by sampling at different
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FIGURE 3. (a) Residual block is used by original hourglass to extract features. It extracts features on only one scale.
(b) Multi-Scale Residual Module.

scales. Then the later convolution layer learns the features
of different scales. The extracted features will be adjusted to
the same resolution and summed together to form the final
multi-scale feature.

The pyramid residual module can be used as a basic unit
for learning different levels of features in DCNNs. Feature
extraction at different levels using the pyramid residual mod-
ule can produce multi-scale feature representations to achieve
higher accuracy. We use the hourglass as our basic struc-
ture and replace the original residual unit with the proposed
pyramid residual module, extending from a single scale to a
multi-scale. We investigate how feature pyramid learning can
benefit human pose estimation.

In [10], the residual units [21] are used as building blocks
for the Hourglass network. However, it can only capture
visual patterns or semantics on a specific scale. In this paper,
we use the pyramid residual module as a building block to
capture multi-scale visual patterns or semantics.

The purpose of pyramid residual module is to learn the
different levels of feature pyramids, motivated by recent
progress [3].We propose a novel Deeply LearnedMulti-Scale
Compositional Model (DLMSCM), which is able to learn
multi-scale feature pyramids of different levels of parts.

Pyramid residual module is explicitly a learning filter for
input features with different resolutions. Let x(l) be the input
of l-th layer andW (l) be the filter of l-th layer. The output can
be written as:

x(l+1) = x(l) +M (x(l);W (l)) (1)

whereM (x(l);W (l)) is feature pyramids, can be calculated as:

M (x(l);W (l))=g(
n∑
i=1

fn(x(l);w
(l)
fn );w

(l)
g )+ f0(x(l);w

(l)
f0
) (2)

where N denotes the number of branches of the feature
pyramid module. fn(.) indicates the transformation of the n-th
feature pyramid branch. W (l)

= {w(l)
fn ,w

(l)
g }

N
n=0 is the branch

parameters of feature pyramid module. After summing up all
the output of fn(.), the final result is obtained by convolution
of filter g(.). An overview of the proposed framework is
illustrated in Fig. 3.

To reduce computational and spatial complexity, each fn(.)
is designed as a bottleneck structure. First, the feature dimen-
sion is reduced by a 1× 1 convolution, and then new features
are calculated on a set of sub-sampled input features using
3× 3 convolutions. Finally, all new features are promoted to
the same dimensions and are summed together.

C. COMPOSITIONAL MODELS
A compositional model is defined on a hierarchical graph.
It consists of a 4-tuple (α, β, θand , θ leaf ) that specifies its
graph structure (α, β) and potential functions (θand , θ leaf ). α
are characterized by two types of nodes: α = αand

⋃
αleaf .

αand model the composition of subparts into higher-level
parts and αleaf represents the lowest level portion. β denotes
graph edges.

For HPE, A state variable wu can be represented by the
position pu and type tu : wu = {pu, tu}, u ∈ α. Let ϕ
denote the set of all state variables in the model, and it can
be formulated as,

p(ϕ|I ) =
1
T
exp {−E(ϕ, I )} (3)

where E(ϕ, I ) is the energy function, T is the partition func-
tion and I is the input image.
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FIGURE 4. Bone-based part representation. Different bone-parts represent different levels of maps. We have three semantic
levels, including 16, 12, and 6 parts.

For the simplicity of the formula, we omit I and let
H (ϕ) = −E(ϕ, I ). H (ϕ) is decomposed as:

H (ϕ)=
∑

u∈αleaf

θ leafu (wu, I )+
∑

u∈αleaf

∑
v∈ch(u)

θandu,v (wu,wv) (4)

where ch(u) denotes the set of children of node u.
By using tree structure and dynamic programming,

the optimal state of input image I can be calculated effec-
tively. It is consisted of two stages: bottom-up stage and
top-down stage.

In the bottom-up stage, the maximum score H (ϕ) can be
expressed as:

(Leaf )H↑u (wu) = θ
leaf
u (wu, I ) (5)

(And)H↑u (wu) =
∑

v∈ch(u)

max
wv

[θandu,v (wu,wv)+ H
↑
v (wv)] (6)

whereH↑u (wu) is the maximum score of the subgraph consist-
ing of node u and all its subgraphs, and the state of root node
u is wu. Eq. (5) is boundary conditions.

In the top-down stage, the optimal states of child nodes can
be expressed as:

(Root)w∗u = argmaxwuH
↓
u (wu) ≡ argmaxwuH

↑
u (wu)

(7)

(Non− root)w∗v = argmaxwvH
↓
v (wv)

≡ argmaxwv [θ
and
u,v (w

∗
u,wv)+ H

↑
v (wv)] (8)

The node u in Eq. (8) is the only parent node of node v,
H↑u (wu) and H

↑
v (wv) are obtained from bottom-up stage, and

H↓u (wu) andH
↓
v (wv) are the refinement score graphs of nodes

u and v, respectively. Especially w∗u and w∗v are respectively
the optimal state of u and v. Eq. (7) is boundary conditions.

D. BONE-BASED PART REPRESENTATION
As shown in Fig. 4, we use the bones to represent each part,
which is generated by placing a Gaussian kernel along a
key point. Then, when training the model, the score graphs
H↑u (wu) and H

↓
u (wu) are taken as the ground truth of these

parts. Specifically, we generate a heat map centered on 2D
Gaussian (std = 1 pixel) at each point on the line segment of
the part.

E. DEEPLY LEARNED MULTI-SCALE COMPOSITIONAL
MODEL (DLMSCM)
Our Deeply Learned Multi-Scale Compositional Model
(DLMSCM) uses feature pyramid and deep compositional
models to learn multi-scale features and full body joints
constraints. In the bottom-up stage, the score maps of the
key points are first regressed from the input image. Then,
the scoremaps of those higher levels are estimated recursively
from their child nodes. In this stage, feature pyramids are
used to acquire multi-scale features to make regression more
accurate. In the top-down stage, the score maps of lower-level
parts are refined recursively by using their parents’ score
maps and their own scoring maps estimated in the bottom-up
stage.

IV. EXPERIMENTS
A. DATASETS AND IMPLEMENTATION DETAILS
Our approach is evaluated on two widely used human pose
estimation benchmarks: Leeds Sports Pose (LSP) [25] and
MPII Human Pose Dataset [26]. The LSP and its extended
dataset [25] consist of 11k training images and 1k testing
images. Each image is annotated with 14 keypoints, which
is gathered from Flickr. One of the challenges of the dataset
is noisy labels. Another challenge of the dataset is variety of
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poses from sports activities such as baseball, parkour, tennis,
and so on. MPII dataset [26] contains about 25k images with
over 40k annotated people, which covers a great variety of
human activities. Each image is annotated with 16 joints,
the center and scale. As previous works [3], we train the net-
work by including the MPII training samples. In comparison
with other pose datasets, MPII dataset are more complex in
terms of human interaction and poses.

Each input image is cropped 256×256 from resized images
according to the target annotated human body center and
scal. Each training image is augmented by scaling, rotation,
flipping, and adding color noise. Our models use Torch7 deep
learning libraries. We use RMSProp to optimize the network
with a mini-batch size of 16 for 250 epochs. Training is
performed on two 16GB NVIDIA Tesla P100 GPUs. The
learning rate is initialized as 1 × 10−4 and dropped by 10 at
180th and 225th epoch.

B. EVALUATION METRICS
Following previous works [2]–[4], we use Percentage of Cor-
rect Keypoints (PCK) [1] to evaluate performance on LSP
dataset, and use PCKh [26] on the MPII dataset.

1) PERCENTAGE OF CORRECT KEYPOINTS (PCK)
PCK reports the percentage of correct detections that fall
within a normalized distance. The distance is calculates by
the torso size. Let ẑk be the predicted location of the kth body
joint, zk is the corresponding ground truth location, then PCK
is defined as:

||zk − ẑk ||2
||zlhip − zrsho||2

≤ r (9)

where zlhip and zrsho denote the ground truth locations of
the left hip and right shoulder, respectively. r ∈ [0, 1] is a
threshold.

2) PERCENTAGE OF CORRECT KEYPOINTS WITH RESPECT
TO HEAD (PCKH)
Similar to PCK, The distance is normalized by a fraction of
head size, and the measure is referred to as PCKh.

C. RESULTS
1) QUANTITATIVE RESULTS
In our experiments, we evaluate our method on two stan-
dard benchmarks MPII and LSP. We compare our approach
with other state-of-the-art methods, the results are listed
in Table 1 and Table 2.

Table1 shows the comparisons of the PCK scores at the
threshold of 0.2 (PCK@0.2) on LSP test set. As previous
works [3], [10], our models are trained by adding MPII train-
ing set to LSP training and LSP extended training set. As for
the mean accuracy of key points, our approach achieves the
new best performance of 95.3%, and improves the previ-
ous best result [10] by 0.2%. Our method achieves the best
scores on six body parts, head, Elbow, wrist, Hip, Knee and

TABLE 1. Comparisons of PCK@0.2 scores on the LSP testing set.

TABLE 2. Comparisons of PCKh@0.5 scores on the MPII testing set.

Ankle with 98.6%, 93.8%, 90.8%, 95.3%, 97.0% and 95.8%
respectively.

In Table 2, we give the comparisons of the PCKh scores
at the threshold of 0.5(PCKh@0.5) on MPII test set. Our
approach achieves 92.5%, which clearly outperforms the pre-
vious work and improves the previous best result [10] by
0.2%. In addition, Our approach achieves the best scores
on six body parts, head, Shoulder, Elbow, wrist, Knee
and Ankle. Compared with the counterpart method [10]
whose total PCKh@0.5 is 92.3%, our method acquires
0.2% improvement by taking advantage of feature pyramids.
Specifically, our methods achieve 0.2% improvements on
shoulder, wrist and knee. For the most challenging parts to
be detected as Ankle, our improvements are even notable,
with 0.3%.
Complexities: Table.3 compares the complexity of

our DLMSCM model with other current state-of-the-art
approaches. Obviously, the parameters of DLMSCM model

VOLUME 7, 2019 71163



R. Wang et al.: Human Pose Estimation With DLMSCMs

FIGURE 5. Qualitative comparisons on LSP.

FIGURE 6. Qualitative comparisons on MPII.

is similar to that of Tang et al. [10]. However, our method has
fewer parameters and lower computational complexity than
the methods of Yang et al. [3] and Newell et al. [2].

2) QUALITATIVE COMPARISONS
We show some qualitative comparison results on LSP
in Fig. 5, and on MPII in Fig. 6. We compare our approach
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TABLE 3. Comparisons of parameters and model size.

FIGURE 7. Training curves of PCK scores vs. epoch on the LSP training set.
The blue curve stands for the DLCM model, and the red curve represents
our model.

FIGURE 8. Training curves of PCKh scores vs. epoch on the MPII training
set. The blue curve stands for the DLCM model, and the red curve
represents our model.

with the DLCM approach. In each figure, the first row con-
tains some results predicted by DLCM [10], and our results
are in the second row.

We can see that, by utilizing multi-scale mechanism in the
framework of DLCM, the model can be refined to correct
some errors to produce more plausible poses [3]. For exam-
ple, from the first to the fourth columns in Fig. 5, the DLCM
model can not distinguish heavily confusing joints, while our
model can learn the correct joint relationships well. Further,
multi-scale mechanism can enhance structural dependencies
among body joints. For example, in the last column of Fig. 6,
the DLCM model fails in case of complex occlusions, while
our model can successfully predict the correct joint locations.
The performances are obviously improved.

To further analyze the performance of each approach with
respect to the same factors, we show the training accuracy
curve in Fig. 7 and Fig. 8. We zoom in the part of curve after
epoch 150. We find that the strategy of learning rate decay

is helpful for both methods. At the 180th epoch, with the
decrease of learning rate, the PCKh scores on the MPII train-
ing set and the PCK scores on the LSP training set increase
significantly. However, there are some differences. Ours is a
bit more stable and always achieves better performance.

V. CONCLUSION
This paper proposes to learn feature pyramids by multi-scale
residual modules in Deeply Learned Compositional Model.
Considering the abundant dependency information among
body joints, we use bone-based part representation to com-
bine and describe the relevant joints. In order to detect
and locate the skeleton and parts more accurately, a train-
ing method based on different level-maps is proposed. The
level-maps are generated by Gaussian kernel to represent
bone-based body parts. We use multi-scale residual modules
to enhance the invariance of scales of the complex com-
positional models for human pose estimation. Experimental
results on MPII and LSP dataset demonstrate the effective-
ness of our proposed method.
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