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ABSTRACT Direction-of-arrival (DOA) estimation using sparsity-inducing techniques has attracted much
interest recently. In this paper, the DOA estimation for the bi-static passive radar is investigated. Under
the framework of sparse Bayesian learning (SBL), a joint sparse Bayesian model is established to combine
the measurements from both stations and yield improved targets DOA estimation. First, the maximum a
posteriori (MAP) estimation of the DOA using the joint data set is derived. With the utilization of more
measurements, the joint reconstruction process can produce far more precise estimates. To reduce the
computational expense, a fast SBL method based on evidence maximization is also proposed. Using the
fix-point method, the fast SBL method tends to converge faster than the MAP estimator. Theoretical results
focusing on local convergence property of the fast SBL method are provided. The simulation results show
that the proposed methods outperform the conventional SBL methods, especially in harsh scenarios with a
limited number of snapshots and low signal-to-noise ratio (SNR).

INDEX TERMS Direction-of-arrival estimation, sparse Bayesian learning, bi-static passive radar.

I. INTRODUCTION
Direction of arrival estimation has been a hot topic in sig-
nal processing for several decades [1]–[4]. It is an essential
problem in Radar, Sonar and seismic sensing etc.. Sub-space
based methods [5]–[8], such as Multiple Signal Classifi-
cation (MUSIC) [5], were proposed based on the premise
that the targets signals only span a low dimensional sub-
space. These methods were able to achieve super-resolution
within a Rayleigh cell, but usually require moderate SNR,
non-coherent sources assumption and sufficient number
of snapshots, which confines their application in practice.
Besides the sub-space methods, a family of parametric meth-
ods based on the maximum likelihood (ML) paradigm [9]
enjoy excellent statistical properties. However, the heavy
computational burden has prohibited such methods from
practical application.

Recently, Sparsity-inducing techniques have been intro-
duced into DOA estimation and achieve great success in
improving robustness of estimation against noise, limited
number of snapshots, and correlation of signals. The topic
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has attracted much interest in the last few decades and con-
tinues drawing attention. In its most basic form, the sparsity-
inducing models introduce an over-complete dictionary for
signal representation which makes the corresponding weight
vector sparse, i.e. the non-zero rows are much less than the
zero ones. Because of the over-complete dictionary, this prob-
lem is ill-posed unless further constraints are established. One
class of the methods solve the problem by inducing lp-norm
penalty into the minimizing objective function [10]–[13].
However, imposing lp-norm penalty with p < 1 for sparsity
usually causes a combinatorial increase in local optima [14].
Finding such local optima may be too computationally
expensive to afford for some practical systems. Later the
sparsity-inducing model was expanded to utilize multiple
measurement vectors (MMV) for DOA estimation. In the new
model, it is reasonably assumed that all vectors sampled from
different time share a common sparsity profile. The row-wise
l2-norm can be utilized to combine multiple snapshots and
form a single sparse vector [15]–[17]. Then the algorithms
developed for single measurement vector, such as the Least
Absolute Shrinkage and Selection Operator (LASSO) [18],
can be extended to fit the new model. Other variants included
using row-wise l1-norm [19] or row-wise l∞-norm [20] for
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signal sparsity constraints. Such convex relaxing techniques
made the DOA estimation accessible by the established
convex-programming but scarified the recovery performance,
i.e. the results may not be sufficiently sparse.

Another class of the sparsity constrained methods called
sparse Bayesian learning approach the problem from the
Bayesian perspective. There are two types of estimation in
this category. Type-I estimation is equivalent to MAP esti-
mation using a sparsity-inducing prior distribution. Type-
II estimation operates in latent variable space leveraging a
variational representation of the latent variable distribution
which leads to sparse estimators reflecting posterior infor-
mation beyond the mode [21]. Recently, a bunch of algo-
rithms based on this method have been proposed for different
scenarios [22]–[25]. Theoretical results show that Type-II
estimator could hold several desirable advantages over all
possible Type-I estimators with most,and in certain quantifi-
able conditions all, local optima smoothed away [21].

In this paper, we investigate how to jointly use mea-
surements from bi-static passive radar for DOA estimation.
Investigation of techniques used in passive radar [26]–[28]
has been extensively conducted for decades due to its sev-
eral advantages over active radar. In the last few years,
the interest in target detection and tracking based on bi-static
or multi-static radar has significantly grown up [29]–[32].
In [33], a SBL based method with grid refining strategy
was proposed to obtain joint direction of departure and
direction of arrival estimation for bi-static multiple-input
multiple-output (MIMO) radar. In the method, atoms of the
dictionary matrix were formed by the Kronecker product
of the steering vector of transmitting array and the steering
vector of receiving array. However, such method did not
take full advantage of the geometry relations of the bi-static
system, e.g. the range estimates of targets. In [34], the ML
solution of target localization was derived for multi-static
passive arrays under various assumptions on relative source
spectral information. To the authors best knowledge, using
SBL to jointly estimate the targets’ DOA for bi-static passive
radar, has rarely been studied in the open literatures, yet it is
quite useful in practice. Bi-static passive radar is consisted of
two stations that only receive data from source emitters. Here
the joint estimationmeans combiningmeasurements from the
two receiving arrays to yield improved estimates. The angles
of arrival for these two arrays are closely linked to each other
by a one-to-one mapping determined by the bi-static geome-
try. It is this link that the proposedmethod uses to jointly learn
the DOA of targets under the SBL framework. If we directly
average the estimated angles from each station, the result
would be less precise than the best estimate of those two.
However, by using SBL,we can achieve improved estimation.
The target localization using bi-static or multi-static pas-
sive radar can find many applications in practice [36], [37].
For example, the WiFi-based antenna arrays, such as indoor
routers, can be employed to form a bi-static or multi-static
radar for detecting and tracking people moving inside a build-
ing, for tracking vehicles moving in a parking area or for the

FIGURE 1. Geometry of the bi-static system.

surveillance of sensible areas within railway station, airport
terminals and private commercial premises [38], [39].

The main contribution of this paper can be divided into
three aspects. Firstly, a joint sparse Bayesian model is estab-
lished to combine the measurements from both stations and
the MAP estimator of targets DOA was derived with expec-
tation maximization (EM) technique [40]. It was found that
using the data from bi-static system could help enhance the
uniqueness condition for reconstruction process. However,
it was found that although the MAP estimator based on EM
could achieve optimal performance in Bayesian perspective,
the computational expense would be unbearable in some
practical situations. Therefore, based on the fix-point method
and appropriate approximation, we then developed a fast opti-
mization algorithm that maximize a Type-II Gaussian like-
lihood function. In addition, the local convergence property
of this algorithm was given and proved theoretically. In our
experiments, we show that in the case of low SNR and limited
number of snapshots, the proposed SBL algorithms could
achieve lower Root-Mean-Squared-Error (RMSE) than the
conventional methods that only used data from either station.

The rest of this paper is organized as follows. In Section II,
we give a description of the signal model. For the joint DOA
estimation, the bi-static geometry is utilized. We show that
under the Bayesian framework, the measurements from two
radar stations can be combined to obtain the DOA estimation.
Then in Section III, we derive an iterative algorithm using EM
technique for the DOA estimation model. We then develop
a fast algorithm in Section IV by maximizing a Type-II
evidence function. In Section V, we present the simulation
results of the proposed method and comparison with the con-
ventional methods. Finally, Section VI concludes the paper.

II. SIGNAL MODEL
A. SYSTEM MODEL
Consider a bi-static passive radar that consists of two linear
phased arrays located at separate places. Here we assume the
two arrays are placed in the same plane. The geometry of the
bi-static system is depicted by Fig 1. Denote the cross point
of lines along the arrays as O. The distance between station 1
and the cross point is L1 and the distance between station 2
and the cross point is L2. Assume that the first array consists
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ofM1 sensors separated by d1 and the second array consists of
M2 sensors separated by d2. K far-field independent sources
are incident on the radar. Here we assume they are located
within the same range bin of radar, because it is usually
required for DOA estimation that the utilized measurements
contain all the target signals but samples from different range
bins may not meet such requirement. Denote the range of
targets perceived by station 1 as R1 and the range with respect
to station 2 is R2. The incident angles with respect to the
boresight of station 1 are denoted as θ1 = [θ11 θ12 · · · θ1K ]T

and the incident angles are θ2 = [θ21 θ22 · · · θ2K ]T with
respect to the boresight of station 2 where (·)T represents
the matrix transpose. It can be easily found through simple
analysis of the geometry that θ1i and θ2i for i = 1, 2, · · · ,K
are linked by

L22 + R
2
2 − 2 cos(θ2i +

π

2
) = R21 + L

2
1 − 2 cos(

π

2
− θ1i) (1)

where the angles of arrival are in the range [−π2 ,
π
2 ]. Further

simplification of (1) gives

θ2i = − arcsin(
L22 + R

2
2 + 2R1L1 sin θ1i − R21 − L

2
1

2R2L2
) (2)

From (2), we can see that such link is dependent on R1 and R2
which are usually measured in the stage of detection. In many
practical applications, e.g. wide-band radar, the precision of
range measurement is higher than the angle estimation. The
received signals at station 1 and station 2 can be written as

Y1 = A1S1 + N1

Y2 = A2S2 + N2 (3)

where Y1 = [y1(1) y1(2) · · · y1(L)] is a M1 × L matrix of
the received data at station 1 collected from L samples, Y2 =

[y2(1) y2(2) · · · y2(L)] is aM2×L matrix of the received data
at station 2 and

A1 = [a(θ11) a(θ12) · · · a(θ1K )]

A2 = [a(θ21) a(θ22) · · · a(θ2K )] (4)

where a(θ ) = [1 ej2π
d
λ
sin(θ )
· · · ej2π (M−1)

d
λ
sin(θ )]T is the

array manifold and λ is the wavelength of the sources, M
is the number of array elements. S1 and S2 are the complex
amplitudes of the targets sampled at L different time. N1
and N2 are the white Gaussian noise from the first array and
the second array respectively. Conventional DOA estimation
methods based on sub-space decomposition usually requires
estimation of the covariance matrix:

R1 =
1
L
Y1YH

1 ,R2 =
1
L
Y2YH

2 (5)

where (·)H represents the conjugate transpose, and sub-space
decomposition by eigenvalue decomposition [41]:

R1 = Us13s1UH
s1 +

1

σ 2
1

Un1UH
n1

R2 = Us23s2UH
s2 +

1

σ 2
2

Un2UH
n2 (6)

where Usi, i = 1, 2 consist of eigenvectors of signal
sub-space and Uni, i = 1, 2 consist of eigenvectors of noise
sub-space, σ 2

1 and σ 2
2 are noise power of the arrays. There-

fore, from (5) and (6), we can see that the performance of
such methods are sensitive to limited number of samples and
SNR.

B. SPARSE SIGNAL MODEL
The sparse signal model introduces an over-complete dictio-
nary matrix8 = [a(θ1) a(θ2) · · · a(θN )] into the expression
of received data. Here θ i, i = 1, · · · ,N is a discrete sampling
of spatial angle space. Then the received data can be rewritten
as

Y1 = 81S1 + N1

Y2 = 82S2 + N2 (7)

where81 and82 are the dictionary matrices for station 1 and
station 2 respectively. Since we have N � max(M1,M2),
the problem we face is ill-posed unless the weight matrices
S1 and S2 are K -sparse for each column meaning only K ele-
ments corresponding to the targets directions potentially have
non-zero values and every column share the same sparsity
profile. To jointly exploit the received data from both stations,
we relate the sampling grids {θ1i}Ni=1 of 81 to the sampling
grids {θ2i}Ni=1 of 82 using (2). Note that the sampling grids
can not be too dense, otherwise the computation expense
would be unaffordable. The optimal design of joint grid maps
is a interesting topic for the future research and currently out
of the scope of this paper. But generally we could let either
{θ1i}

N
i=1 or {θ2i}Ni=1 uniformly spans the range [−π2 ,

π
2 ] and

the other is calculated by (2).
The probabilistic distribution of data given the weight

matrix is complex Gaussian as

p(Y1 |S1, σ 2
1 ) =

exp
(
−

1
σ 21

∥∥∥Y1 −81S1
∥∥∥2
F

)
(πσ 2

1 )
M1L

p(Y2 |S2, σ 2
2 ) =

exp
(
−

1
σ 22

∥∥∥Y2 −82S2
∥∥∥2
F

)
(πσ 2

2 )
M2L

(8)

where ‖·‖F stands for the Frobenius norm of matrix. For the
prior, note that we have made connection between 81 and
82, therefore, it is reasonable to assume that the elements
along each row of S1 and S2 are independent identically
distributed (iid) and subject to a zero-mean complex Gaus-
sian distribution with variance γi ≥ 0, i = 1, · · · ,N . The
elements of each column are assumed to be independent from
each other. Then we can put the prior distribution of weight
matrices as

p(S1 | γ ) =
L∏
i=1

CN (0, 0)

p(S2 | γ ) =
L∏
i=1

CN (0, 0) (9)
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where γ = [γ1 γ2 · · · γN ] and 0 = diag(γ ). The variances
γ are called hyper-parameters that control the sparsity of
the model. In this paper, it is assumed that the variances of
the target signal received by the two stations are the same.
In practice, the signal variance corresponds to the signal
power. The ratio of the signal power in the two stations can
be estimated by the radar function. Then the received data can
be compensated to make the variance of the target signal at
both stations equal. When γi = 0, the corresponding complex
amplitudes equal zero with probability 1. Thus the estimation
of targets direction depends on the estimation of γ instead of
the weight matrices which amounts to significantly reduction
of parameters needed to be estimated.

The prior of the hyper-parameters is usually assumed to
be non-informative or uniform. Using such broad prior over
the hyper-parameters allows the posterior probability mass to
concentrate at very small values of some of these γ variables,
with the consequence that the posterior probability of the
associated weights will be concentrated at zero, thus effec-
tively ’switching off’ the corresponding inputs [42]. Here
we assume that the hyper-parameters are subject to Gamma
distribution:

p(γ ) =
N∏
i=1

Gamma(γi | 1, a)

p(β1) = Gamma(β1 | 1, b)

p(β2) = Gamma(β2 | 1, c) (10)

where β1 = σ−21 , β2 = σ−22 and Gamma(x | ā, b̄) =
0(ā)−1b̄āx ā−1e−b̄x with 0(ā) being the gamma function.
In order to make the prior non-informative, we set a → 0,
b→ 0 and c→ 0. Empirical evidences have shown that the
SBL method is robust to the choice of a, b, c, as long as their
values are sufficiently small [25].

One way to obtain estimation of the hyper-parameters is by
MAP estimation. On the other hand, from Bayes’ theorem,
the posterior distribution for γ and β1, β2 is given by

p(γ, β1, β2 |Y1,Y2) ∝ p(Y1,Y2 | γ, β1, β2)p(γ, β1, β2)

(11)

Therefore, if the prior is relatively flat, in the evidence frame-
work, the values of γ, β1, β2 can be obtained by maximizing
the marginal likelihood function p(Y1,Y2 | γ, β1, β2) which
will be explored in Section IV.

The algorithms we proposed in this paper can still work
even if the targets are off the grid, but the performance will
deteriorate. However, a simple grid refinement strategy [15]
can be employed to alleviate such effect. Therefore, in the
derivation of our algorithms, we will omit the discussion of
handling the off-grid gap.

C. UNIQUENESS OF SOLUTION IN NOISELESS CASE
Denote spark(·) as the minimal number of coherent columns
of a matrix and the term diversity represents the number of
elements or rows of a matrix that are not equal to zero, then
the following theorem holds:

Theorem 1: Assume that spark(81) = m1, spark(82) =
m2 and there exists a solution of S1 and S2 that satisfies (7)
with diversity being p < max(m1,m2)/2, then there can be
no other solutions with diversity r < max(m1,m2)− p+ 1.
The proof of the theorem is provided in Appendix A.

Readers can find more discussion of the uniqueness of sparse
recovery solution in [17], [35]. The spark(·) corresponds to
the Unique Representation Property (URP) in single-task
compressive sensing problems. The theorem tells that if a
solution with diversity less than max(m1,m2)/2, is found,
this solution is unique. In addition, the theorem also gives the
maximum number of targets that can be uniquely estimated.
It can be found that compared with the DOA estimation using
data from only one station, the model diversity constraint
is more relaxed in our case. Therefore, the joint reconstruc-
tion process using data from both stations helps enhance the
uniqueness of the solution.

III. MAP ESTIMATION OF TARGETS DOA
In this section, we derive an iterative algorithm for DOA
estimation based on standard EM technique. The algorithm
proposed exploit the data from both stations instead of
either one of them as in the original EM algorithms. There-
fore, we denote this proposed algorithm as Bi-static Multi-
snapshot Expectation Maximization (BM-EM). Following
the standard SBL procedure, we will derive the estimator for
hyper-parameters γ , β1, β2. Although the DOA estimation is
only related to γ , the estimation of other hyper-parameters do
affect the performance of DOA estimation. The estimation of
hyper-parameters is obtained through MAP estimation:

(γ ?, β?1, β
?
2) = argmax

γ,β1,β2

p(γ, β1, β2 |Y1,Y2) (12)

Then with the optimal hyperparameters, the MAP estimate of
S1 and S2 can be obtained by

(S
?

1) = argmax
S1

p(S1 |Y1; γ
?, β?1)

(S
?

2) = argmax
S2

p(S2 |Y2; γ
?, β?2) (13)

According to Bayes’ theorem, we have

p(γ, β1, β2,Y1,Y2) = p(γ, β1, β2 |Y1,Y2)p(Y1Y2) (14)

Ignoring irrelevant terms, (12) is equivalent to

(γ ?, β?1, β
?
2) = argmax

γ,β1,β2

(ln p(γ, β1, β2,Y1,Y2)) (15)

A. E-STEP
To obtain the objective function in (15), we need to compute
the following integral:

ln p(γ, β1, β2,Y1,Y2)

= ln
∫∫

p(γ, β1, β2,S1,S2,Y1,Y2) dS1 dS2 (16)

However, optimizing the right side of (16) usually leads to a
problem that is analytically intractable. Therefore, we need to
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build a tight lower bound of ln p(γ, β1, β2,Y1,Y2). With the
Jensen’s inequality, a tight lower bound can be given as [25]

L(γ, β1, β2)
, 〈ln p(γ, β1, β2,S1,S2,Y1,Y2)〉p(S1,S2 |γ,β1,β2,Y1,Y2)

(17)

where 〈·〉p(x) is the expectation operator with respect to the
distribution p(x). For further derivation, we need to evaluate
the posterior distribution of S1,S2. According to Bayes’ the-
orem, we have

p(S1,S2 | γ, β1, β2,Y1,Y2)

∝ p(Y1,Y2 | γ, β1, β2,S1,S2)p(S1,S2 | γ, β1, β2)

(18)

Here we assume that S1 and S2 are independent from each
other. In practice, there could be many factors that contribute
to this assumption [34]. Although the signals share the same
sources, they are attenuated and also modulated during trans-
mission. Turbulence of the transmission channel is one of the
factors that make them incoherent. Furthermore, the signals
for DOA estimation are already down-converted to the base
band. Therefore, the turbulence in the radar system could also
contribute to the assumption. With this assumption and that
the noise in the two stations are independent, we haveY1 and
Y2 are also independent from each other. Therefore, we have

p(S1,S2 | γ, β1, β2,Y1,Y2)

= p(S1 | γ, β1,Y1)p(S2 | γ, β2,Y2) (19)

Since Gaussian distribution is self-conjugate, the posterior
distribution of Si, i = 1, 2 is also Gaussian. Combining (8)
and (9) gives

p(S1 | γ, β1,Y1)

=

exp
(
− tr

(
(S1 − µS1

)H6−1
S1

(S1 − µS1
)
))

(πN det(6S1
))L

(20)

where tr(·) represents the trace of a matrix, (·)−1 is matrix
inversion, det(·) is the determinant of matrix and

p(S2 | γ, β2,Y2)

=

exp
(
− tr

(
(S2 − µS2

)H6−1
S2

(S2 − µS2
)
))

(πN det(6S2
))L

(21)

where posterior mean µS1
, µS2

and covariance 6S1
, 6S2

can
be written as

µS1
= β16S1

8H
1 Y1 µS2

= β26S2
8H

2 Y2

6−1
S1
= β18

H
1 81 + γ

−1 6−1
S2
= β28

H
2 82 + γ

−1 (22)

Nowwe have all the ingredients for the optimization problem
in (15). In the next subsection, we will continue derivation for
the update of hyperparameters.

B. M-STEP
In this subsection, we address the estimation of hyper-
parameters γ, β1, β2. The estimation is done by maximizing
the objective function in (17), following a similar procedure
in [25]. However, because in our algorithm, the data from two
stations are jointly utilized, the update for γ is different.
The estimation of β1 and β2 is only dependent on data from

either station 1 or station 2. Thus, their estimation is the same
as in [25] and we give the update of β1 and β2 directly as
follows

β1 =
M1L∥∥∥Y1 −81µS1

∥∥∥2
F
+ L tr(816S1

8H
1 )

(23)

and

β2 =
M2L∥∥∥Y2 −82µS2

∥∥∥2
F
+ L tr(826S2

8H
2 )

(24)

where we have omitted the prior distribution of β1 and β2,
as the prior distribution is non-informative when b→ 0 and
c → 0. The above equation is obtained by directly taking
differentiation of (17) over β1 and β2 and setting them to
zero. In other literatures, the following update rule for noise
variance was also used [42], [43]:

β1 =

M1 − N +
N∑
i=1

(6S1
)i,i

γi∥∥∥Y1 −81µS1

∥∥∥2
F

β2 =

M2 − N +
N∑
i=1

(6S2
)i,i

γi∥∥∥Y2 −82µS2

∥∥∥2
F

(25)

However, for suitably structured dictionaries, the noise vari-
ance estimates obtained via this update rule can be extremely
inaccurate [14]. Thus, in the iteration, it is recommended to
use (23) and (24) for noise variance estimation.

For γ , ignoring irrelevant terms in (17), we could obtain

〈ln
(
p(S1 | γ )p(S2 | γ )p(γ )

)
〉

∝ −

L∑
i=1

〈S
H
1 (i)0

−1S1(i)+ S
H
2 (i)0

−1S2(i)〉

+2L ln
(
det(0−1)

)
= 2L ln

(
det(0−1)

)
−

L∑
i=1

tr
(
0−1(6S1

+ µS1
(i)µH

S1
(i))
)

−

L∑
i=1

tr
(
0−1(6S2

+ µS2
(i)µH

S2
(i))
)

(26)

where for brevity, we have omitted the subscript p(S1,S2 | γ,
β1, β2,Y1,Y2) in the expectation operator and the prior dis-
tribution of γ , S1(i) and S2(i) represent the ith column of S1
and S2 respectively.
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For convenience of calculation, we differentiate (26) with
respect to αm = 1

γm
instead of γm. Then we can have

∂〈ln
(
p(S1 | γ )p(S2 | γ )p(γ )

)
〉

∂αm
=

2L
αm
−4m,m (27)

where

4 = L(6S2
+6S1

)+ µS1
µH
S1
+ µS2

µH
S2

(28)

and (·)m,m represents the element at mth row and mth column
of a matrix. In the above derivation, we have used the follow-
ing matrix equality:

∂ ln
(
det(6−1)

)
αm

= tr
(
6
∂6−1

∂αm

)
(29)

where 6 is an arbitrary matrix. Setting the derivative in (27)
equal to zero, we could obtain the following update rule for
γm

γ j+1m =
µS1

(m)HµS1
(m)+ µS2

(m)HµS2
(m)

2L − (L6S2
+ L6S1

)m,m/γ
j
m

(30)

As it can be seen from (30), the update of γm uses the
information from the average of posterior distributions of
S1 and S2 instead of information of a single posterior dis-
tribution. As in our model, γ is the same for both stations,
the average is principally equal to adding more data samples
to the estimates. Therefore, the performance of our algorithm
is expected to outperform traditional EM algorithm that uses
data from either station.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
However, the convergence of this algorithm may not be fast
enough for practical applications. For the update of the pos-
terior meanµSi , i = 1, 2 and posterior variance6Si , i = 1, 2,
computation expensemainly comes from thematrix inversion
of size N × N . Thus its computational complexity is in the
order of O(N 3). The computation of updating γ requires
2NL2 complex multiplications and 2(N−1)L2 complex addi-
tions. Following the update of γ , the update of noise variance
requiresM1N (N +M1)+M2N (N +M2)+M1L(N +M1)+
M2L(N +M2) complex multiplications and (N − 1)M1(N +
M1+L)+(N−1)M2(N+M2+L)+(2L+1)M1+(2L+1)M2
complex additions. In practice, the length of the dictionary
is usually much greater than the number of elements and the
number of targets. Thus the computational complexity in each
iteration is in the order of O(N 3). As N increases for higher
precision of DOA estimation, the computation burden of
BM-EM could be unaffordable in practice. Therefore, in the
next section, we will develop a fast SBL method for DOA
estimation.

D. ALGORITHM SUMMARY
The EM algorithm requires repeating the E-step and M-step
until the profile of γ converges. Upon convergence, the EM
algorithmwould give not only the DOA estimates but also the

Algorithm 1 BM-EM
1) Input: Y1, Y2, 81, 82
2) Initialization: Set ε = 0.001 where ε is a small thresh-

old value, γ 0
= [1 1 · · · 1]T , β02 = 10, β01 = 10, j = 0

3) Repeat the following procedure:
a) Calculate µS1

, µS2
, 6S1

and 6S2
by (22)

b) Update γ j+1, β j+11 and β
j+1
2 using (30), (23)

and (24) respectively
c) Let j = j+1 and continue the loop (from a) to b))

until
∥∥γ j+1−γ j∥∥1
‖γ j‖1

≤ ε

4) Do the peak search of γ j+1 and use the dictionary
matrix to obtain the angle estimation.

5) Output: θ1, θ2, K

number of sources. Thus, it does not require prior knowledge
of the number of sources. The initial value of γ is usually set
to be uniform in every direction of the dictionary, because no
prior information of targets’ possible directions is assumed.
The proposed algorithm is summarized in Algorithm 1.

IV. FAST SBL METHOD
In this section, we will develop a faster DOA estimation
method by maximizing the evidence function. Although
this method can be much more efficient, it requires prior
information about the number of targets. Similar to other
DOA estimators, the number of targets can be estimated
by model-order selection criteria, such as Akaike Informa-
tion Criterion (AIC) and Bayesian Information Criterion
(BIC) [44]–[46]. It is also possible that we introduce the
model-order selection into the iteration [46], so the algorithm
could work without information of the number of targets.

Instead of calculating the posterior distribution of the
weights matrix S1 and S2, the evidence function is directly
maximized to estimate the hyper-parameters. We denote this
algorithm as Bi-staticMulti-snapshot Sparse Bayesian Learn-
ing (BM-SBL).

According to Bayes’ theorem, the evidence function could
be obtained by

p(Y1,Y2 | γ, β1, β2)

=

∫∫
p(Y1 |S1, β1)p(Y2 |S2, β2)p(S1 | γ )p(S2 | γ ) dS1dS2

(31)

Substituting (8) and (9) into (31) gives

p(Y1,Y2 | γ, β1, β2) ∝
e− tr(YH1 6

−1
Y1

Y1+YH2 6
−1
Y2

Y2)

det(6Y1 )L det(6Y2 )L
(32)

where

6Y1 = σ
2
1 IM1 +8108

H
1 , 6Y2 = σ

2
2 IM2 +8208

H
2 (33)

With (32), the hyper-parameters are estimated by

(γ ?, β?1, β
?
2) = argmax

γ,β1,β2

ln(p(Y1,Y2 | γ, β1, β2)) (34)
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The maximization is carried out by alternatively updating the
hyper-parameters.

A. UPDATE FOR γ

In this subsection, we will address the update for γ . Differ-
entiating (34) with respect to γm gives us

∂ ln p(Y1,Y2 | γ, β1, β2)
∂γm

=

∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2
+

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2
− LφH1m6

−1
Y1
φ1m

−LφH2m6
−1
Y2
φ2m (35)

where φ1m and φ2m are the mth column of 81 and 82
respectively. In derivation of (35), we have used the following
matrix equality:

∂6−1

∂γm
= −6−1

6

γm
6−1 (36)

where 6 is an arbitrary matrix.
Using fix-point method, we introduce factors into (35)

to obtain an iterative update equation for γm. Thus we
rewrite (35) as

∂ ln p(Y1,Y2 | γ, β1, β2)
∂γm

= (
γ
j
m

γ
j+1
m

)2
∥∥∥YH

1 6
−1
Y1
φ1m

∥∥∥2
2
− LφH1m6

−1
Y1
φ1m

+(
γ
j
m

γ
j+1
m

)2
∥∥∥YH

2 6
−1
Y2
φ2m

∥∥∥2
2
− LφH2m6

−1
Y2
φ2m (37)

Setting (37) to zero, we can get the update rule for γm as

γ j+1m = γ jm

√√√√√
∥∥∥YH

1 6
−1
Y1
φ1m

∥∥∥2
2
+

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2

LφH1m6
−1
Y1
φ1m + LφH2m6

−1
Y2
φ2m

(38)

Note that from (5), we have∥∥∥YH
i 6
−1
Yi
φim

∥∥∥2
2
= LφHim6

−1
Yi

Ri6
−1
Yi
φim, i = 1, 2 (39)

Therefore, once 6Yi = Ri, we will have γ jm = γ
j+1
m . Now

we can see that the update of γ is principally an iterative
procedure of fitting the covariance matrix. At the optimal
point, we have the following equation [47]

8H
iM(Ri −6Yi )8iM = 0, i = 1, 2 (40)

where 81M and 82M are composed of columns from 81
and 82 that correspond to the target directions. Since R1
and R2 are usually positive definite, we can replace 6

−1
Y1

and
6−1Y2

in (38) with R−11 and R−12 respectively [47] and we can
rewrite the update rule as

γ j+1m = γ jm

√√√√√∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2
+

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

(41)

Such replacement can reduce the computation expense at
each iteration.

In [47], a similar algorithm for only one station was pro-
posed where the update rule for γm is

γ j+1m =
γ
j
m
√
L

∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2
/

√
φH1mR

−1
1 φ1m (42)

It can be seen that (41) is not a linear combination of the
update rule in (42) for a single station. The convergence of the
proposed algorithm using (41) not only depends on the data
variance fitting of station 1 but also the data variance fitting
of station 2. Thus more data samples are used for estimation.
Using (41) to update γm is more robust to small perturbations
in the proximity of the optimal value.

Guarantees for global convergence is hard to prove rig-
orously. In [47], the proof of convergence of (42) was not
provided. As the formulated problem falls into the category
of multi-task compressive sensing, it has been proved that
the global minimum of the joint reconstruction process as
in BM-SBL coincides with the true solution with probability
1 in the noiseless case [48]. In this paper, we give the local
convergence of BM-SBL:
Theorem 2: ∃ a set K =

{
γ | δ ≥ γm − γ

∗
m ≥ 0

}
such that

if the initial point of the iteration γ 0
∈ K, the algorithmwould

always converge to the true value γ ∗.
The proof of the above theorem is provided in Appendix B.

B. ESTIMATION OF K AND UPDATE FOR σ2
1 , σ2

2
Before jumping into the estimation of noise variance,
we need to determine the number of targets first. Follow-
ing the guidelines in [46], one can easily get the estimate
of K as

K̂ = argmax
P

{
MiL ln

(
tr ((I− Pi)Ri)

Mi − P

)
− LP+ κ

}
,

i = 1 or 2 (43)

where P is the model order, κ = (2PL+1) ln(L)
2 and

P1 = 81M(8H
1M81M)−18H

1M
P2 = 82M(8H

2M82M)−18H
2M (44)

are the subspace projection matrices. Here 81M and 82M
are composed of columns from81 and82 that correspond to
the directions of P largest peaks in γ .

Getting a good estimate of noise variance is important for
fast convergence of the SBL methods. As it can be seen from
the last section, the estimation of noise only depends on either
Y1 or Y2. Therefore, we can follow the same procedure as
in [47] to get the update rule as

σ 2
1 =

tr ((I− P1)R1)

M1 − K
, σ 2

2 =
tr ((I− P2)R2)

M2 − K
(45)

The above update rule is an outcome of (40). Note that
P1 and P2 may change at every iteration until the algo-
rithm converges. If the columns in 81M and 82M corre-
spond to the true target directions, the noise estimate in (45)
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is unbiased, consistent and asymptotically efficient as it
approaches the Cramer-Rao Lower Bound (CRLB)with L →
∞ [47]. But if the columns in 81M and 82M correspond
to the false directions, (45) will always over-estimate the
noise power because the signal power is smeared into noise
subspace.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In each iteration, the computation expense of updating γ is
mostly on calculation of the numerator, as the denomina-
tor does not change with iteration and can be calculated in
advance. The computation of 6−1Y1

and 6−1Y2
is in the order of

O(M3
1 ) and O(M3

2 ) respectively and the update of γ requires
about N ((L + 2M1 + 1)M1 + (L + 2M2 + 1)M2 + 2L) times
complex multiplications and N (M1 − 1)(2M1 + L + 1) +
N (M2 − 1)(2M2 + L + 1) complex additions. For the update
of noise variance, determining the number of targets needs to
be done in advance. Afterwards, the update of noise variance
can be obtained directly from the maximum of the object
function in (43). If simple traversal search is used for finding

the solution of (43), the computation requires
η∑

P=1
2(M1 +

M2+P)P2+PM2
1+PM

2
2+M

3
1+M

3
2 complex multiplications

and
η∑

P=1
(M1 − 1)(M2

1 + P2 + 2) + (P − 1)(M1P + M2
1 ) +

(M2−1)(M2
2 +P

2
+2)+ (P−1)(M2P+M2

2 )+2P3 complex
additions where η is the maximum number of P. Generally
η is much less than the minimum of M1 and M2. Since the
number of elements and the number of targets are much less
than N , the computation in each iteration of Algorithm 2 is
much less than BM-EM.

D. ALGORITHM SUMMARY
The algorithm proceeds by repetitively and alternatively

update γ and σ 2
1 , σ

2
2 until

∥∥γ j+1−γ j∥∥1
‖γ j‖1

≤ ε. Firstly the update
of γ is done using (41), then the first K highest peaks are
picked out to form 81M and 82M. Afterwards, σ 2

1 and σ 2
2

are updated by (45). The algorithm proposed in this section
estimate the targets’ DOA by iterative fitting the data covari-
ance. Therefore, the better estimation of R1 and R2 we have,
the better estimation of DOA we can achieve. Note that the
update of noise variance in (45) may converge very fast to its
optimal point if M1 � K and M2 � K because the initial
estimate may be already close to the optima, which would
accelerate the convergence of our algorithm. The algorithm
is summarized in Algorithm 2.

V. SIMULATION RESULTS
In this section, we conduct mathematical simulation to
demonstrate the convergent property and estimation perfor-
mance of the proposed algorithms. We compare our methods
with the other conventional DOA estimationmethods, such as
MUSIC, EmpiricalMulti-snapshot Sparse Bayesian Learning
(EM-SBL) [14], original one-station EM (O-EM) [42], [49],
andMulti-snapshot Sparse Bayesian Learning (M-SBL) [47].

Algorithm 2 BM-SBL
1) Input: Y1, Y2, 81, 82
2) Initialization: Set ε = 0.001 where ε is a small thresh-

old value, γ 0
= [1 1 · · · 1]T , β02 = 10, β01 = 10,

j = 0. Estimate R1 and R2 by (5), calculate R−11 and
R−12

3) Repeat the following procedure:
a) Calculate 6Y1 and 6Y2 using (33) and calculate
6−1Y1

, 6−1Y2
accordingly

b) Update γ j+1 using (41)
c) Determine K using (43)
d) M = {m ∈ N|K largest peaks in γ }, build

8iM, i = 1, 2 accordingly
e) Update (σ 2

1 )
j+1 and (σ 2

2 )
j+1 using (45)

f) Let j = j+1 and continue the loop (from a) to d))

until
∥∥γ j+1−γ j∥∥1
‖γ j‖1

≤ ε

4) Output: θ1, θ2

FIGURE 2. Spectral of the proposed algorithms.

These conventional methods only utilize data from sta-
tion with higher SNR. For well-separated targets, all
sparsity-inducing methods as well as MUSIC would provide
similar DOA estimation performance, they differ, however,
when two of the targets are closely located.

We consider two stations both equipped with linear array
of six elements. The elements are uniformly spaced by half
of the wavelength of radar. In this section, the simulation
is conducted based on two different scenarios. In the first
scenario, the distance between station 1 and the cross point
equals the distance between station 2 and the cross point,
i.e. L1 = L2 and the range of station 1 and of station 2 is
the same and is equal to L1, i.e. R1 = R2 = L1. In this
special case, the dictionary 82 is merely a mirror image of
81. Thus, the grids of two dictionaries are both uniformly
sampled in space and we have θ1 = −θ2. In the second
scenario, we also assume that L1 = L2, but R1 = 2L1,
R2 = 1.8L1. In this scenario, the grids of dictionary 81 are
still uniformly sampled but the grids of 82 are calculated
according to (2).
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FIGURE 3. Relative update ratio of γ , (a) BM-EM; (b) BM-SBL.

A. SPECTRA AND CONVERGENT ANALYSIS OF THE
PROPOSED ALGORITHMS
In this subsection, simulation is conducted to analyze spectra
and convergent property of the proposed algorithms. The
simulation is based on scenario 1. The dictionary of station 1
spans from −45◦ to 45◦ at an interval of 1◦. Consider that
two targets are incident upon the arrays. The incidental angle
of the first target with respect to station 1 is 20◦ and the
incidental angle of the second target with respect to station 1
is 30◦. Assume that the SNR of station 2 is 0dB and the
SNR of station 1 is 6dB lower than station 2. Each station
collects 50 samples for estimation. The spectra of the pro-
posed algorithms are shown in Fig. 2 where the spectrum
of MUSIC is used as a comparison. The beam pattern of
array 1 at the direction of 25◦ is also plotted in Fig 2. From
Fig. 2, it can be seen that the proposed algorithms can obtain
precise estimation of two closely spaced targets (within the
3dB beam width of the main lobe) while the MUSIC algo-
rithm fails to distinguish the two targets. It can also be
observed that the peak width of BM-SBL is narrower than
BM-EM.

To analyze the convergent property of the proposed algo-

rithms, we take the relative update ratio
∥∥γ j+1−γ j∥∥1
‖γ j‖1

as a
measure of convergence. The relative update ratio can tell the
rate of convergence and whether fluctuation occurred during
iterations. In the simulation, we cap the number of iterations
to be 500 in BM-EM and BM-SBL. The results of 10 Monte
Carlo simulations are plotted in Fig. 3. From the results,
we can see that the relative update ratio of γ drops rapidly
at the beginning and barely changes after about 300 iterations
for both algorithms. However, in BM-SBL the relative update
ratio undergoes a small bump after the rapid drop which is
the result of fitting the covariance matrix. As the eigenvalues
of 6Y1 and 6Y2 approach that of R1 and R2 respectively,
a sudden turn of direction would generally happen once the
convergent sequences of eigenvalues cross the eigenvalues of
R1 and R2.

The ratio σ 2
1 /σ

2
1T is used to evaluate the convergence of

noise variance estimation, where σ 2
1T is the true value of the

noise variance in station 1. The results are plotted in Fig. 4.
From the results, it can be seen that the BM-EM tends to
underestimate the noise variance while the BM-SBL tends
to produce rather precise estimates at the beginning of the
iteration. As can be seen, the estimate of noise variance for
BM-SBL is always higher than its true value at the begin-
ning of the iteration, which is consistent with the analysis in
Section IV.

B. DOA ESTIMATION PERFORMANCE
In this subsection, we will compare the DOA estimation
performance of the proposed algorithms with conventional
methods. Two targets are assumed with θ11 = 20◦ and
θ12 = 30◦ respectively. As shown in Fig. 2, when the two
targets are such closely placed, the traditional MUSIC algo-
rithm would not be able to distinguish between them. Thus,
the comparison does not include MUSIC. We set the SNR in
station 1 3dB higher than the SNR in station 2. The simulation
is conducted based on the two different scenarios mentioned
above.

In the first scenario, each method collects 50 independent
snapshots for estimation and 100 Monte Carlo simulations
are conducted to evaluate the performance. The conventional
methods, i.e. EM-SBL, O-EM and M-SBL, only utilize the
data from station 1. Fig. 5 shows the RMSE of different
methods for different SNR of station 2. It can be seen from
the results that in this scenario, the proposed algorithms,
i.e. BM-EM and BM-SBL both outperform the conventional
methods at all different SNRwhich is due to the incorporation
of the data samples from station 2. Furthermore, the BM-SBL
has a slight advantage over BM-EM in RMSE, especially
when the SNR is low, which probably results from the usage
of prior information about the number of targets. For the same
reason, M-SBL outperforms EM-SBL and O-EM in all cases.
The EM-SBL and O-EM fail to produce precise estimation of
targets DOA when the SNR drops below 0dB. The advantage
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FIGURE 4. Convergence of noise variance σ2
1 , (a) BM-EM; (b) BM-SBL.

FIGURE 5. RMSE of different methods versus SNR in scenario 1.

of the proposed algorithms is more obvious in the case of low
SNR. Thus it can be concluded that in this scenario, the joint
estimation obtained via the proposed methods can achieve
better performance than the conventional SBL methods only
using data from one station. Fig. 6 shows the RMSE of
different methods versus the SNR of station 2 in scenario 2.
Again, each method uses 50 snapshots for estimation and the
RMSE is calculated based on 100 Monte Carlo simulations.
It can be seen that in this scenario, the proposed algorithms
still outperform the all the other conventional SBL methods,
especially at lower SNR.

Fig. 7 shows the how performance of different methods
changes with different number of snapshots in scenario 1.
In the scenario, it is still assumed that two targets are incident
from the direction θ11 = 20◦ and the direction θ12 = 30◦

respectively. The SNR of both stations are set to be 4dB. The
RMSE of each method is calculated based on 100 Monte
Carlo simulations. It can be seen that the performance of
all the sparsity-inducing techniques improves with increasing
number of snapshots. The proposed algorithms outperform
the other conventional methods in all situations. It can also

FIGURE 6. RMSE of different methods versus SNR in scenario 2.

FIGURE 7. RMSE of different methods versus number of snapshots in
scenario 1.

be observed that when the number of snapshots grows larger,
BM-SBL has a slight advantage in RMSE over BM-EM.

Fig. 8 shows the RMSE of different methods versus num-
ber of samples in scenario 2. In scenario 2, the dictionary
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FIGURE 8. RMSE of different methods versus number of snapshots in
scenario 2.

FIGURE 9. RMSE of different methods versus separated angle between
targets in scenario 1.

82 is no longer uniformly sampled. All the other simulation
parameters remain the same as in scenario 1. From the results,
it can also be found that the proposed algorithms outperform
the other conventional methods and the BM-SBL tends to
perform better than BM-EM in the case of large number of
samples.

Fig. 9 presents the performance of different methods at dif-
ferent cases where the two targets are separated by different
angles. In the simulation, the first target is fixed at 0◦, while
the angle of the other target changes from 5◦ to 20◦. It is found
that all the SBL methods are not able to tell the two targets
separated by less than 5◦ and when the targets are separated
by more than 10◦, the SBL methods can produce relatively
precise estimates. It is also seen that the larger the separated
angle is, the lower RMSE the SBL methods can offer. The
proposed algorithms outperform the conventional methods in
all situations.

The computation time of BM-EM and BM-SBL is com-
pared in Fig. 10. It can be seen that with more snapshots,
the algorithms require more time for calculation. Further-
more, BM-SBL is clearly more computational efficient than
BM-EM, especially in the cases of large snapshots, which
support the analysis given in Section IV.

FIGURE 10. Computation time of the proposed methods versus number
of snapshots in scenario 1.

FIGURE 11. RMSE of the proposed algorithm versus SNR before and after
the off-grid handling.

FIGURE 12. Computation time of the proposed methods versus number
of snapshots before and after the off-grid handling.

DOA estimation performance with and without the grid
refining strategy [15] is compared in Fig. 11. In the sim-
ulation, two targets were assumed. The incidental angles
with respect to station 1 were 10◦ and −10.5◦ respectively.
100 snapshots were used for the estimation. The SNR
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changed from−2dB to 8dB. In the off-grid handling, the grids
of the refined dictionary matrix span from min(θ̂ ) − 5◦ to
max(θ̂ ) + 5◦ with the interval being 0.5◦. Here θ̂ is the
DOA estimates from the last estimation using coarse grids.
Such choice of grids was made based on the last estimates
of targets’ DOA. It ensured that all the DOA of targets were
covered in the refined grids. It can be seen from Fig. 11 that
the off-grid handling can significantly improve the perfor-
mance of DOA estimation. Without the off-grid handling,
the RMSE could not go lower than 0.5◦. The computational
complexity of the proposed method before and after the
off-grid handling was compared in Fig. 12. It can be seen that
with snapshots increasing, the computation complexity of
BM-SBL increases slower than that of BM-EM. The off-grid
handling almost doubles the CPU time of the case without
off-grid handling. In all, the off-grid handling is able to deal
with the off-grid targets, however at the expense of much
more computational resources.

VI. CONCLUSION
In this paper, we proposed a novel DOA estimation method
for bi-static passive radar under the framework of sparse
Bayesian learning, which successfully combined the mea-
surements from both stations to achieve improved estimates.
Theoretical results showed that the bi-static system could help
enhance the uniqueness of the reconstructed solution. Two
algorithms were proposed for this purpose. The MAP esti-
mator was firstly derived using EM technique. To reduce the
computation expenses, a fast SBL method named BM-SBL
was then developed by using the fix-point method to max-
imize the evidence. Theoretical derivation proved that once
the initial point of iteration started in a given set around the
true value, the BM-SBL estimates would always converge to
the true value. Simulation results demonstrate the advantage
of the proposed algorithms against the conventional SBL
methods only using data from one station.

APPENDIX A
PROOF OF THEOREM 1

Proof: The proof of theorem 1 follows the basic guide-
line of proving Theorem 1 in [17], [21], [35] for single-task
compressive sensing. As the formulated problem in this paper
is a multi-task compressive sensing, the derivation differs a
little.

Let us assume that M1 > M2 and there exists another
solution of S1 with diversity r < M1 − p + 1. Denote such
solution as S1

′
. Then we have

81S1 = 81S1
′

(46)

Denote the p columns in81 that correspond to the non-zero
rows in S1 as 8p

1 and the sub-matrix that is formed by the
non-zero rows of S1 as X1. Denote the r columns in 81
that correspond to the non-zero rows in S1

′
as 8r

1 and the
sub-matrix that is formed by the non-zero rows of S1 as X2.

Thus, following the assumption, one can get

(8p
1 8

r
1)
(

X1
−X2

)
= 0 (47)

Since p+ r < m1, the columns in the matrix (8p
1 8

r
1) are lin-

early independent. Therefore,X1 andX2 must be zero matrix
for (47) to be satisfied, which clearly contradicts the original
assumption. The above derivation concludes that there can
be no other solution of S1 with diversity r < m1 − p + 1.
As p < m

2 , it can be given that r > p which means that
the original solution is the sparsest among all that satisfy (7).
The same conclusion can be derived if m2 > m1 and hence,
theorem 1 is proved.

APPENDIX B
PROOF OF THEOREM 2

Proof: In order to access the convergence of sequence
γm, we firstly prove the local convergence of the sequence γ 2

m.
From (41), we have

(γ j+1m )2 = (γ jm)
2

∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2
+

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

(48)

Taking differentiation of (48) over γ 2
m gives:

∂(γ j+1m )
2

∂(γ jm)
2 =

∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2
+

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

+

∂

∥∥∥YH1 6−1Y1
φ1m

∥∥∥2
2

∂(γ jm)
2 (γ jm)

2
+

∂

∥∥∥YH2 6−1Y2
φ2m

∥∥∥2
2

∂(γ jm)
2 (γ jm)

2

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

(49)

The complex derivative operator is defined in [50]

∂f
∂x
=

∂f
Re(x)

− j
∂f

Im(x)
(50)

where f is an arbitrary real function and x is a complex vector,
Re(·) and Im(·) represent the real part and imaginary part of
a complex matrix respectively.

Using the complex derivative operator and the chain rule
of differentiation, we have

∂

∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2

∂(γ jm)
2

=

∂
∥∥∥YH

1 6
−1
Y1
φ1m

∥∥∥2
2

∂(YH
1 6
−1
Y1
φ1m)


T

∂(YH
1 6
−1
Y1
φ1m)

∂(γ jm)
2

= 2(YH
1 6
−1
Y1
φ1m)

H
(
−YH

1 6
−1
Y1
φ1m

1

2γ jm
φH1m6

−1
Y1
φ1m

)

= −
φH1m6

−1
Y1
φ1m

γ
j
m

∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2

(51)
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where in the above derivation, we have used

∂(6−1Y1
)

∂(γ jm)
2 = −6

−1
Y1

∂(6Y1 )

∂(γ jm)
2 6
−1
Y1

= −6−1Y1
φ1m

1

2γ jm
φH1m6

−1
Y1

(52)

Similarly, one can easily get

∂

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2

∂(γ jm)
2 = −

φH2m6
−1
Y2
φ2m

γ
j
m

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2

(53)

Substituting (51) and (53) into (49) gives that

∂(γ j+1m )
2

∂(γ jm)
2 =

∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2
(1− γmφH1m6

−1
Y1
φ1m)

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

+

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2
(1− γmφH2m6

−1
Y2
φ2m)

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

(54)

In the following derivation, the lemma below is used:
Lemma 1: Define a real function g(γm) = γmφHim6

−1
Yi
φim,

i = 1 or 2 on the domainD = R+∪{0}, then sup(g(γm)) ≤ 1.

With the Lemma, it can be seen that ∂(γ
j+1
m )2

∂(γ jm)2
≥ 0. Define

another function hm(γ ) =
∂(γ j+1m )2

∂(γ jm)2
. Such function is a multi-

variate function. The derivative of hm(γ ) over γm is

∂h(γm)
∂γm

=

−3
∥∥∥YH

1 6
−1
Y1
φ1m

∥∥∥2
2
(1− γmφH1m6

−1
Y1
φ1m)φH1m6

−1
Y1
φ1m

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

+

−3
∥∥∥YH

2 6
−1
Y2
φ2m

∥∥∥2
2
(1− γmφH2m6

−1
Y2
φ2m)φH2m6

−1
Y2
φ2m

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

(55)

which is clearly always negative. The derivative of hm(γ ) over
γn,∀n ∈ [1,N ], n 6= m is

∂hm(γ )
∂γn

=
−2Re(φH1m6

−1
Y1

Y1YH
1 6
−1
Y1
φ1nφ

H
1n6
−1
Y1
φ1m)

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

×(1− γmφH1m6
−1
Y1
φ1m)

+

γm

∥∥∥YH
1 6
−1
Y1
φ1m

∥∥∥2
2

∥∥∥φH1m6−1Y1
φ1n

∥∥∥2
2

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

+
−2Re(φH2m6

−1
Y2

Y2YH
2 6
−1
Y2
φ2nφ

H
2n6
−1
Y2
φ2m)

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

×(1− γmφH2m6
−1
Y2
φ2m)

+

γm

∥∥∥YH
2 6
−1
Y2
φ2m

∥∥∥2
2

∥∥∥φH2m6−1Y2
φ2n

∥∥∥2
2

LφH1mR
−1
1 φ1m + LφH2mR

−1
2 φ2m

(56)

Denote a set M that contains the indexes that correspond to
the target directions in the dictionary and the optimal point
as γ ∗. Then one can easily get:

h(γ ∗m) =

1, ifm /∈M

1− γ ∗m
(φH1mR

−1
1 φ1m)2+(φH2mR

−1
2 φ2m)2

φH1mR
−1
1 φ1m+φ

H
2mR

−1
2 φ2m

, otherwise
(57)

If m /∈ M, one can obtain the following result from (55)
and (56):

∂hm(γ )
∂γm

∣∣∣∣
γ=γ ∗

≤ 0, ∀m ∈ [1,N ] (58)

where (·)|γ=γ ∗ represents the value at γ = γ ∗. Since the
derivative of hm is also continuous, it can be seen that

∃ δ1 > 0, s.t. hm(γ ) ≤ 1, ∀ γ ∈ [γ ∗, γ ∗ + δ1] (59)

If m ∈M, hm(γ ∗) < 1. Thus it can be obtained that

∃ δ2, s.t. hm(γ ) ≤ 1, ∀
∣∣γ − γ ∗∣∣ ≤ δ2 (60)

Combining (59) and (60), we can get that

∀m ∈ [1,N ], ∃ δ > 0,

s.t. 0 ≤ hm(γ ) ≤ 1, ∀ γ ∈ K =
{
γ | δ ≥ γm − γ

∗
m ≥ 0

}
(61)

Therefore, if the initial point of the iteration belongs to the
set K, one can obtain from (61) that

0 ≤ γ j+1m − γ ∗m < γ jm − γ
∗
m, ∀m ∈ [1,N ], j ≥ 0 (62)

which is a direct result from the Lagrange Mean Value The-
orem and hm ≥ 0. Therefore, we can see that provided the
initial point is already close to the optima, the sequence γ
would always converge to the optimal point.

APPENDIX C
PROOF OF LEMMA 1

Proof: The derivative of g(γm) over γm is

∂g(γm)
∂γm

= φHim6
−1
Yi
φim(1− γmφHim6

−1
Yi
φim) (63)

Since 6−1Yi
is always positive semi-definite, φHim6

−1
Yi
φim > 0.

From (63), we can see that

∂g
∂γm

> 0, ifγmφHim6
−1
Yi
φim < 1

∂g
∂γm
= 0, ifγmφHim6

−1
Yi
φim = 1

∂g
∂γm

< 0, ifγmφHim6
−1
Yi
φim > 1

(64)

Let us first consider the case that max(γm) exists on the
domain R+ and the it is achieved at γ ′m that satisfies
g(γ ′m) > 1. Since the inversion of a positive semi-definite
matrix is continuous about its elements, the function g(γm)
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is also a continuous function. According to the property of
continuous function, for an arbitrary ε > 0, there exists a δ
such that whenever |γm − γ ′m| < δ, |g(γm)− g(γ ′m)| < ε. Let
ε < |g(γ ′m) − 1|, then on the interval [γ ′m − δ, γ

′
m), we have

g(γm) > 1 and ∂g
∂γm

< 0. Because of the continuity, we have

lim
γm→(γ ′m)

−
g(γm) = g(γ ′m) (65)

According to the assumption, it can be obtained that

∃γm ∈ [γ ′m − δ, γ
′
m), s.t. lim

γm→(γ ′m)
−
g(γm) > g(γm) (66)

Then, in a small δ′− neighborhood of γ ′m, we have g(γm) >
g(γm) which clearly contradicts the conclusion that on the
interval [γ ′m − δ, γ

′
m), the function g(γm) is monotonically

decreasing.
Consider the case that max(γm) does not exist on the

domain R+. If sup(g(γm)) > 1, there exists a point γ ′m such
that g(γ ′m) > 1. Then from the above analysis, there exists
an interval [γ ′m − δ, γ

′
m) such that every point on the interval

satisfies g(γm) > g(γ ′m). Continuing this derivation, we could
obtain that

lim
γm→(0)+

g(γm) > 0 (67)

which contradicts the continuity at γm = 0.
Therefore, it could be obtained that sup(g(γm)) ≤ 1.

REFERENCES
[1] K. Zarifi and A. B. Gershman, ‘‘Generalized correlation decomposition-

based blind channel estimation in DS-CDMA systemswith unknownwide-
sense stationary noise,’’ IEEE Trans. Signal Process., vol. 56, no. 11,
pp. 5605–5617, Nov. 2008.

[2] C. Qian, L. Huang, N. D. Sidiropoulos, and H. C. So, ‘‘Enhanced PUMA
for direction-of-arrival estimation and its performance analysis,’’ IEEE
Trans. Signal Process., vol. 64, no. 16, pp. 4127–4137, Aug. 2016.

[3] M. M. Nikolic, A. Nehorai, and A. R. Djordjevic, ‘‘Estimation of direction
of arrival using multipath on array platforms,’’ IEEE Trans. Antennas
Propag., vol. 60, no. 7, pp. 3444–3454, Jul. 2012.

[4] U. Nickel, ‘‘Overview of generalized monopulse estimation,’’ IEEE
Aerosp. Electron. Syst. Mag., vol. 21, no. 6, pp. 27–56, Jun. 2006.

[5] F. G. Yan, M. Jin, S. Liu, and X. L. Qiao, ‘‘Real-valued MUSIC
for efficient direction estimation with arbitrary array geometries,’’
IEEE Trans. Signal Process., vol. 62, no. 6, pp. 1548–1560,
Mar. 2014.

[6] X. Zhang, Y. Huang, C. Chen, J. Li, and D. Xu, ‘‘Reduced-complexity
capon for direction of arrival estimation in a monostatic multiple-
input multiple-output radar,’’ IET Radar, Sonar, Navigat., vol. 6, no. 8,
pp. 796–801, Oct. 2012.

[7] C. Qian, L. Huang, and H. C. So, ‘‘Improved unitary root-MUSIC for DOA
estimation based on pseudo-noise resampling,’’ IEEE Signal Process. Lett.,
vol. 21, no. 2, pp. 140–144, Feb. 2014.

[8] W. Suleiman, M. Pesavento, and A. M. Zoubir, ‘‘Performance analysis
of the decentralized eigendecomposition and ESPRIT algorithm,’’ IEEE
Trans. Signal Process., vol. 64, no. 9, pp. 2375–2386, May 2016.

[9] H. Krim andM. Viberg, ‘‘Two decades of array signal processing research:
The parametric approach,’’ IEEE Signal Process. Mag., vol. 13, no. 4,
pp. 67–94, Jul. 1996.

[10] J.-W. Jhang and Y.-H. Huang, ‘‘A high-SNR projection-based atom selec-
tion OMP processor for compressive sensing,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 24, no. 12, pp. 3477–3488, Dec. 2016.

[11] B. D. Jeffs, ‘‘Sparse inverse solutionmethods for signal and image process-
ing applications,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal Process.,
vol. 3, May 1998, pp. 1885–1888.

[12] I. F. Gorodnitsky andB.D. Rao, ‘‘Sparse signal reconstruction from limited
data using FOCUSS: A re-weighted minimum norm algorithm,’’ IEEE
Trans. Signal Process., vol. 45, no. 3, pp. 600–616, Mar. 1997.

[13] B. D. Rao andK. Kreutz-Delgado, ‘‘An affine scalingmethodology for best
basis selection,’’ IEEE Trans. Signal Process., vol. 47, no. 1, pp. 187–200,
Jan. 1999.

[14] D. P. Wipf and B. D. Rao, ‘‘An empirical Bayesian strategy for solving
the simultaneous sparse approximation problem,’’ IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3704–3716, Jul. 2007.

[15] D. Malioutov, M. Çetin, and A. S. Willsky, ‘‘A sparse signal reconstruction
perspective for source localization with sensor arrays,’’ IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[16] P. Gerstoft, A. Xenaki, and C. F. Mecklenbrauker, ‘‘Multiple and single
snapshot compressive beamforming,’’ J. Acoust. Soc. Amer., vol. 138, no. 4,
pp. 2003–2014, Oct. 2015.

[17] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, ‘‘Sparse
solutions to linear inverse problems with multiple measurement vectors,’’
IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477–2488, Jul. 2005.

[18] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, New York, NY, USA: Springer, 2001.

[19] J. Chen and X. Huo, ‘‘Sparse representations for multiple measure-
ment vectors (MMV) in an overcomplete dictionary,’’ in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 4. Mar. 2005,
pp. 257–260.

[20] J. A. Tropp, ‘‘Algorithms for simultaneous sparse approximation. Part II:
Convex relaxation,’’ Signal Process., vol. 86, no. 3, pp. 589–602,
Mar. 2006.

[21] D. P. Wipf and B. D. Rao, ‘‘Latent variable Bayesian models for pro-
moting sparsity,’’ IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6236–6255,
Sep. 2011.

[22] L. Wang, L. Zhao, G. Bi, C. Wan, L. Zhang, and H. Zhang, ‘‘Novel wide-
band DOA estimation based on sparse Bayesian learning with Dirichlet
process priors,’’ IEEE Trans. Signal Process., vol. 64, no. 2, pp. 275–289,
Jan. 2016.

[23] J. Dai, X. Bao, W. Xu, and C. Chang, ‘‘Root sparse Bayesian learning
for off-grid DOA estimation,’’ IEEE Signal Process. Lett., vol. 24, no. 1,
pp. 46–50, Jan. 2017.

[24] N. Hu, B. Sun, Y. Zhang, J. Dai, J.Wang, and C. Chang, ‘‘Underdetermined
DOA estimation method for wideband signals using joint nonnegative
sparse Bayesian learning,’’ IEEE Signal Process. Lett., vol. 24, no. 5,
pp. 535–539, May 2017.

[25] J. Dai and H. C. So, ‘‘Sparse Bayesian learning approach for outlier-
resistant direction-of-arrival estimation,’’ IEEE Trans. Signal Process.,
vol. 66, no. 3, pp. 744–756, Feb. 2018.

[26] L. Zheng and X. Wang, ‘‘Super-resolution delay-Doppler estimation for
OFDM passive radar,’’ IEEE Trans. Signal Process., vol. 65, no. 9,
pp. 2197–2210, May 2017.

[27] P. Lombardo and F. Colone, ‘‘Advanced processing methods for passive
bistatic radar systems,’’ in Principles of Modern Radar: Advanced Tech-
niques, W. L. Melvin and J. A. Scheer, Eds. Rijeka, Croatia: SciTech
Publishing, 2012.

[28] A. Farina and H. Kuschel, ‘‘Guest editorial special issue on passive
radar (Part I),’’ IEEE Aerosp. Electron. Syst. Mag., vol. 27, no. 10, p. 5,
Oct. 2012.

[29] C. Kreucher, ‘‘Exploiting narrowband bistatic radar measurements for
dismount detection and tracking [measurements corner],’’ IEEE Antennas
Propag. Mag., vol. 53, no. 1, pp. 98–105, Feb. 2011.

[30] E. Hanusa, D. Krout, and M. R. Gupta, ‘‘Estimation of position from
multistatic Doppler measurements,’’ in Proc. 13th Int. Conf. Inf. Fusion,
Jul. 2010, pp. 1–7.

[31] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, ‘‘Space-Time adap-
tive processing and motion parameter estimation in multistatic passive
radar using sparse Bayesian learning,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 2, pp. 944–957, Feb. 2016.

[32] H. L. van Trees, K. L. Bell, and Y.Wang, ‘‘Bayesian cramer-rao bounds for
multistatic radar,’’ in Proc. Int. Waveform Diversity Design Conf., Lihue,
HI, USA, Jan. 2006, pp. 1–4.

[33] F. Chen, J. Zheng, and J. Dai, ‘‘DOD and DOA estimation for bistatic
MIMO radars with sparse Bayesian learning,’’ in Proc. Int. Workshop
Antenna Technol. (iWAT), Nanjing, China, Mar. 2018, pp. 1–4.

[34] D. Tollefsen, P. Gerstoft, and W. S. Hodgkiss, ‘‘Multiple-array passive
acoustic source localization in shallow water,’’ J. Acoust. Soc. America,
vol. 141, no. 3, pp. 1501–1513, Jan. 2017.

72992 VOLUME 7, 2019



X. Zhang et al.: DOA Estimation via Joint SBL for Bi-Static Passive Radar

[35] J. Chen and X. Huo, ‘‘Theoretical results on sparse representations of
multiple-measurement vectors,’’ IEEE Trans. Signal Process., vol. 54,
no. 12, pp. 4634–4643, Dec. 2006.

[36] F. Colone, P. Falcone, C. Bongioanni, and P. Lombardo, ‘‘WiFi-based pas-
sive bistatic RADAR: Data processing schemes and experimental results,’’
IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 2, pp. 1061–1079,
Apr. 2012.

[37] K. Chetty, G. E. Smith, and K. Woodbridge, ‘‘Through-the-wall sensing
of personnel using passive bistatic WiFi radar at standoff distances,’’
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1218–1226,
Apr. 2012.

[38] P. Falcone, F. Colone, and P. Lombardo, ‘‘Potentialities and challenges of
WiFi-based passive radar,’’ IEEE Aerosp. Electron. Syst. Mag., vol. 27,
no. 11, pp. 15–26, Nov. 2012.

[39] P. Falcone, F. Colone, A. Macera, and P. Lombardo, ‘‘Two-dimensional
location of moving targets within local areas using WiFi-based multistatic
passive radar,’’ IET Radar, Sonar Navigat., vol. 8, no. 2, pp. 123–131,
Feb. 2014.

[40] C. M. Bishop, Pattern Recognition and Machine Learning, New York, NY,
USA: Springer, 2006.

[41] X. Zhang, Y. Li, X. Yang, T. Long, and L. Zheng, ‘‘Sub-array weighting
UN-MUSIC: A unified framework and optimal weighting strategy,’’ IEEE
Signal Process. Lett., vol. 21, no. 7, pp. 871–874, Jul. 2014.

[42] M. E. Tipping, ‘‘Sparse Bayesian learning and the relevance vector
machine,’’ J. Mach. Learn. Res., vol. 1, pp. 211–244, Sep. 2001.

[43] D. J. C. MacKay, ‘‘Bayesian interpolation,’’ Neural Comput., vol. 4, no. 3,
pp. 415–447, 1992.

[44] P. Stoica and Y. Selen, ‘‘Model-order selection: A review of information
criterion rules,’’ IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36–47,
Jul. 2004.

[45] C. D. Austin, R. L. Moses, J. N. Ash, and E. Ertin, ‘‘On the relation
between sparse reconstruction and parameter estimation with model order
selection,’’ IEEE J. Sel. Topics Signal Process., vol. 4, no. 3, pp. 560–570,
Jun. 2010.

[46] Z.-M. Liu, Z.-T. Huang, and Y.-Y. Zhou, ‘‘An efficient maximum likeli-
hood method for direction-of-arrival estimation via sparse Bayesian learn-
ing,’’ IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3607–3617,
Oct. 2012.

[47] P. Gerstoft, C. F. Mecklenbrauker, A. Xenaki, and S. Nannuru, ‘‘Multi-
snapshot sparse Bayesian learning for DOA,’’ IEEE Signal Process. Lett.,
vol. 23, no. 10, pp. 1469–1473, Oct. 2016.

[48] Z.-M. Liu, ‘‘Direction-of-arrival estimation with time-varying arrays via
Bayesian multitask learning,’’ IEEE Trans. Veh. Technol., vol. 63, no. 8,
pp. 3762–3773, Oct. 2014.

[49] Z. Yang, L. Xie, and C. Zhang, ‘‘Off-grid direction of arrival estimation
using sparse Bayesian inference,’’ IEEE Trans. Signal Process., vol. 61,
no. 1, pp. 38–43, Jan. 2013.

[50] D. H. Brandwood, ‘‘A complex gradient operator and its application in
adaptive array theory,’’ IEE Proc. F Commun., Radar Signal Process.,
vol. 130, no. 1, pp. 11–16, Feb. 1983.

XINYU ZHANG received the B.S. and Ph.D.
degrees from the Beijing Institute of Technology,
in 2011 and 2017, respectively. He visited The
Ohio State University, from 2015 to 2017, as a
Visiting Scholar. Since 2017, he has been holding
a postdoctoral position with the National Univer-
sity of Defense Technology, where he is currently
a Lecturer with the College of Electronic Sci-
ence and Engineering. He is the author of more
than 11 papers and holds two patents. His current

research interests include array signal processing, auto target detection, and
waveform optimization.

KAI HUO was born in Hubei, China, in 1983.
He received the B.S. degree in communication
engineering and the Ph.D. degree in electronic
science and technology from the National Uni-
versity of Defense Technology (NUDT), China,
in 2005 and 2011, respectively, where he is cur-
rently a Lecturer. His research interests include
radar signal processing and feature extraction.

YONGXIANG LIU received the B.S. and Ph.D.
degrees from the National University of Defense
Technology (NUDT), in 1999 and 2004, respec-
tively. In 2008, he was an Academic Visitor with
Imperial College London. Since 2004, he has been
with NUDT, where he is currently a Professor with
the College of Electrical Science and Engineering,
conducting research on radar target recognition,
time–frequency analysis and micro-motions, and
array signal processing.

XIANG LI received the B.S. degree from Xidian
University, Xi’an, in 1989, and the M.S. and Ph.D.
degrees from the National University of Defense
Technology, in 1995 and 1998, respectively. He is
currently a Professor with the National University
of Defense Technology and performs research on
array signal processing, auto target recognition,
signal detection, and non-linear signal processing.
He has published more than 200 papers and five
monographs and holds 13 patents.

VOLUME 7, 2019 72993


	INTRODUCTION
	SIGNAL MODEL
	SYSTEM MODEL
	SPARSE SIGNAL MODEL
	UNIQUENESS OF SOLUTION IN NOISELESS CASE

	MAP ESTIMATION OF TARGETS DOA
	E-STEP
	M-STEP
	COMPUTATIONAL COMPLEXITY ANALYSIS
	ALGORITHM SUMMARY

	FAST SBL METHOD
	UPDATE FOR 
	ESTIMATION OF K AND UPDATE FOR 12, 22
	COMPUTATIONAL COMPLEXITY ANALYSIS
	ALGORITHM SUMMARY

	SIMULATION RESULTS
	SPECTRA AND CONVERGENT ANALYSIS OF THE PROPOSED ALGORITHMS
	DOA ESTIMATION PERFORMANCE

	CONCLUSION
	PROOF OF THEOREM 1
	PROOF OF THEOREM 2
	PROOF OF LEMMA 1
	REFERENCES
	Biographies
	XINYU ZHANG
	KAI HUO
	YONGXIANG LIU
	XIANG LI




