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ABSTRACT Remanufacturing is generally regarded as a key technology to implement cleaner produc-
tion. However, in traditional remanufacturing, scrap products are recycled and remanufactured after their
performance declines sharply. This passive approach easily arises many problems such as increases of
remanufacturing cost, unstable product quality, and unsatisfactory customer demand, which brought great
challenges to the remanufacturing industry. To address these challenges, a novel framework, namely service-
oriented remanufacturing (SORM), is proposed to improve the overall efficiency of remanufacturing.
Contrast to the traditional mode, SORM actively recovers in-service products at the optimal recovery
time based on their real-time performance obtained by remote monitoring. The operational logic and
implementation path of SORM is firstly discussed. Then the recovery timing prediction (RTP) model, as the
core issue of the SORM, is presented to figure out the optimal recovery time of in-service products.Moreover,
a comprehensive method combining a two-parameter Weibull distribution (TPWD) and gene expression
programming (GEP) is developed to solve the model. The example of excavator remanufacturing illustrates
the feasibility of the SORM. Finally, the key findings and managerial implications from application results
and discussion are summarized, which provides the theoretical guidance and technical support for better
sustainable development.

INDEX TERMS Service-oriented remanufacturing, recovery timing prediction, remote condition monitor-
ing, Weibull distribution, gene expression programming.

I. INTRODUCTION
The rapid development of society has created huge mate-
rial wealth, but environmental pollution and resource crises
are becoming increasingly serious. As a sustainable green
development mode, remanufacturing is generally considered
a primary way to solve these issues. In recent years, it has
attracted wide attention and received support from many
governments [1]–[4].

The United States has taken the global lead in reman-
ufacturing, with tens of thousands of companies engaged
in remanufacturing [5]. Germany has great advantages in
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the field of automobile parts remanufacturing, while with
the rapid updating of electronic products, remanufacturing
of the waste electrical and electronic equipment (WEEE)
has attracted much attention in recent years in Germany [6].
Japan is short of resources, so it paysmore attention to reman-
ufacturing. Particularly impressive is the high acceptance of
remanufactured products by Japanese [7]. China’s remanu-
facturing industry dates back to the end of the last century.
The National Development and Reform Commission lists the
green remanufacturing industry as a key area for vigorously
developing a circular economy, and a number of enterprises
are identified as the first pilot units for remanufacturing. Sub-
sequently, the application of remanufacturing technologies
extends to the fields of high value-added mechanical and
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electrical products such as construction machinery, machine
tools, automobiles, and agricultural machinery. China’s Cir-
cular Economy Promotion Plan, issued in 2015, accelerates
the construction of a demonstration base in the remanufactur-
ing industry and promotes the movement of China’s remanu-
facturing industry toward clustering and agglomeration.

The remanufacturing industry is developing rapidly
around the world. The problem of effective imple-
mentation of remanufacturing has attracted increasing
attention [1], [8]–[10]. Currently, there are three main reman-
ufacturing modes: original equipment manufacturer (OEM),
independent remanufacturer (IR), and contracted remanufac-
turer (CR) [1], [11], [12]. These modes are all aimed at scrap
products. Moreover, most research on remanufacturing has
thus far focused on scrap products [13]–[16]. However, recy-
cling and remanufacturing scrap products can entail many
problems. First, when a product is scrapped, its performance
has been seriously degraded, which greatly increases the
technical difficulty and remanufacturing cost [4]. Second,
scrap products have various forms and degrees of failure,
which results in many uncertainties in remanufacturing pro-
duction system, such as in quality, repair time, and pro-
cess. Finally, random recycling and remanufacturing of scrap
products in the market can easily lead to unpredictability
in the supply as well as in customer demand [17]. These
issues obviously pose great challenges to remanufacturing
management [2], [18]–[20]. To overcome these challenges,
SORM is proposed. SORM is a kind of remanufacturing
production activity that proactively recycles the products
before their performance deteriorates sharply to achieve the
minimum unit service cost and better remanufacturability.
OEM has ownership of products and only sells service to
customers. In the entire process, OEM first sells service with
new products to customers. The functionality of products
will decrease after being used for a period. Then the OEM
proactively recycles in-service products at optimal timing
point, and improves the function of returns through remanu-
facturing, afterwards resells new service with remanufactured
products to the same customers with functions as that of
news. So, customers actually buy services that correspond to
functions of products. Therefore, the kind of remanufacturing
is regarded as SORM. As OEM is the owner of products,
it can recycle and remanufacture products at the optimal time,
so as to ensure the minimum cost of unit service time and
maximize profits.

Strictly speaking, SORM is not a breakthrough in specific
remanufacturing technology, but an innovation in remanu-
facturing conception or in remanufacturing business mode.
Essentially, SORM is the proactive remanufacturing of
in-service equipment, while traditional remanufacturing is
passive remanufacturing for completely scrapped products.
The fundamental division brings about a global change
throughout remanufacturing process. Compared with the tra-
ditional remanufacturing mode, SORM has many differences
such as product design for disassembly, pre-sale agreement,
price-deposit mechanism, RTP strategy based on in-service

status, construction of forward and reverse logistics net-
work, and coordinating operation of a hybrid manufacturing-
remanufacturing system. Among which, RTP is the core
content of SORM, which determines the effectiveness of
SORM [21]. Too early a recovery time will not give full play
to a product’s value, and the shorter service time will increase
the unit service cost. Otherwise, if the recovery time is set
too late, a product’s performance will deteriorate sharply,
which greatly increases the maintenance cost as well as the
remanufacturing cost, and the corresponding unit service cost
will also increase. Therefore, accurate prediction of recovery
time is the key to SORM. Unfortunately, scant literature has
so far been devoted to this issue.

In this paper, we first discuss the basic operating logic
and implementation path of SORM. Then we propose a
framework for condition-monitoring-based RTP. Moreover,
we develop a recovery timing prediction model and propose
a solution method for it. Finally, through a case study of exca-
vator remanufacturing, the validity and feasibility of SORM
are verified.

The rest of this paper is organized as follows.
Section 2 reviews related literature. Section 3 presents
the operating logic and implementation path of SORM.
Section 4 addresses the framework and modeling of RTP,
and presents a solution. Section 5 studies a case to verify the
feasibility of SORM. The results are discussed in section 6.
Managerial implications and conclusions are presented in
sections 7 and 8, respectively.

II. LITERATURE REVIEW
A. REMANUFACTURING OPERATION MODES
Relevant research on remanufacturing is carried out under a
certain operation mode [13], [14], [18]. Tian et al. [1] com-
pared the main operation modes for automotive component
remanufacturing in China and concluded that the contracted
remanufacturing enterprise is most suitable for Chinese auto-
mobile remanufacturing. Li et al. [22] proposed an upgraded
remanufacturing strategy for OEM, taking into account gov-
ernment subsidies and the donation of remanufactured prod-
ucts. Ma et al. [23] established a closed-loop supply chain
model for a remanufacturing business and explored the rela-
tionship between IRs and OEMs. Lund and Hauser [12]
summarized remanufacturing practice in the United States
from aspects such as industry structure and scope, patterns
in inputs and costs, and forms of organization of remanufac-
turing enterprises. Some research has proposed new reman-
ufacturing modes. Mont et al. [20] took baby carriages as
an example to present a new business model considering
leasing and remanufacturing. Zhang et al. [11] proposed
three development modes oriented toward remanufacturing:
government incenting, technology driving, and market lead-
ing. Wang et al. [24], [25] referred to cloud manufacturing
and proposed a cloud-based approach for WEEE recovery.

Many studies have investigated how to implement reman-
ufacturing. However, these studies all take scrap products as
the object. Few studies have addressed the remanufacturing
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of in-service products, taking into account the evolutionary
law of product performance.

B. THE SORM FIELD
SORM is a novel remanufacturing conception whose
enabling technologies include remanufacturing design [26],
recovery timing prediction [21], [39], forward and reverse
logistics network construction [13], hybrid manufacturing/
remanufacturing systems [27], [28], and the contract mecha-
nism between the remanufacturer and customer [29]. SORM
requires that disassembly be considered at an early stage of
product design. Chiodo and Ijomah [26] studied proactive
disassembly technology that unifies product design and disas-
sembly to enable the rapid, non-destructive, self-disassembly
of products. Recovery timing prediction is an important
method to ensure maximum profit from SORM [21]. Here,
traditional reverse logistics theory is difficult to use directly
for the logistics network of SORM. Elements such as network
structure, site layout, function partition, and node traffic must
all be considered in a unified way. Contract mechanisms
must be developed to ensure a stable number of returns for
a remanufacturing production system as well as predictable
market demand [30].

Many existing technologies and theories are related to the
SORM concept and enable its implementation.

C. RTP BASED ON REMOTE CONDITION MONITORING
There are two main methods to predict recycling time. One
method is to establish a mathematical model to determine the
optimal time based on the performance index of parts. Song
et al. [31] analyzed the evolution law of part performance
and concluded that a product has an optimal recycling time
domain. Liu et al. [21] discussed characteristic indicators
of the performance status of waste parts, and considered the
optimal remanufacturing recovery time to be a zone whose
upper and lower limits were determined respectively by game
theory (GT) and an artificial neural network (ANN). Stee-
neck and Sarin [32] studied the level of durability of parts
for leased products under remanufacturing, and analyzed the
optimal time to recycle leased products. The other method is
to determine the optimal recovery time based on theminimum
unit service cost from the perspective of the product life cycle.
Liu et al. [33] used life substitution theory (LST) to build a
mathematical model to obtain the optimal time of crankshaft
remanufacturing, considering the environmental impact and
service time. Ke et al. [34] established a mathematical model
to minimize the average energy consumption in the whole
life cycle of a product, and analyzed the optimum time to
remanufacture a six-cylinder diesel engine.

Previous studies have shown that the operating environ-
ment, working conditions, and running time of in-service
equipment all vary. The prediction results achieved just from
the original product design, cost, or energy consumption may
be far from the actual situation. The RPT of SORM must be
based on the service state of the in-service equipment.

Remote monitoring can effectively obtain service status.
Wired and wireless remote monitoring are two commonly

usedmethods [35].Wireless remotemonitoring is suitable for
field equipment such as construction machinery [36]. Truong
and Vu [37] developed a remote monitoring machine tool
based on amobile platform. Xie et al. [38] addressed a remote
monitoring communication method based on a 4G network,
which sends collected vehicle data to a remote server in real
time, and realizes the functions of synchronous query and
monitoring on the client side. Shin et al. [35] proposed a
dynamic real-time data compression method, aimed at the
large amount of data generated by real-time dynamic remote
monitoring. The collected data is diverse. Some indicators,
such as equipment state, failure rate, energy consumption
efficiency, and environmental emissions, will continue to
change as the service time increases [39]. All of these states
are functions of time t. Therefore, monitoring data are ana-
lyzed and fused to determine the changing rules of each
indicator [40]. Wang et al. [41] thought that an appropriate
data processing method should be used to improve the relia-
bility of the results.

There is little literature on RTP. Moreover, no research
has been found to predict the recovery time based on remote
monitoring data. This is the focus of this paper.

III. OPERATING LOGIC AND IMPLEMENTATION PATH
OF SORM
A. OPERATING LOGIC
Previous studies have found that the evolution of product per-
formance obeys the ‘‘bath curve’’ during its service period,
which can be roughly divided into the three stages of running
in, normal working, and frequent failure [29], [31], as shown
in Figure 1. The service period enters the later stage, due to
the coupling effect of fatigue, wear, corrosion, and other fail-
ure forms, the failure frequency of products increases, energy
consumption rises, and emissions fall short of standards.
As a result, product performance deteriorates gradually. From
Figure 1, there is an inflection point in the frequent failure
stage, after which product performance declines sharply, until
it completely fails. The method that remanufacturing scrap
products, usually adopted in traditional remanufacturing, can
cause many intractable problems. Therefore, it is necessary
to determine an optimal recovery time, rather than the time
when the product is completely scrapped, i.e., at the end of
product life cycle. This is the logic basis of implementing
SORM.

As can be seen from Figure 1, the optimal recovery time
is between T2 and T3. Here, T2 is the time corresponding to
‘‘inflection point’’ of performance degradation, and T3 is the
minimum q-precentile life.

As mentioned above, SORM mode provides not only the
products, but the services coupled with them, i.e., customers
buy services, not products. OEM is responsible for prod-
ucts throughout their lifecycles. The customer receives high-
quality services, and the remanufacturer receives returned
products with high remanufacturability. This kind of service-
oriented proactive remanufacturing mode not only alleviates
the customer’s concerns about the quality of remanufactured
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FIGURE 1. Evolution curve of a product’s service performance and
optimal recovery time.

TABLE 1. Comparison between SORM and TR.

products but reduces the impact on remanufacturing produc-
tion of uncertainties in the source. The economic value of this
process has been proved in the literature [42]. The SORM
mode saves resources and achieves sustainable development.

SORM is significantly different from traditional remanu-
facturing in guiding ideology, operational mechanism, and
mode attributes. Table 1 summarizes the differences between
the SORM mode and the traditional remanufacturing (TR)
mode.

The ‘‘Made in China 2025’’ plan explicitly mentions the
vigorous development of the remanufacturing industry and
its implementation in high-end remanufacturing, intelligent
remanufacturing, and in-service remanufacturing. The main

FIGURE 2. Implementation path of SORM.

idea of in-service remanufacturing is the same as SORM,
which differs from traditional remanufacturing engineering,
based on the theory of monitoring and diagnosis of equipment
health, and proactive large-scale remanufacturing of obsolete
in-service equipment [43]. SORM will have a significant
impact on the development of the remanufacturing industry.

B. IMPLEMENTATION PATH
Implementation path of SORM is as follows and shown
in Figure 2.
Step 1: The OEM signs agreements with customers

through a contract coordination mechanism.
Step 2: The OEM sells service with new products to cus-

tomers for less than the market price. The lower part than the
market price can be used as a deposit to ensure that customers
return the products.
Step 3: The products begin their first life cycle. OEMmon-

itors in-service equipment in real time through the remote
monitoring platform and delivers maintenance and recovery
suggestions.
Step 4: After used by customers for a service period,

the products should be returned to the OEM at the optimal
recovery time.
Step 5: The remanufacturability of the returns is evalu-

ated in integration center. Based on the evaluation, the OEM
returns all or part of the deposit to the customers.
Step 6: Returns are sent to the remanufacturing workshop.

After disassembly, cleaning, testing, repair, and assembly,
the performance of the products is restored to the same level
as that of the new products.
Step 7: The new service are resold with remanufactured

products for less than the original price through the supply
chain, and the products start a new life cycle.

Several key points in implementation path of SORM are
summarized:

(1) OEM needs to sign pre-sale agreements with cus-
tomers before selling service to ensure that products can be
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FIGURE 3. Recovery timing prediction framework model.

returned at the optimal time, and also needs to formulate a
reasonable price mechanism to ensure the competitiveness of
SORM.

(2) The reasonable forward and reverse logistics network
needs to set up to deal with recycled products, including
regional processing center and remanufacturing evaluation
department.

(3) A remote monitoring platform should be developed
to monitor the running status of equipment in real time,
so as to give suggestions of maintenance and recovery in
time.

IV. RTP PROBLEM
RTP is the core issue of SORM. In this section, we conduct an
in-depth study of this issue. We first describe the RTP frame-
work based on remote condition monitoring, and then we
establish a prediction model and propose a solution method
combining TPWD and GEP.

A. RTP FRAMEWORK
Without global status monitoring of in-service equipment,
RTP will become ‘‘an unachievable plan.’’ Therefore, per-
ceiving, acquiring, and analyzing the status of in-service
equipment is the foundation of RTP. Thus it is essential to
establish a remote monitoring system for RTP.

We take the remote monitoring of construction machinery
as an example. The system can monitor the running status of
equipment in real time, analyze the collected data, and send
recovery requests to customers to enable the accurate predic-
tion of recovery time. Therefore, the frameworkmodel should
consist of three layers, for data acquisition, data analysis, and
data application, as shown in Figure 3. The RTP framework is
supported by basic theories and methods such as construction
operation, automatic monitoring, data transmission, database
management, web services and statistics, industrial big data,
and remanufacturing.

• Data-acquisition layer The remote data-acquisition
system based on the 4G/5G wireless transmission mode
usually has a sensor module, processor module, wireless
communication module, and power module. The sensor
module collects the status information of the equipment
and converts the data to a standard format, i.e., it converts
the original analog signals to digital signals or converts
AC signals to DC signals for the next module to use.
The processor module is divided into processor and
memory parts, which are responsible for node control
and data storage, respectively. The wireless communica-
tion module is responsible for communication between
nodes. Data are transmitted through the network layer
to the data link layer, and then to the transceiver, which
converts data to binary objects. Afterwards, the signal
is sent to the medium access control (MAC) layer, and
finally transmitted to the server via the 4G/5G wireless
internet. The power module provides energy for sensor
nodes, generally using the micro-battery power supply.
The data acquired by remote monitoring system can
be divided into two categories. One is the indicators
directly reflecting equipment performance, which are
called direct indicators, such as noise, vibration, fuel
consumption, water temperature, engine speed, power
and hydraulic pressure. These indicators are directly
acquired by sensors installed on the equipment, and
displayed on the remote monitoring platform and user
interface. The other is the indicators indirectly reflecting
the equipment performance, which is called indirect
indicator. Here, indirect indicator is the failure number
that usually manually input by customers through mon-
itoring platform.

• Data processing layer For direct indicators, data pro-
cessing has four aspects. First, the operating environ-
ment of construction machinery is often relatively harsh,
which may cause errors in the monitoring data. It is
necessary to construct models to analyze these errors.
Second, these monitoring data are heterogeneous.
Therefore, the data storage structure should be set up
based on the data format and protocol, and a hierar-
chical relationship model of monitoring data also need
to be built to ensure accurate data and efficient access.
Third, there may be redundancy in the monitoring data.
Therefore, it should be clustered, fused, extracted, and
analyzed. Finally, the mapping relationship between
these indicators and recovery time is established by
principal component analysis and neural network. For
indirect indicator, i.e., failure number, data processing
layer can obtain failure probability density function and
reliability function based on the relationship between
failure number and operation time, and then calculates
the optimal recovery time according to the mathematical
model compiled by the program. In the follow-up case
study of this paper, the latter method is adopted, that
is, to obtain the optimal recovery time through indirect
indicator.
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FIGURE 4. Three stages of product life cycle operation.

• Data application layer In the data application layer,
first, according to the collected data, the terminal can
present the location, working time, status of key compo-
nents, failure rate, and other information. More impor-
tantly, according to the processed data, mapping rela-
tionship between monitoring data and recovery time,
the reliability function, probability density function, and
remanufacturing cost function of the equipment should
be fitted separately. Then, by constructing a prediction
model, the best time for equipment maintenance and
recovery can be predicted, and maintenance or recovery
requests can be sent to customers in advance. As con-
struction machinery often works in the field, customers
can log on to a mobile app to view the equipment infor-
mation and OEM recommendations.

B. PREDICTION MODEL
1) PROBLEM DESCRIPTION
The life cycle of a product can be divided into three stages,
as shown in Figure 4. In the early stage of service, when
a failure occurs, a maintenance strategy is often used for
functional recovery. However, in the later stage of service,
i.e., the third stage of the ‘‘bath curve,’’ product performance
declines sharply. As a result, the use cost, marginal cost,
maintenance time, and maintenance cost of a product are
all rising. Moreover, the remanufacturing cost also increases
over time. If the maintenance strategy is always adopted, the
economy will gradually decrease. Therefore, it is necessary
to establish a mathematical model based on the monitoring
data to predict the optimal recovery time and to minimize the
unit time cost.

2) MATHEMATICAL MODEL
It is easy to recover the product in the first and second stages,
and the corresponding maintenance cost is low. The decision
model neglects the maintenance cost of the first two stages
and considers themaintenance cost of a product from the third
stage. Therefore, the total cost includes the original purchase
cost of service with a product, the maintenance cost during
the service period, and the remanufacturing cost. The model’s
objective is to minimize the cost per unit time, which can be
described as

minUTC(tr ) =
Co + Cp(tr )R(tr )+ CmF(tr )

trR(tr )+M (tr )F(tr )
, (1)

FIGURE 5. Flowchart of the solution method.

F(tr ) =
∫ tr

0
f (t)dt, (2)

M (tr ) =
∫ tr

0
tf (t)dt/F(tr ), (3)

R(tr )+ F(tr ) = 1, (4)

where UTC(tr ) is the optimization objective; Co is the origi-
nal value of the product, i.e., the purchase cost; CP(tr ) is the
remanufacturing cost; Cm is the expected value of the main-
tenance cost; f (t) is the failure probability density function;
F(tr ) is the cumulative failure distribution function; R(tr ) is
the reliability function; M (tr ) is the expected length of the
failure cycle; and tr is the decision variable that recovery time.
Both F(tr ) and R(tr ) are related to f (t) of a product. Note that
CP(tr ) is also a function of time t.

C. SOLUTION METHOD
The key to solving the model is to find the reliability func-
tion R(tr ) and the remanufacturing cost function CP(tr ).
The Weibull distribution has been proved effective for reli-
ability analysis of mechanical and electrical products. The
key of Weibull distribution lies in the estimation of shape
and scale parameters, which can be deduced by using
failure probability. In SORM, failure probability is easily
obtained by remote monitoring system. Therefore, TPWD
is selected to solve R(tr ). GEP is a new adaptive evolu-
tionary algorithm based on the structure and function of
biological genes. It is very suitable for solving classifi-
cation and mining complex function relations. So GEP is
adopted to solve CP(tr ). The solution process is shown
in Figure 5.
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1) FITTING RELIABILITY FUNCTION
According to the collected data of in-service equipment sta-
tus, the effective failure data is selected and the reliability
function is fitted by TPWD theory. The reliability function
expression of TPWD is

R(t) = exp(−
t
η
)β , (5)

where β is the shape parameter and η is the scale parameter.
The failure probability density function and the cumulative

failure distribution function of TPWD are

f (t) =
β

η
(
t
η
)β−1 exp

[
(−

t
η
)β
]

(6)

F(t) = 1− exp
[
(−

t
η
)β
]
. (7)

To obtain formula (5), the next step is fitting the param-
eters of the Weibull distribution by the least square method.
Because of the randomness and fuzziness of failure data, F(t)
is calculated from fault time series by the empirical analysis
method, whose steps are as follows. First, the ordered fault
time series (t1, t2, . . . , tn) is obtained by arranging the fault
data from small to large. Then the estimation value of the
cumulative failure distribution function F(ti) is calculated by
the median rank method:

F(ti) =
i− 0.3
n+ 0.4

, (8)

where i is the failure order and n is the sample size.
We introduce R(t) = 1− F(t) in formula (5), and take the

reciprocal on both sides to obtain

1
1− F(t)

= exp(
t
η
)β . (9)

Take logarithms on both sides of the equation:

ln
1

1− F(t)
= (

t
η
)β , (10)

and continue to take logarithms:

ln ln
1

1− F(t)
= β ln t − β ln η (11)

y = ln ln
[

1
1− F(t)

]
x = ln t
a = β
b = −β ln η.

(12)

From formula (12), the TPWD function can be translated
to y = ax + b. The core idea of parameter estimation by
the least square method is to minimize the sum of squares
of errors between the fitting function values and actual data
values. Parameters a and b are estimated as

a =

n
n∑
i=1

xiyi −
n∑
i=1

xi
n∑
i=1

yi

n
n∑
i=1

x2i − (
n∑
i=1

xi)2
(13)

FIGURE 6. Operator of GEP.

b =
1
n

n∑
i=1

yi −
a
n

n∑
i=1

xi. (14)

By introducing a and b in formula (12), the two parameters
β and η of the Weibull distribution can be determined. Thus,
R(t), f (t) and F(t) are all available.

2) SOLVING REMANUFACTURING COST FUNCTION
As shown in Figure 5, the GEP algorithm is solved as fol-
lows. First, aiming at the RTP problem, the input and out-
put components and the control parameters are determined.
Second, the population is initialized and the fitness values
are calculated to determine whether the termination condi-
tions are satisfied. If not, then various genetic operations are
carried out to realize the evolution of the population. If the
termination condition is satisfied, then the optimal individual
is output. Finally,CP(t) is decoded. Operator of GEP is shown
in Figure 6.
• Establishing the functional relation between reman-
ufacturing cost and time GEP is a heuristic algo-
rithm based on evolutionary theory, with the character-
istics of explicit expression and easy parsing. Absent
prior knowledge, GEP can use mutation, interpola-
tion, reorganization, and other operations to find more
accurate functional expressions that match the prob-
lem attributes. Based on GEP, the remanufacturing
cost function is studied to explore the relationship
between remanufacturing cost and equipment service
time. The involved monitoring data include remanufac-
turing costs {Y0,Y1,Y2, . . . ,Yn} and equipment service
times {T0,T1,T2, . . . ,Tn}. The relationship between Y
and T can be expressed as

Y = Cp(T ). (15)

• Fitness function Since the final result is a functional
expression of the remanufacturing cost and service time,
the fitness function is mainly used to evaluate the con-
sistency between the real data and the results from the
prediction function. Therefore, the fitness function is
chosen based on the mean absolute percentage error
(MAPE). The function can reflect the deviation between
the predicted value and the real value and has high
portability. It is expressed as

f =
1
n

n∑
i=1

∣∣∣∣∣Yi(T )− Ŷi(T )Yi(T )

∣∣∣∣∣× 100%, (16)
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where n is the number of sample points, Yi(T ) is the real value
of the remanufacturing cost, and Ŷi(T ) is the predictive value
of individual function expressions.
• Gene structure and coding pattern GEP individuals
consist of one or more equal-length gene sequences.
Gene coding consists of a head and tail. The head gene
is composed of a function set and terminal set, and
its length is determined by the actual needs. The tail
gene contains only the terminal set, and its length is
determined by

t = h ∗ (n− 1)+ 1, (17)

where n is the maximum number of operations of a func-
tion set. Considering the nonlinear relationship between the
remanufacturing cost and operation time, the function set is
set as F = {+,−, ∗, /,√, sin, cos, exp} and the terminal set
is set to T = {x}. When the length of the gene head is set to 5,
the length of the gene tail is equal to 6 by formula (17), and
the total length of the gene is 11.
• Genetic operationGEP’s genetic operation is similar to
the genetic algorithm. It has special interpolation opera-
tors in addition to the conventional selection, mutation,
and recombination operators. GEP can ensure that the
good gene fragments of the father generation are inher-
ited by the offspring, thus having global convergence
characteristics. Figure 6 shows the operator of GEP.

V. CASE STUDY
This section takes the scenario of construction machin-
ery remanufacturing as an example. A proof-of-concept
application scenario is described to demonstrate how to
implement SORM. Construction machinery works in large
quantities with a wide scope, which is very suitable
for remanufacturing [44]. Based on the SORM concept,
we choose an excavator working in Luoyang, China, for
which to predict the recovery time. The type of the excavator
is SY155W, of which working weight is 13500 kg, and the
rated power is 120kw. This excavator is owned by a leas-
ing company, often rented to different users with no fixed
construction site. Therefore, the working environment of the
excavator is composite working medium.

The solution was implemented using MATLAB 2016a
software. The running environment was a 3.3 GHz CPU with
8 GB memory.

A. RESULTS
1) RELIABILITY FUNCTION
Table 2 shows the data collected remotely from the excavator
in 11 time periods. Based on the proposed TPWD method,
a = 7.5351 and b = −71.9415. The values of a and b are
brought into formula (12) to obtain the shape parameter β
and scale parameter η, with values β = a = 7.5351 and
η = exp(−

b
β
)
= 14009.4. Thus the reliability function of the

excavator can be described as

R(t) = exp(−
t

14009.4
)7.5351. (18)

TABLE 2. Failure data of an excavator working in Luo Yang.

FIGURE 7. Least square fitting graph.

TABLE 3. Algorithm parameters.

The correlation coefficient R2 between x and y is 0.972,
which is close to 1, indicating a high correlation between x
and y. Figure 7 shows a line fitted by the least square method.
From the fitting results, most points are concentrated near the
line. The fitting is ideal.

2) REMANUFACTURING COST FUNCTION
Table 3 shows the parameters of the GEP algorithm.

The expression of the remanufacturing cost function Cp(t)
in composite working medium is obtained as

Cp(t) = et + t + esin(2t+sin t) + esin[cos(cos t+t)]. (19)

The difference between the prediction value and the actual
value is expressed by MAPE. MAPE is used to evaluate the
prediction accuracy, as shown in formula (16). Its value in
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FIGURE 8. Optimal remanufacturing time of the excavator.

this experiment is 0.485%, which shows that the predictive
accuracy of the function expression is high.

3) OPTIMAL RECOVERY TIMING PREDICTION
The excavator working in Luoyang is taken for further anal-
ysis. Its purchase cost is 2.5× 105 yuan. The expected value
of the average maintenance cost is 1.2× 104 yuan one time.
Bringing formulas (18) and (19) into previous mathematical
model, the trend of the expected cost per unit time over
recovery time is obtained byMATLAB, as shown in Figure 8.
The optimal remanufacturing time is at about 16,602 hours,
and the expected total cost per unit time is about 9.30 yuan.
Because an excavator is a complex piece of equipment con-
sisting of thousands of parts, the reliability of the whole
excavator is very low in the later period of service. Therefore,
the minimum q-precentile life requirement is not considered
here.

B. REMOTE MONITORING PLATFORM
Construction machinery usually works in the field. The
WebAPP platform can be accessed by mobile phones,
as shown in Figure 9, which is convenient in such a case.
The platform can remotely monitor the location, and direct
parameters such as noise, vibration, fuel consumption, water
temperature, oil pressure, and engine speed. After analyzing
these monitoring data, the platform compares these param-
eters with maintenance standards, and sends out mainte-
nance recommendations to customers. The platform can also
monitor the number of failures and the service time of the
equipment. Based on the model and solution method in this
paper, the platform calculates the optimal recovery time and
sends a reminder to customers in advance. Next the customer
returns the excavator to the regional processing center on
time. The remanufacturing evaluation department evaluates
the remanufacturability of the excavator and returns all or part
of the deposit to the customer. Then the excavator is sent to
the remanufacturing factory. Threemonths later, the customer
will receive a remanufactured excavator as new one, and a
new service cycle begins.

FIGURE 9. Snapshots of WebAPP platform for SORM providers.

VI. DISCUSSION
A. RELEVANT FACTORS OF RTP
The total cost of equipment in a complete life cycle con-
sists of the purchase cost, remanufacturing cost, and main-
tenance cost, as shown in formula (1) and Figure 10.
The purchase cost is determined by the market price of
the product. The remanufacturing cost depends on the
remanufacturability [45], which is highly correlated with the
product failure rate. Product failure has two main reasons.
One is aging failure, which occurs over a long period of time.
The other is wear failure, which appears in the service process
of a product. Obviously, due to the continuous effect of stress,
wear failure is highly related to the operating environment.
Maintenance cost is the product of the expected maintenance
cost and maintenance frequency, and the maintenance fre-
quency is also related to the failure rate of a product. Through
the above analysis, it is found that the service time and
operating environment are two key factors affecting the total
cost.

Therefore, we mainly consider the above two aspects in the
solvingmodel parameters. However, in the process of service,
many factors affect the life of equipment, such as equipment
lubrication, operator proficiency, and unexpected accidents.
So, it is necessary to improve the monitoring status database
based on the big data theory and establish the mapping model
of multi-factors and recovery time, so as to more accurately
forecast the remanufacturing recovery time.

B. RELATIONSHIP BETWEEN SERVICE TIME AND
REMANUFACTURING COST
In practice, a remote monitoring platform collects a
large amount of data on the equipment service time and

70054 VOLUME 7, 2019



Q. Liu et al.: SORM Framework With RTP Based on Remote Condition Monitoring

FIGURE 10. Analysis of factors affecting the cost.

remanufacturing cost. Statistical analysis shows no obvious
relationship between them. This is because the remanufac-
turing cost is related to not only the service time but to the
operating environment. For example, one excavator always
takes rocks and roots as the operating object, and another may
often excavate soft soil or sand. In the same working time,
the damage situations of the two devices are obviously quite
different. Thus, to explore the relationship between remanu-
facturing cost and operation time, it is necessary to clarify the
operating environment of equipment. Therefore, the work-
ing medium of excavators is classified into four categories:
soft soil working medium, hard soil working medium, bad
working medium with stones and roots, and composite work-
ing medium that excavators work randomly in above three
environments. The functional relationship between excavator
service time and remanufacturing cost is solved for these four
types of workingmedium, using the GEP algorithm, as shown
in formulas (19), (20), (21), and (22), with results as shown
in Figure 11.

Soft soil working medium:

Cp(t) = et + t + esin(2t+sin t) + esin[cos(cos t+t)]. (20)

Hard soil working medium:

Cp(t) = 2et + cos(cos t − t)− t + 2. (21)

Bad working medium with stones and roots:

Cp(t) = et +
t2 + 1
sin t

+ ecos[(sin t)
2]. (22)

The curves in Figure 11 are fitted according to a large
amount of data collected from the SORM platform. The data
in eachworkingmedium are divided into 15 groups according
to the service time. The average value of the data in each
group is marked by a point in the graph. The curve of the bad
working medium with stones and roots has only 11 points
because excavators always working in a harsher environment
rarely serve more than 20,000 hours, in other words, by the
time point, the excavators is scrapped. Eastern areas of China
are mainly plains, and the working medium of construction
machinery in these areas is primarily soft soil. There are
many hills and mountains in the central and western areas,
and monitoring data show that the operating environment

FIGURE 11. Relationship between remanufacturing cost and service time.

of construction machinery is relatively poor. Note that more
than 50 percent of construction machinery does not have a
fixed construction site, and to characterize their operating
environment is complex, such as for the excavator in Luoyang
taken as an example in this paper.

C. ADVANTAGES OF SORM
SORM theoretically performs remanufacturing before the
performance of in-service equipment drops sharply, which
saves remanufacturing costs, reduces unit service costs, and
lessens the impact of uncertainty on remanufacturing produc-
tion. In practice, based on abundant collected data, the curve
of the relationship between service time and cost is fitted.
This shows that in the early stage of service, the reman-
ufacturing cost does not change significantly with service
time, but in the frequent-failure stage, it increases rapidly,
as seen in Figure 11. This also indicates that traditional
remanufacturing, taking scrap product as product objects,
may not be the most rational operation mode. Figure 8
illustrates the same problem. The products are recycled
to remanufacture at the optimal recovery time, and the
expected total cost per unit time is about 9.30 yuan, while
that of traditional remanufacturing is about 20.3% higher
at 11.67 yuan.

Based on the concept of SORM, a remote monitoring
platform is developed to master the equipment operation
and give timely help and guidance to customers. Moreover,
the SORM mode shifts the focus of customers’ attention
from products to services, and dispels their doubts about
the quality of remanufactured products (the contract guaran-
tees that products can perform complete services). Moreover,
this closed-loop whole-process control mode, to a certain
extent, reduces the impact of many uncertainties on the
remanufacturing system and ensures its smooth operation.
In addition, the enterprise fulfills the extended producer
responsibility (EPR) and achieves sustainable development.
In summary, all stakeholders benefit from SORM.
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VII. MANAGERIAL IMPLICATIONS
A. SUPPORT POLICY FROM GOVERNMENT
The concept of remanufacturing has existed for a long time.
Nevertheless, few enterprises are engaged in remanufac-
turing, and the development of the remanufacturing indus-
try has not reached expectations. Without losing generality,
both automotive components and construction machinery
are taken as an example. These are the most typical fields
of remanufacturing in China [1], [11]. We have investigated
some domestic companies, such as Sany Heavy Industry
Co., Ltd., Xuzhou Construction Machinery Group Co., Ltd.,
and Dongfeng Motor Co., Ltd. They all have been trying to
remanufacture their own products, but the ratio of reman-
ufacturing to manufacturing is extremely small. There are
threemain reasons for this. First, remanufactured products are
still not easily accepted by the public in China, and the mar-
ket demand for remanufactured products is relatively small.
Second, remanufacturing management is more complex than
that of traditional manufacturing, and there are insufficient
human resources to support remanufacturing. Third, OEMs
are reluctant to remanufacture in the current situation of
overcapacity.

To some extent, SORM can handle these challenges well.
The government should create a better environment, espe-
cially introducing more active fiscal and taxation policies,
to support enterprises to better develop SORM, and to encour-
age them to take the road of sustainable development.

B. INTEGRATION OF FORWARD AND REVERSE LOGISTICS
NETWORK
A supply chain logistics network has nodes and routes
through which new products go from manufacturing systems
to customers, and returns from customers to remanufactur-
ing systems. Constructing a perfect logistics network is the
foundation of SORM operation. The logistics network of
SORM is significantly different from conventional logistics
networks, which is mainly embodied in facilities integration,
function division, transportation integration, uncertain return
quantities, and a random remanufacturing rate. Issues such as
network structures, facility locations, and traffic allocation all
require further study.

C. UNIFIED MANAGEMENT OF A HYBRID
MANUFACTURING–REMANUFACTURING SYSTEM
In SORM mode, the production plan, material require-
ment plan, and capability requirement plan of a hybrid
manufacturing–remanufacturing system should be considered
in a unified way. Although SORM reduces many uncertain-
ties, the addition of remanufacturing still brings manage-
ment complexity to OEMs. In the initial design stage, the
problem of production balance should be considered first.
The production capacity of remanufacturing, disassembly,
repair, and assembly stations should be simulated to ensure
that there is no bottleneck in the process. Moreover, the task
allocation of manufacturing and remanufacturing should be
well coordinated, which can be achieved through production

scheduling. Traditional production control theory cannot be
directly applied to a hybrid system. Many factors, such as
disassembling order, time and quantity, process route of waste
parts, and repair time, as well as quantities of various types
of parts required for assembly, must be highly coordinated to
achieve smooth operation of this hybrid system.

VIII. CONCLUSIONS
This paper introduces a new mode called SORM, which
is quite different from previous remanufacturing operation
modes. By remotely monitoring the status of in-service
equipment, SORM can recover and remanufacture equipment
before its performance drops sharply. The operation logic and
implementation path of SORM were discussed in this paper.
Subsequently, we focused on RTP that the core problem of
SORM. An RTP framework based on remote monitoring data
was given. The prediction model was established with the
goal ofminimum operating cost per unit. Then amethod com-
bined with TPWD and GEP was proposed to solve the model.
Finally, the feasibility of SORMwas illustrated by an excava-
tor remanufacturing example. Additionally, we discussed the
managerial implications of key findings and observations on
SORM.

Several conclusions were drawn from the above
research. First, the SORM mode avoids the rapid deteriora-
tion of equipment performance in the later period of service.
Second, SORM is a new business model of remanufacturing,
which brings about the overall change of the whole remanu-
facturing industry chain. Third, the relationship between ser-
vice time and remanufacturing cost of construction machin-
ery is closely related to the working medium. Therefore,
before analyzing and processing monitoring data, it must
be clustered according to the operating environment. Fourth,
technologies such as big data, the internet of things, and RFID
are developing rapidly, and will provide much support for
SORM. Our example of remote monitoring proved this.

The present study can be extended as follows. SORM
depends on product performance. The failure probability was
used to reflect product performance in this paper. While
failure probability is the indirect manifestation of product
performance. In practice, before the product loses efficacy,
its performance changes are first reflected in noise, vibration,
water temperature, hydraulic pressure, fuel consumption and
so on. Future research should use these direct indicators to
judge product performance and predict recovery time, rather
than waiting for product failure. In addition, the time period
involved in the proposed model is from the beginning of
service to remanufacturing. After remanufacturing, the prod-
uct will have a new life cycle. Another interesting research
direction is taking the original life cycle and the new life cycle
into account.
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