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ABSTRACT Traditional soft margin support vector machine usually uses hinge loss to build a classifier with
the ‘‘maximum-margin’’ principle. However, C-SVM depends on support vectors causing the loss of data
information. Then, least square support vector machine is proposed with square loss (l2-loss). It establishes
equality constraints instead of inequalities and considering all the instances. However, the square loss is still
not the perfect one, since it gives equivalent punishment to the instances at both sides of the center plane.
It does not match the reality considering the instances between two center planes deserve heavier penalty than
the others. To this end, we propose a novel SVMmethod with the adoption of the asymmetry LINEX (linear-
exponential) loss, which we called it LINEX-SVM. The LINEX loss gives different treatments to instances
based on the importance of each point. It gives a heavier penalty to the points between two center planes
while drawing light penalty to the points outside of the corresponding center planes. The comprehensive
experiments have been implemented to validate the effectiveness of the LINEX-SVM.

INDEX TERMS LINEX loss, large-scale classification, support vector machine (SVM).

I. INTRODUCTION
Support vector machine, which was introduced in the early
1990s [1], rooted in statistical learning theory (SLT) [2]. It is
a powerful tool for classification and regression, widely used
in amounts of fields, such as financial forecasting [3], compu-
tational biology [4], image annotation [5] and text mining [6].
The fundamental idea is finding a hyperplane to separate the
data with the maximization of the distance between the two
support planes, which is known as ’max-margin’ principle.
Usually, the margin maximization is achieved by solving an
optimization problem with inequality condition. To avoid
over-fitting, the original SVM was extended to the soft-
margin SVM (i.e., C-SVM), by bringing in slack variables to
relax the constraints and increase a penalty term for the slack
variables in the objective function [7]. The loss adopted by
C-SVM typically is the hinge loss [8]. In this way, C-SVM
depends only on part of the training data, i.e., the support
samples, which makes it dramatically sensitive to noise.

The associate editor coordinating the review of this manuscript and
approving it for publication was Somayeh Sojoudi.

Later, the C-SVM was extended for solving function esti-
mation problems, for example, a support vector interpretation
of ridge regression [9], which uses equivalent constraints
instead of inequalities in C-SVM. In 1999, Suykens consid-
ered equality constraints for classification with a formulation
in the least squares sense and proposed least squares SVM
(LSSVM) [10]. Different from C-SVM in which non-support
vectors are not utilized to optimize the classifiers, in LSSVM,
the information of all the data points are fully used. For a
binary classification problem, LSSVM seeks for two parallel
center planes. Each plane is trained to locate at the center
of the points in the same class. And the l2 loss used in
LSSVM penalties the points on both sides symmetrically.
However, it is more reasonable to give heavier penalties to
the points between the planes since these points are normally
the incorrectly-classified samples. To this end, we propose a
new SVMmodel that uses asymmetric linear-exponential loss
(LINEX) to achieve this goal.

To be intuitive, we illustrate and compare LINEX loss with
hinge loss and l2 loss in Fig.1, where Fig. (a) demonstrates
the LINEX loss with the hyper-parameter a = −1 and
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FIGURE 1. The illustration of LINEX loss (a), squared loss (b), and hinge loss (c). LINEX loss is with severely asymmetric
smooth convex function, while hinge loss is with non-smooth convex function and squared loss is with symmetric smooth
convex function.

Fig. (b), (c) shows the squared loss and hinge loss, respec-
tively. We can see the left part of LINEX loss is similar to the
curve of y = x2 (i.e. the squared loss) while the right part is
similar to the straight line y = kx (i.e. the right part of the
hinge loss). This characteristic makes LINEX loss could gain
the advantage of squared loss and be more suitable to train
the model with appreciate sample penalties. Furthermore,
LINEX loss is superior to hinge loss since hinge loss is non-
smooth.

Further, we introduce LINEX loss to SVM, i.e., LINEX-
SVM, for classification problems. This combination brings
several advantages: (1) every instance contributes, which will
not cause loss of information at any point; (2) it gives heavier
penalties to the points near the classification boundary which
are with higher probabilities of incorrectly-classifying. This
will improve classification performance; (3) it has good gen-
erality since LSSVM is a special situation of it. When the
small parameter a takes a very small value, LINEX-SVM is
approximately proportional to LSSVM. (4) it can be trans-
formed into an unconstrained convex optimization problem,
which is easy to solve. Then Nesterov accelerated gradient
(NAG) algorithm can be employed to solve it effectively
for large-scale data. The numerical experiments illustrate the
good performance of the LINEX-SVM model.

The organization of the rest content is as follows. The
background,mainly in terms of C-SVMand LSSVM, is intro-
duced in Section II. Section III proposes the new LINEX-
SVM model and the related theory analysis. In section IV,
various experiment evaluation results are displayed. Finally,
Section V ends the paper with conclusions.

II. BACKGROUND
Here, we briefly introduce the background and some related
works about LINEX-SVM. To be specific, we introduce the
preliminary knowledge about C-SVM, LSSVM and LINEX
loss.

A. C-SVM WITH HINGE LOSS
For binary classification problems, the training set is repre-
sented as

T = {(x1, y1), (x2, y2), · · · , (xl, yl)} (1)

where xi ∈ Rn, yi ∈ {−1, 1}, i = 1, · · · , l. The formulation
of C-SVM is a constrained convex quadratic programming
problem (QPP) show in Problem (2).

min
w,b,ξ

1
2
‖w‖2 + C

l∑
i=1

ξi

s.t. yi((w · xi)+ b) ≥ 1− ξi
ξi ≥ 0, i = 1, · · · , l (2)

where ξ = (ξ1, · · · , ξl)T is a relaxation variable. C > 0
is a penalty parameter to balance the precision and model
complexity.

Many loss functions have been presented in SVM to
improve its generalization ability. In this framework, hinge
loss [2] is utilized. The formulation of hinge loss is defined
as

Lhinge(x) = max{0, x}, ∀x ∈ R (3)

And the loss is illustrated in in Fig.1(a). In a more general
form of expression, Problem (2) can be rewritten as

ξi = max(0, 1− yi(w>xi + b))

= Lhinge(1− yi(w>xi + b)). (4)

Then the QPP can be rewritten as Eq. (5) by eliminating the
constraints.

min
w,b

1
2
‖w‖2 + C

l∑
i=1

Lhinge(1− yi(w>xi + b)) (5)

Then many works arise around the loss function. Vapnik’s
ε-insensitive loss and Huber’s loss have been employed to
enhance the robustness of SVM [11], [12]. Twin support
vector machine(TWSVM) is proposed using two symmet-
rical square loss [13]. Different from the Vapnik’s SVM,
which devotes to maximize the margin, SVM with pinball
loss [14] maximize the quantile distance, leading to noise
insensitivity. Moreover, the ε-insensitive loss and the ramp
loss are applied to derive a robust nonparallel support vector
machine (NPSVM) [15], [16]. The general form for SVM
with different loss function is

min
w,b

1
2
‖w‖2 + C

l∑
i=1

L(ξi) (6)
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FIGURE 2. The illustration of LINEX loss function with different parameter a. The subfigures (a) and (b)
display that the parameter a controls the direction of the loss function curve and the value |a| decides the
steepness of the curve. LINEX loss is with a seriously asymmetric smooth convex function, while hinge loss
is with a non-smooth convex function and squared loss is with a symmetric smooth convex function.

where L(ξi) = ξi(w; xi, yi) is a loss function and C > 0 is a
parameter representing the weight of loss. For the mentioned
loss functions, the bounds of classification error and their
more theoretic properties can be found in [17], [18].

In C-SVM, the loss only penalizes the support vectors,
the non-support vectors contribute nothing to the classifier.
However, in many real-world applications, where the size of
datasets are small, the classification results are easily affected
by the outliers.

B. LSSVM WITH SQUARED LOSS
LSSVM [10] uses two parallel hyperplanes to assist in the
optimization of the classifier. The formula of LSSVM’s prob-
lem is the convex QPP with equality constraints, shown in
Problem (7).

min
w,b,η

1
2
‖w‖2 + C

l∑
i=1

ξ2i

s.t. yi((w · xi)+ b) = 1− ξi, i = 1, · · · , l (7)

The first term of the objective function, 1
2‖w‖

2, represents
the margin between two hyperplanes (w · x) + b = 1
and (w · x) + b = −1. The minimization of the sec-

ond term, min
l∑
i=1
ξ2i , make the two hyperplanes to locate

at the center of the corresponding class of points. Different
from C-SVM which concentrates only on support vectors,
all the instances contribute to the classification hyperplane
in LSSVM. Besides, Problem (7) is a simple convex QPP
with equality constraints. Solving Problem (7) is equivalent
to solving a system of linear equations. Therefore, LSSVM
works faster than SVM. However, LSSVM gives the same
penalty to the points around the classification boundary and
ignores the different contribution of points with different
distances. The points at the intersection should receive more
attention than the points are far away.

C. LINEX LOSS
To improve the ability of SVM, we introduce the LINEX loss,
which was first mentioned in statistics [19]. In the beginning,
symmetric quadratic loss, such as the mean square errors
(MSE), has widely been used for measuring bias. However,
the symmetric loss has limitations in many circumstances,
particularly where overestimation and underestimation mat-
ter. Then, asymmetric loss, such as LINEX loss, is introduced
and explored [20].

Specifically, the function of LINEX loss is defined as:

L(x) = exp(ax)− ax − 1 (8)

where a 6= 0 is a parameter, determining the steepness of
LINEX function. Fig.2 shows some examples of LINEX loss
in terms of different values of a. We can see, The sign of a
controls the direction of the curve: when a < 0, the left of the
function is steeper than the right part, which means the neg-
ative points would receive heavier penalties than the positive
ones even though they have the same modulus. The loss L(x)
increases approximately exponentially as x →−∞, while it
increases approximately linearly when x → +∞. But when
a > 0, the situation is opposite.
Further, the value of |a| controls the steepness of the curve.

The larger value of |a|, the steeper the curve is, illustrated
in Fig.2. When |a| is very small, L(x) ≈ a2x2/2, is pro-
portional to the l2 loss. So when parameter a chooses the
appropriate value, LINEX loss can degenerate to l2 loss.
The LINEX loss function was adopted in various realistic
scenarios: estate price prediction [21], estimation for popu-
lation [22], [23]. Besides, LINEX loss was also applied for
the ridge regression estimator in Statistic [24].

Due to the merits of LINEX loss, we introduce it to SVM
and propose a new SVM problem: LINEX-SVM, which will
be shown later. As far as we know, this is the first attempt that
LINEX loss is applied for classification.
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III. METHODOLOGY
In this section, we discuss the details of the LINEX-SVM
model. We first introduce its primal problem, then its dual
problem. Further, we will give some theoretical analysis and
show the algorithm in the next sections.

A. PRIMAL PROBLEM
Considering the binary classification problem, the training set
is

T = {(x1, y1), (x2, y2), · · · , (xl, yl)} (9)

where xi ∈ Rn, yi ∈ {−1, 1}, i = 1, · · · , l. In order to solve
the classification problem, we seek two parallel hyperplanes

(w · x)+ b = 1

(w · x)+ b = −1 (10)

by solving the following problem

min
w,b,ξ

1
2
‖w‖2 + C

l∑
i=1

(exp(aξi)− aξi − 1)

s.t. yi((w · xi)+ b) = 1+ ξi, i = 1, · · · , l (11)

where C > 0 is the weight parameter of penalty error, a is
the parameter in LINEX loss function, and ξ = (ξ1, · · · , ξl)
is a slack variables. The solution w∗, b∗ to the opti-
mization problem determines the classification hyperplane
(w∗ · x)+ b∗ = 0.

It is a convex optimization problem with equality con-
straints. Three criteria are considered here. Firstly, we hope
the positive hyperplane (w · x) + b = 1 located at the center
of positive instances. And the negative hyperplane (w · x) +
b = −1 located at the center of negative instances. Secondly,
we maximize the margin between the above two hyperplanes,
which is measured by 2

‖w‖ . Third, if we set a > 0, which
means we hope the points located between two center planes
would be punished heavier since they are more likely to cause
mis-classification. Thus, we use LINEX loss to measure the
errors ξi, i = 1, · · · , l. Based on these three considerations,
the primal optimization problem is established.

B. DUAL PROBLEM
Follow the methods of classical SVM, we show the dual
problem of LINEX-SVM in this section and introduce the
kernel function to it. To get the dual problem, we first derive
the Lagrange function of problem (11) as

L(w, b, ξi, αi) =
1
2
‖w‖2 + C

l∑
i=1

(exp(aξi)− aξi − 1)

−

l∑
i=1

αi(yi((w ·Φ(xi))+ b)− ξi − 1) (12)

where α = (α1, α2, · · · , αl)> is the Lagrange multiplier and
Φ(xi) is a function that maps the instance xi into a higher

dimensional space. Solving the Karush-Kuhn-Tucker(KKT)
system, we can get the dual problem as follows

min
αi

1
2

l∑
i=1

l∑
j=1

αiαjyiyjΦ(xi)>Φ(xj)− (1−
1
a
)

l∑
i=1

αi

+

l∑
i=1

(C −
αi

a
)ln(

aC − αi
aC

)

s.t.
l∑
i=1

αiyi = 0, i, j = 1, · · · , l (13)

The vector form of the dual problem is

min
αi

1
2
α>Qα − (1−

1
a
)e>α − (Ce−

1
a
α)>β

s.t. α>y = 0 (14)

where α = (α1, α2, · · · , αl)>, β = (β1, β2, · · · , βl)> =
(ln( aC−α1aC ), ln( aC−α2aC ), · · · , ln( aC−αlaC ))>. The dual problem
maintains to be a convex problem.

Some papers solve the SVM model through the dual prob-
lem while some others try to solve the primal one directly.
In many real-world situations, such as document applica-
tions, where the data are in high dimension, the dual prob-
lem is popular. Because the variable αi in dual problem is
related to the number of samples rather than the dimen-
sion. Dual problems with kernel trick bring convenience
to SVM in solving nonlinear classification problems. With
the kernel function K (xi, xj) = Φ(xi)>Φ(xj), SVM can be
extended for nonlinear case easily without knowing the exact
function Φ(x). On the other side, in many other scenarios,
linear SVM is more popular since its high efficiency, espe-
cially in some large-scale scenarios. The reason is that the
weight w in primal problem is related to the dimension of
instances while the α in dual problem is related to the number
of instances.

IV. THEORETICAL ANALYSIS
In this section, we would like to do some theoretical analysis
on LINEX-SVM introduced in the last section. We start with
Bayes rule, then go to the error bound analysis.

A. BAYES RULE
We first show how LINEX loss achieves Bayes rule. Assum-
ing that samples {(xi, yi)}li=1 are extracted independently from
the same probability ρ, the probability ρ is defined on X×Y ,
where X ⊆ Rn represents the feature space and Y = {−1, 1}
is the label space. Further, we assume condition distribution
ρ(y|x) is a binomial distribution, given by P(y = −1|x) and
P(y = 1|x). The ultimate goal of the classification problem
is to get a classifier C : X → Y with less error. Define the
Bayes classifier as:

fc(x) =

{
1, if P(y = 1|x) ≥ P(y = −1|x);
−1, if P(y = 1|x) < P(y = −1|x);

(15)
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With any loss function L, the expected risk of a classifier
f : X → R is defined as:

RL,ρ(f ) =
∫
X×Y

L(1− yf (x))dρ (16)

By minimizing the expected risk on all measurable classifi-
cation functions, we can get function fL,ρ as:

fL,ρ(x) = arg mins∈R

∫
Y
L(1− y(x)s)dρ(y|x), ∀x ∈ X

(17)

Then we can obtain Theorem 1 demonstrating that Bayes
rule holds for LINEX loss Llinex . And we show the proof in
details further.
Theorem 1: Function fLlinex,ρ , which minimizes the

expected Llinex − risk over all measurable function f :
X → Y , is equal to the Bayes classifier, i.e., fLlinex,ρ (x) =
fc(x),∀x ∈ X .

Proof: Simple calculation shows that∫
Y
Llinex(1− y(x)s)dρ(y|x)

= Llinex(1− s)P(y = 1|x)+ Llinex(1+ s)P(y = −1|x)

= {exp[a(1− s)]− a(1− s)− 1}P(y = 1|x)

+{exp[a(1+ s)]− a(1+ s)− 1}P(y = −1|x)

Hence, when P(y = 1|x) > P(y = −1|x), the mini-
mal value is obtained at s = −1. when P(y = 1|x) <
P(y = −1|x), the minimal value is obtained at s = 1. when
P(y = 1|x) = P(y = −1|x), the minimal value is obtained
at s = −1(a > 0) or s = 1(a < 0). Therefore, fLlinex,ρ (x),
which minimizes the expected risk measured by the
LINEX loss, satisfies

fLlinex,ρ (x) =

{
1, if P(y = 1|x) ≥ P(y = −1|x);
−1, if P(y = 1|x) < P(y = −1|x);

(18)

i.e., fLlinex,ρ (x) = fc(x).

B. ERROR BOUND OF LINEX-SVM
In classification problems, the symbolic function sgn(f ) of
the function f : X → R is usually used as a classifier. In this
way, we have the classification error as

RLmis,ρ(sgn(f )) =
∫
X×Y

Lmis(1− yf (x))dρ (19)

where Lmis(x) is the mis-classification loss defined as

Lmis(x) =

{
1 x < 0
0 x ≥ 0

As the minimal true classification error is given by
RLmis,ρ(fc), the ability of the classifier can be evaluated by
RLmis,ρ(sgn(f )) − RLmis,ρ(fc). Assuming that the i.i.d. con-
dition is satisfied in sampling, we can expect that the value
of RLmis,ρ(sgn(f )) − RLmis,ρ(fc) tends to zero in probability
with the increasing number of samples. And the convergence
has been extensively studied in [25]. For the hinge loss,

the upper bound on the mis-classification error, known as
Zhang’s inequality, was given in [26].

RLmis,ρ(sgn(f ))−RLmis,ρ(fc) ≤ RLhinge,ρ(f )−RLhinge,ρ(fc)

According to RLhinge,ρ(f ) ≤ RLlinex ,ρ(f ),∀f ,which results
from 0 ≤ Lhinge(x) ≤ Llinex(x)(∃a,∀x ∈ R), and the facts that
RLlinex ,ρ(fc) = RLhinge,ρ(fc), we can bound the classification
error for the LINEX loss:

RLmis,ρ(sgn(f ))−RLmis,ρ(fc)

≤ RLhinge,ρ(f )−RLhinge,ρ(fc)

≤ RLlinex ,ρ(f )−RLlinex ,ρ(fc)

Theorem 2: ∀a > 0, for any probability measure ρ and
any measurable function f : X → R, we have

RLmis,ρ(sgn(f ))−RLmis,ρ(fc) ≤ RLlinex ,ρ(f )−RLlinex ,ρ(fc)

In conclusion, we illustrate the proof that our
LINEX-SVM achieves Bayes rule and give an error bound
for it. At last, we should also mention that compared with
C-SVM and LSSVM, an additional parameter a has been
involved in tuning the degree of penalty. Conventionally,
the appreciate parameter a is selected by cross-validation
method, and the details are described in Section VI.

V. ALGORITHM
In this part, we introduce the algorithm we adopt for the
proposed LINEX-SVM. It is based on an accelerated gradi-
ent descent method while a simulated annealing method is
combined to tune the learning rates.
Stochastic gradient descent (SGD) algorithm [27], [28]

is a well-known algorithm to solve many convex optimiza-
tion problems. With the prosperity of the researches in
deep learning fields, SGD algorithm becomes increasingly
valuable [29]. Compared with many other frequently used
gradient-related algorithms, for example, dual coordinate
descent [30], trust region Newton methods [31], concave-
convex procedure [32], alternating direction method of mul-
tipliers [33], the SGD method is easily manipulated. The
reason is that the unique iteration method of SGD is different
from others. At each iteration, SGD updates the classifier
with a small step along a random direction which is approxi-
mate to the negative gradient direction to make the objective
loss decrease. Commonly, during SGD training, one or a
small batch of instances are used for each iteration. In this
way, it reduces the amount of calculation and works much
faster, especially in large scale problems. However, some-
times this manner would get stuck in local optima during
its process of convergence since its randomness of the sam-
ple chosen. To overcome this drawback, many researchers
contribute to improve SGD and propose accelerated vari-
ances [34], [35]. Momentum method [36] is an effective
approach that helps SGD to achieve lighter oscillation and
to convergent faster. The goal is achieved by combining the
update gradient direction of the previous step with the current
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gradient direction. With the momentum method, SGD could
escape local optima.

Nesterov accelerated gradient (NAG) is one of the repre-
senting methods. NAG method gives an approximate future
position to the update parameter at the next time stamp and
calculates the gradient of the current position to update the
momentum model. Theoretically, NAG algorithm improves
the convergence speed from O(1/k) to O(1/k2), where
k refers to k steps update [37].

Since the advantage of NAG, we construct the algorithm
according to NAG to solve the LINEX-SVM problem. One
main problem for NAG is that it is challenging to select
an appropriate learning rate during the training. When the
learning rate is very small, the convergence speed of the
algorithm is very slow. On the contrary, a large learning
rate probably causes the algorithm to miss of the optimal
point or even non-convergence. An intuitive idea is start-
ing with a slightly large learning rate and then gradually
decrease the scale of it according to the predefined sched-
ule during the learning process. So the specific method of
decreasing the learning rate is the critical point. Lightly
decreasing would waste computation resources and achieve
little improvement. Aggressively decreasing would increase
the probability for the learning system of falling into local
optima, instead of reaching the global optimum. In this paper,
inspiring by simulated annealing idea [38] and considering
our model with the exponential additional term, we adopt
the exponential decay way: ηnew = ηolde−kt , where k is
a hyper-parameter controlling the decay degree of learn-
ing rate at each iteration and t is the number of current
iterations.

Besides, we also follow the idea of the mini-batch method,
other than updating the model with one single sample every
iteration. In this way, utilizing multiple instances at each
iteration can decrease the variance of the gradient and lead
to stable convergence.

Specifically, the details of the algorithm is shown in
Algorithm 1. For simplify, we use the denotation: [b,w] →
[w] and [1, x] → [x]. Moreover, for the hyper-parameters
in the algorithm, we use the grid search method and manual
parameter adjustment to select appropriate parameters.

VI. EXPERIMENTS
First, we make a comparison between our method and some
other popular SVM methods on 12 small-size datasets and 5
large-size datasets. Then, we expend our experiments to the
multi-class scenario. Further, the kernel method are adopted
to evaluate the performance of LINEX-SVM as a nonlinear
classifier. Besides, we also do the parameter study to analyze
the effect of the main parameters and the robust analysis of
LINEX-SVM. Finally, we give an intuitive case study to show
the connection and the difference between LINEX-SVM
and LSSVM. All experiments are operated in
MATLAB2015 on a PC equippedwith Intel Core I5 3.10GHz
processor, 4 GB RAM and 64-bits operating system of
windows.

Algorithm 1 Nesterov Accelerated Gradient(NAG) for the
LINEX-SVM
Require:

The instances set: (x1, y1), (x2, y2) . . . , (xl, yl);
The parameters: penalty weight C , LINEX loss param-
eter a, maximum iteration number T , error tolerance e
mini-batch size m; learning rate decay factor k , momen-
tum parameter r ,
Initialize: model parameter w0, learning rate η0, velocity
v0;

Ensure:
The classifier parameter: w;

1: Randomly choosing k samples: (x1, y1) . . . , (xk , yk );
2: Temporary update: w̃t = wt + rvt
3: Computing
grad(w̃t ) =

w̃t
l +

aC
k

∑k
i=1 yixi{exp[a(yi(w̃

>
t xi)−1)]−1}

4: Updating velocity: vt = rvt − ηtgrad(w̃t );
5: Updating model parameters: wt+1 = wt + vt ;
6: Updating learning rate: ηt+1 = ηte−kt ;
7: Updating current iteration number: t = t + 1
8: Repeating 1,2,3,4 until convergence or up to the maxi-

mum iteration number T ;
9: return w;

TABLE 1. Characteristics of UCI datasets in the experiments.

A. EXPERIMENT ON SMALL-SIZE DATASETS
In this section, we estimate the performance of LINEX-SVM
on 12 small-scale UCI datasets [45]. The characteristics of
the datasets are summarized in the first section of Table 1.
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TABLE 2. The fivefold cross-validation accuracy on binary datasets with linear classifiers.

TABLE 3. The fivefold cross-validation AUC on binary datasets with linear classifiers.

The data features are normalized into [0,1] before train-
ing. For the benchmarks, we compare LINIX-SVM with
another four SVM-based classical classifiers: C-SVM [7],
LSSVM [10], TWSVM [13], NPSVM [15]. Among these
SVM models, LINEX-SVM, TWSVM and NPSVM have
extra hyper-parameters, in addition to the hyper-parameterC .
All the hyper-parameters are chosen through the grid search
method and manual adjustment. And the five-fold cross-
validation evaluation method is also employed. The details
of the search range and the stride are as follows: (1) penalty
parameter C is chosen from 2−10 to 210, with the step
of 21. (2) LINEX loss parameter a is chosen from−1 to−10,
with the step −1. (3) Parameter ε in NPSVM is chosen
from 0 to 0.5, with the step 0.1. The parameters for NAG
algorithm are set experimentally as: (1) Initial learning rate
η0 = 0.01. (2) Learning rate decay parameter k = 0.1.
(3) Initial weight w0 = 0. (4) Initial momentum v0 = 0

(5) Momentum parameter r = 0.6 (6) Error tolerance
e = 10−8. (7) Mini-batch size m = 100. (8) Maximum
iteration number T = 5000.

The experimental results and the selected parameters for
our method are listed in Table 2. The best results are shown
in boldface. Besides accuracy, we also illustrate the average
five-fold cross validation AUC and F1-score in Table 3 and
Table 4, respectively. From the experiment outcomes, we can
learn that LINEX-SVM model outperforms other methods
on the majority of the 12 datasets (8 out of 12 datasets in
terms of accuracy and F1-score, 9 out of 12 datasets in terms
of AUC). This proves the effectiveness of LINEX-SVM.
Another interesting scenario is LINEX-SVM achieves bet-
ter results than LSSVM on all the datasets and the met-
rics. This is because LINEX-SVM can degenerate into
LSSVM and the experiment results are consistent with the
theory.
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TABLE 4. The fivefold cross-validation F1-score on small-scale binary datasets with linear classifiers.

TABLE 5. Classification accuracy for large-scale datasets.

B. EXPERIMENT ON LARGE-SIZE DATASETS
In order to validate the classification efficiency of
LINEX-SVM solved by NAG, we conduct comparisons
between the methods and twomost related methods (C-SVM,
LSSVM) on 5 large-size UCI datasets: ’a9a’, ’a8a’, ’ijcnn1’,
’codrna’ and ’rcv1’. The statistic details of these datasets
are shown in the middle part of Table 1. The mini-batch
size is set as 10 experimentally, and the other parameters
are chosen as the same as in the last two sections. Table 5
illustrates the accuracy and the running time results of the
methods. The best ones are highlighted in bold. We can
see, firstly, LINEX-SVM outperforms C-SVM and LSSVM
on 4 datasets out of the total 5 ones in terms of accu-
racy. Secondly, LINEX-SVM achieves a significant improve-
ment in terms of running time compared with C-SVM and
LSSVM. For example, on dataset ijcnn1, which contains
141,691 instances in the dimension of 23, LINEX-SVM
achieves the best classification performance with a 91.78%
accuracy, and it only needs around 59 seconds, while CSVM
needs around 15, 073 seconds and LSSVM needs around
7, 432 seconds. On these five datasets, the average run-
ning time for LINEX-SVM is 52.85 seconds, while for
C-SVM the average running time is 10812.36 seconds
and for LSSVM is 6095.32 seconds. It means, on aver-
age, LINEX-SVM achieves around 204 times faster

compared with C-SVM and around 115 times faster com-
pared with LSSVM.

C. EXPERIMENTS ON MULTI-CLASS DATASETS
In this section, we conduct comparisons on 5 multi-class
UCI datasets: ’Wine’, ’Seeds’, ’Vehiabc’, ’Iris’ and
’Dermatology’, to evaluate the effectiveness of LINEX-SVM
onmulti-classification problems. The statistic details of these
datasets are shown in the bottom part of Table 1. The One-vs-
all strategy is adopted in this experiment and the test results
are shown in Table 9.

The results indicate that LINEX-SVM obtains best results
on 4 datasets out of 5. It achieves an average of 2.02%
improvement on accuracy compared with C-SVM, an aver-
age 1.39% improvement compared with LSSVM, an average
1.36% improvement compared with TWSVM and an average
0.13% improvement comparedwith NPSVM. This proves the
superior of LINEX-SVM in solving multi-class problems.

D. EXPERIMENTS ON SVMS WITH KERNEL
In Section III-B, we have derived the dual formulation
eq. (13) and its vector form eq. (14). The dual problem is
also a convex optimization problem, so NAG algorithm can
be applied easily on the dual problem. We expand the exper-
iments on nonlinear classification problems by introducing
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TABLE 6. The fivefold cross-validation accuracy on small-scale binary datasets with RBF kernel.

TABLE 7. The fivefold cross-validation AUC value on small-scale binary datasets with RBF kernel.

kernel to the dual problem, where RBF kernel is adopted. For
the parameter setting, the parameter of the RBF kernel is set
as 2 through many times manual adjustment and the other
parameters are set as the same as the linear case.

Specifically, the experimental results are listed in Table 6,
Table 7 and Table 8, in terms of accuracy, AUC and
F1-score, respectively. The related values of parameters a
and C in LINEX-SVM are also illustrated in the tables. From
them, we can see LINEX-SVM achieves the best classifi-
cation on majority datasets, compared with the baselines.
This demonstrates that LINEX-SVM performance well on
nonlinear classification problems by using kernels.

E. PARAMETER STUDY
In order to explore the effect of the parameters, we conduct
a study on several critical parameters. In LINEX-SVM, two
parameters are involved: parameter a in LINEX loss function

controlling the steepness of the function curve and parameter
m controlling the size of mini-batch in SGD algorithm. For
simplicity, we choose four small-size UCI datasets we used in
Section VI-A as representations, i.e., ’German’, ’Hepatitis’,
’Ionosphere’ and ’Pima’, to study the parameters.

First, we study the choice of parameter a. The results are
shown in Fig.3. We can see the accuracy remains relatively
high level while a is negative and the accuracy decreases
dramatically when a become positive. This outcome is con-
sistent with the theory. This proves the correctness of our
hypothesis that the instances between the two center hyper-
planes should have heavier penalties, with practical results.
Therefore, the value of parameter a in LINEX-SVM do not
need to be positive, and we can find the best value in a small
range of negative values using the grid search. In addition,
we also did an experiment on the mini-batch size. Experiment
results are also shown in Fig.3, while the black curves in the
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TABLE 8. The fivefold cross-validation F1-score on small-scale binary datasets with RBF kernel.

TABLE 9. Classification accuracy on multi-class UCI datasets.

middle figures show how the accuracy changes in terms of
batch size and the red curves in the bottom figures show how
the running time changes in terms of batch size. We can see
when the size of mini-batch increases, the accuracy increases
as well in the beginning then remains stable. And the run-
ning time increases approximately linearly when the batch
size increases. This suggests that in the scenarios that we
care more about the accuracy, we should choose a relatively
medium batch size (it does not need to be large), while in the
other scenarios that we care more about the efficiency, then
we should choose a relatively small batch size.

F. ROBUST ANALYSIS
To illustrate the performance of LINEX-SVM intuitively,
we generate two two-dimensional datasets and explore the
robustness of LINEX-SVM on them. The data in dataset 1 are
from two Gaussian distributions with equal probability: xi ∼
N (µ1, 61) , xj ∼ N (µ2, 62) , where µ1 = [0.5,−3]T ,

µ2 = [−0.5, 3]T , and 61 =

[
0.2 0
0 3

]
, 62 =

[
0.1 0
0 3

]
.

We display the training set and the classifier in Fig.4(a). The
positive points are marked as red while the negative points
are marked as blue. And the number of points in both class is
100. The blue line is the classification boundary. Then we add
noise into dataset 1 to get the dataset 2. The positions of noise
points locate at the edge of all the data where is far from the

classification boundary. These noise points come from two
Gaussian distributions: xi ∼ N (µ3, 63) , xj ∼ N (µ4, 64) ,
where µ3 = [1,−7]T , µ4 = [−1, 7]T and 63 = 61 =[
0.2 0
0 3

]
, 64 = 62 =

[
0.1 0
0 3

]
. The dataset with noise is

shown in Fig.4(b). The labels of the noise points are contrary
to surrounding points’ labels. We add 10 noise points to two
class respectively. That is to say that noise accounts for 10%
of the total data. For intuition, we circle the noise points in
the picture.

Comparing two classification boundary, we can find that
such noise does not seriously affect the classification results.
The noise only brings minor changes to the classifier. This
experiment shows that the model is insensitive to the noise
far from the classifier. As we introduced, LINEX-SVM gives
different penalties to different points. It punishes the points
around classification boundary heavily while punishes the
points far from classification boundary slightly. Therefore,
the model is insensitive for the noise distributed away from
the classification boundary.

G. CASE STUDY
At last, we give an intuitive case, to show the differences
between LINEX-SVM and LSSVM.

In LSSVM, minimizing 1
2‖w‖

2 realizes the maximal mar-
gin between the two center hyperplanes (w · xi) + b = 1
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FIGURE 3. Parameter study on the size of mini-batch and loss parameter a. The experiment results are respectively on dataset ’German’,
’Hepatitis’, ’Ionosphere’, and ’Pima’. (a) German(1000*21). (b) Hepatitis (155*20). (c) Ionosphere (351*35). (d) Pima (768*9).

FIGURE 4. The performance on data with noise. Positive points and negative points are marked as red crosses and blue
stars, respectively. The blue line is the classification boundary. (a)Dataset 1: 100 positive points and 100 negative
points. (b)Dataset 2: besides samples in dataset 1, another ten noise samples are added to each class. The results
illustrate that the model is robust for such noise.

and (w · xi) + b = −1, while minimizing the square

loss
l∑
i=1
η2i is to make the two hyperplanes close to the

center of positive and negative points, respectively. How-
ever, in LINEX-SVM, based on the idea that the points
closed to the hyperplane deserve heavier punishment than the

far-side points, the asymmetric LINEX loss function is

adopted. The minimizing of
l∑
i=1

(exp(aξi) − aξi − 1) implies

not only making the two straight blue lines close to the center
of points respectively but also paying more attention to the
points between the two straight blue lines.
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FIGURE 5. Case study on the comparison between LINEX-SVM and
LSSVM, in the linear case. Points in the same color share the same label.
The hyperplanes obtained by LINEX-SVM are shown in blue while the one
obtained by LSSVM are showed in red. The decision hyperplane
(w · xi )+ b = 0 is marked with solid lines, while the center hyperplanes
(w · xi )+ b = ±1 are represented with dash lines. Clearly, in the picture,
the LINEX-SVM model pays more attention to the two cluster minority
points distributed around the decision hyperplane.

In Fig.5, we compare LINEX-SVM and LSSVM with
a demo. First, we generate two kinds of points that sat-
isfy normal distribution to observe the differences between
LINEX-SVM and LSSVM. We can see LINEX-SVM
obtain a more reasonable classification hyperplane since
LINEX-SVM concentrates on the points closed to the hyper-
plane. This result suggests that the LINEX loss may achieve
better classification results than LSSVM by paying more
attention to the points around the decision hyperplanes.

In conclusion, for LINEX-SVM, the experiments in this
section demonstrate that: (1) LINEX loss is very useful in
improving classification performance. It is a convex asym-
metric loss function and is superior compared with the base-
line loss functions in many scenarios. (2) No mater on
small-size datasets or large-size datasets, or in multi-class
problem, or for nonlinear classification, LINEX-SVM per-
forms well and achieves best results on most of the datasets.
(3) LINEX-SVM is extremely efficient. It is much faster than
C-SVM and LSSVM on large-size datasets and achieves an
obvious scale of decrease of running times compared with
the baselines. (4) NAG algorithm is efficient in solving the
convex optimization problems, since it adopts an adaptive
learning rate according to the simulated annealing method.
Compared with the common SGD algorithm, NAG algorithm
normally convergent faster.

VII. CONCLUSION
In this paper, we bring the LINEX loss into SVM
for classification and propose the LINEX-SVM classifier.
LINEX-SVM makes use of all the points and penalizes the
points around the classification boundary heavier to achieve
better classification performance. Further, we made a the-
oretical analysis of our method, i.e. 1) the expected risk
minimizing of LINEX-SVM satisfies the Bayes rule and
2) the classification error bound has a theoretical upper
bound. Then the NAG algorithm is adopted to solve

LINEX-SVM, which has a significant advantage in handling
large-scale classification problem. In order to verify the per-
formance of LINEX-SVM, we evaluate it on some UCI stan-
dard datasets in terms of both accuracy, AUC value, F1-score
and the training time. The experimental results demonstrate
that our method is competitive and efficient compared with
other baselines.

In further work, we would like to consider a truncated
LINEX loss to make the model more robust. And the LINEX
loss can also be used in other machine learning approaches to
solve different tasks.
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