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ABSTRACT In this paper, we propose a novel channel estimation technique for frequency-division
duplex (FDD)-basedmassivemultiple-inputmultiple-output (MIMO) systems. Cascaded precoding has been
adopted in FDD massive MIMO systems in order to reduce the dimension of physical channels so that the
traditional channel estimation can be employed over a low-dimensional effective channel. However, due
to the lack of a priori knowledge of the downlink channels, traditional channel estimation approaches can
hardly achieve the minimum mean-square-error (MMSE) performance. To this end, we propose a limited
feedforward strategy for downlink channel estimation based on the parametric model. In the parametric
model, the channel frequency responses are represented by the path delays and the corresponding complex
amplitudes. The path delays of uplink channels are first estimated and quantized at the base station, then fed
forward to the user equipment (UE) through a dedicated feedforward link. In this way, the UE can obtain
the a priori knowledge of the downlink channel under the assumption of the reciprocity between downlink
and uplink path delays. Our analysis and simulation results show that the limited feedforward method can
achieve near-MMSE performance.

INDEX TERMS Massive MIMO, channel estimation, parametric model, limited feedforward, cascaded
precoding.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) or large-
scale MIMO has gained a lot of attention recently. As a
key technology of the fifth generation mobile communication
(5G), it has attracted lots of interest in both academia and
industry [1]. Massive MIMO can greatly improve spectral
efficiency and energy efficiency by deploying a large number
of antennas at the base station (BS) [2], [3].

A critical issue in massive MIMO systems that must be
addressed is the acquisition of the downlink channel state
information (CSI). However, due to the dramatically increase
of the number of antennas, traditional channel estimation
approaches cannot be directly used in massive MIMO sys-
tems. To address this issue, cascaded precoding has been
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proposed in [4], which exploits the spatial correlation to
reduce the dimension of the physical channels significantly,
and traditional channel estimation techniques can be there-
fore used over a low-dimensional effective channel [5], [6].
The spatial correlation of the channels has also been used
in [7], [8] to develop a closed-loop training technique to
improve the performance.

Due to the lack of the a priori knowledge of the down-
link channels, traditional channel estimation can hardly
achieve the minimum mean-square-error (MMSE) perfor-
mance. To achieve theMMSE bound, a novel channel estima-
tion technique is developed based on the parametric channel
model in [9]. In the parametric channel model, the channel
frequency responses (CFR) are represented with the path
delays and the corresponding complex-valued amplitudes,
and the CFR can be regenerated by estimating the path
delays and the complex amplitudes separately. To estimate
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the path delays, estimation of signal parameters by rota-
tional invariance technique (ESPRIT) [10] has been adopted
in [9], which requires a long symbol sequence to obtain the
frequency-domain covariance matrix (FCM). Even though
improved approaches have been developed to reduce the
sequence length [5], [11], the need of the relatively long
symbol sequence still restricts the application of paramet-
ric model based channel estimation techniques in burst-type
transmissions, such as the cellular systems.

As an extension of our previous work [12], we will exploit
the large number of antennas in massive MIMO systems
and the reciprocity between the downlink and the uplink
path delays in this paper. Our purpose is to develop a
near-MMSE strategy for downlink channel estimation in
massiveMIMO systems. Due to the presence of large number
of antennas, the FCM, as well as the path delays, can be
estimated at the BS using the channels at different anten-
nas, and the long symbol sequence needed in traditional
parametric model based approaches is therefore not required
in massive MIMO systems. On the other hand, the fre-
quency separation between the downlink and the uplink are
about 5% of the center frequency [13] in FDD systems.
For such small frequency separation, the downlink and the
uplink channels can have many common features such as the
path delays [14], [15]. In this case, the uplink path delays
estimated at the BS can be directly used as the downlink
ones.

In the proposed strategy, the path delays of uplink chan-
nels are first estimated at the BS using the uplink physical
CFRs at different antennas, then quantized and fed forward
to the UE through a dedicated feedforward link. In this
way, UE can obtain the a priori knowledge of the down-
link channel in advance because the downlink and uplink
channels share identical path delays. As long as the UE
has the knowledge of the path delays, the low-dimensional
effective CFR can be regenerated by estimating the corre-
sponding complex amplitudes. Theoretical analysis shows
that the performance of channel estimation can be improved
by increasing the accuracy of path delay estimation or using
more quantization bits. Simulation results demonstrates that
the proposed strategy can achieve near-MMSE performance
given sufficient quantization bits and accurate path delay
estimation.

It should be highlighted that the limited feedforward strat-
egy can be also used for general downlink MIMO chan-
nel estimations. However, due to the lack of large amount
of antennas, the estimation of FCM needs a long symbol
sequence as in [9], which can be hardly realized in cellular
systems. We therefore focus on the massive MIMO system
which is more suitable for FCM estimation.

The rest of this paper is organized as follows. First, we will
introduce the system model in Section II. Then, Section III
focuses on the proposed channel estimation strategy. Theo-
retical analysis is presented in Section IV and the simulation
results are given in Section V. Finally, the conclusions are
drawn in Section VI.

II. SYSTEM MODEL
Consider an orthogonal frequency division multiplex-
ing (OFDM) based massive MIMO system as in Fig. 1 (a),
which consists of K subcarriers and an array of M antennas
equipped at the BS. In Fig. 1 (a), W ∈ CM×D indicates the
inner precoder and v[k] ∈ CD×1 indicates the outer precoder
corresponding to the k-th subcarrier, where D is the dimen-
sion of the effective channel(D � M ). As in [4], the first D
largest eigenvalues of the spatial covariance matrix (SCM)
has captured most power of the downlink channels.

Denote hm[k] as the dowlink CFR at the k-th subcarrier
corresponding to the m-th BS antenna. Due to the multipath
propagation, hm[k] can be represented as

hm[k] =
L−1∑
l=0

αm[l]e−j
2πk
T τl , (1)

whereαm[l] is the complex amplitude of the l-th path at them-
th antenna, τl is the l-th path delay, and T denotes the duration
of an OFDM symbol. If assume the complex amplitudes are
Gaussian distributedwith zeromean and variance σ 2

l , thenwe
have E(αm[l]) = 0 and E(|αm[l]|2) = σ 2

l with
∑L−1

l=0 σ
2
l = 1.

Furthermore, we assume the complex amplitudes correspond-
ing to different paths are independently distributted in this
paper.

When a huge number of antennas are deployed in a dense
area, the channels at different antennas will be correlated.
Accordingly, the spatial correlation function is represented as

rs[m] , E(hm+n[k]h∗n[k]), (2)

or in a matrix form as

Rs = {rs[m− n]}
M−1
m,n=0. (3)

From [4], the optimal inner precoder is represented by W =
U∗s where Us = (us[0], · · · ,us[D − 1]) consists of D eigen-
vectors corresponding to the largest eigenvalues of down-
link spatial covariance matrix (SCM), Rs. Due to the reci-
procity, the downlink SCM is the same with the uplink
SCM [16], [17]. Therefore,Rs is immediately obtained using
the estimation of the uplink SCM, as will be introduced in
Section III.

Denote h[k] = (h0[k], · · · , hM−1[k])T as a channel vector
which consists of the physical downlink CFRs from all the
antennas at the k-th subcarrier. Then, for the optimal inner
precoder, the low-dimensional effective CFR at the k-th sub-
carrier over the d-th eigenvector can be represented by

bd [k] = uHs [d]h[k]. (4)

In this situation, the received signal at the k-th subcarrier over
the effective CFR can be represented, from Fig. 1 (b), as

y[k] =
D−1∑
d=0

bd [k]ad [k]+ z[k], (5)

where z[k] is the additive white Gaussian noise with zero
mean and variance E(|z[k]|2) = N0, and ad [k] denotes the
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FIGURE 1. A massive MIMO system with cascaded precoding in (a) where the path delays are estimated at the
BS and then fed forward to the UE through a dedicated link, and (b) an effective downlink channel model.

frequency-domain training symbol over the d-th eigenvector
which is known to the UE.

Theoretically, the downlink and the uplink channels should
have the same path delays since the signals will travel the
same distance in both ways [18], [19]. Measurement results
in [20]–[22] have shown that the power delay profiles are
indeed very similar for the downlink and the uplink. It is
therefore reasonable to assume identical path delays for
both downlink and uplink as in [14]–[16], [23]. Experimental
results in [24] have demonstrated that the assumption of iden-
tical path delays coincide with the practical measurements
given small frequency separation between the downlink and
the uplink.

When the downlink and the uplink channels have identical
path delays, the uplink CFR at the k-th subcarrier on the m-th
antenna can be expressed as

hm[k] =
L−1∑
l=0

αm[l]e−j
2πk
T τl , (6)

where αm[l] is the complex amplitude of the l-th path at
the m-th antenna for the uplink with zero mean and variance
E(|αm[l]|2) = σ 2

l . Similarly, the complex amplitudes corre-
sponding to different paths for the uplink are also assumed
independent.

Since the downlink path delays in (1) and the uplink path
delays in (6) are the same, the downlink path delays can be
obtained at the BS by exploiting the uplink CFRs. In this way,
UE can obtain a prior information on the downlink CFR.

III. LIMITED FEEDFORWARD CHANNEL ESTIMATION
In this section, we first investigates the parametric model
based on cascaded precoding in massive MIMO systems.
Then, we discuss the limited feedforward channel estimation,
which includes estimation, quantization, and feedforward of
the path delays, and an least-square (LS) estimation of the
corresponding complex amplitudes.

A. PARAMETRIC MODEL BASED ON CASCADED
PRECODING
In the parametric model, CFR is expressed via the path
delays and the corresponding complex amplitude of each
path [9]. Denote α[l] = (α0[l], · · · , αM−1[l])T as a complex
amplitude vector which consists of the physical complex
amplitudes from all the antennas at the l-th path, that
is, α[l] = (α0[l], α1[l], · · · , αM−1[l])T. Then, from (1)
and (4), the low-dimensional effective complex amplitude
corresponding to the l-th path over the d-th eigenvector is
obtained as

βd [l] = uHs [d]α[l]. (7)

Then, similar to (1), we can obtain the parametric channel
model of the low-dimensional effective CFR as

bd [k] =
L−1∑
l=0

βd [l]e−j
2πk
T τl . (8)
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From (8), the effective CFRs, bd [k]’s, can be regenerated by
estimating the path delays, τl’s, and the effective complex
amplitudes, βd [l]’s, respectively.

With the parametric model in (8), the received signal in (5)
can be rewritten as

y[k] =
D−1∑
d=0

ad [k]

(
L−1∑
l=0

βd [l]e−j
2πk
T τl

)
+ z[k]. (9)

Considering that there are K subcarriers in the OFDM trans-
mission, (9) can be rewritten in a matrix form as

y =
D−1∑
d=0

AdSβd + z, (10)

where y = (y[0], · · · , y[K − 1])T, Ad = diag{ad [k]}
K−1
k=0 ,

βd = (βd [0], · · · , βd [L − 1])T, z = (z[0], · · · , z[K −
1])T, and S = [s(τ0), · · · , s(τL−1)] with s(τl) =

[1, e−j
2π
T τl , · · · , e−j

2π (K−1)
T τl ]T denoting the frequency-

domain steering vector. For a more tight form, (10) can be
rewritten as

y = Xβ + z, (11)

where X = [A0S, · · · ,AD−1S] and

β =

 β0
...

βD−1

 . (12)

B. PATH DELAY: ESTIMATION, QUANTIZATION,
AND FEEDFORWARD
1) ESTIMATION
Since the path delays are identical for the downlink and
the uplink, the estimated path delays from the uplink can
be directly used as the downlink ones. The subspace-based
approach, which consists of two steps, can be used for the
estimation of the uplink delays at the BS [9].

The first step is to estimate the uplink FCM, which can be
given as Rf = {r f [k − p]}K−1k,p=0 where r f [k] , E(hm[q +
k]h
∗

m[q]) denotes the corresponding correlation function.
In massive MIMO systems, the FCM can be estimated by
averaging the uplink CFRs of different antennas at the BS,

R̃f =
1
M

M−1∑
m=0

hmh
H
m, (13)

where hm = (hm[0], · · · , hm[K − 1])T denotes the uplink
channel vector, which can be estimated via uplink chan-
nel estimation [5]. In this case, the long symbol sequence
in [9], [11] is not required anymore and the proposed strategy
can be used in cellular systems.

For the second step, the ESPRIT algorithm can be used
to obtain the estimation of the path delays as in [9]. The
procedure is the same with that in [9] and thus not presented
here.

The accuracy of path delay estimation can be measured by
the variance, E(|̃τl−τl |2), where τ̃l denotes the corresponding

FIGURE 2. Quantization of the path delay.

estimated path delay. Although the estimation performance of
ESPRIT algorithm can be improved by using more subcarri-
ers and more antennas, it is in general difficult to obtain an
analytical result [25], and we therefore use a simple notation

E(|̃τl − τl |2) = σ 2, (14)

as the performance metric of the path delay estimation,
where σ 2 decreases as the numbers of subcarriers or antennas
increase [25].

2) QUANTIZATION
The estimated path delay, τ̃l , is then quantized to, τ̂l , so that
it can be fed forward to the UE. In this paper, we use a simple
uniform quantization as in Fig. 2. If B bits are used for the
quantization of each path delay, then the quantization interval
can be given by

1 =
τmax

2B
, (15)

where τmax indicates the maximum delay. In practical sys-
tems, the duration of the cyclic prefix can be used instead if
the maximum delay is unknown.

For uniform quantization, the quantization error, τ̂l − τ̃l ,
can be viewed as a uniformly distributed noisewith zeromean
and [26]

E(|̂τl − τ̃l |2) =
12

12
=

τ 2max

12 · 4B
, (16)

which shows that the quantization performance can be
improved exponentially by using more quantization bits.

3) FEEDFORWARD
After the quantization, the path delays are fed forward to
the UE through a dedicated feedforward link. Similar to
traditional limited feedback [6], we assume the feedforward
link is error-free. On the other hand, the feedback delay in
traditional limited feedback may deteriorate the system per-
formance due to the time variation of wireless channels. In the
scenario of this paper, however, the path delay depends on
the surrounding scatters in typical wireless channels, which
will not change for a relatively longer duration. It is therefore
reasonable to assume that the path delays are constant and
thus the feedback delay has no impact on the the proposed
approach.

76220 VOLUME 7, 2019



Y. Liu et al.: Limited Feedforward for Channel Estimation in Massive MIMO With Cascaded Precoding

C. LS ESTIMATION OF COMPLEX AMPLITUDES
Once the UE has the knowledge of the path delays,
it only needs to estimate the effective complex amplitudes.
From (11), the LS estimation of the effective complex ampli-
tudes can be given by

β̂ = (X̂HX̂)−1X̂Hy, (17)

where X̂ is exactly the same with X except that the quantized
delays, τ̂l’s, are used instead of the real ones. Note that if two
or more path delays are too close to separate due to inaccurate
path delay estimation or small number of quantization bits,
we can view those inseparable path delays as a single one so
that X̂HX̂ in (17) is always with full rank.
Given the quantized path delays and estimated effective

complex ampltitudes, the estimated effective CFR can be
regenerated, similar to (8), as

b̂d [k] =
L−1∑
l=0

β̂d [l]e−j
2πk
T τ̂l . (18)

IV. PERFORMANCE ANALYSIS
In this section, we will first analyze the performance of the
proposed channel estimation strategy in Section III. Then,
a comparison between the proposed estimator and theMMSE
estimator will be shown.

A. MSE
For cascaded precoding, the MSE can be defined over the
low-dimensional effective channel, that is

MSE ,
D−1∑
d=0

K−1∑
k=0

E(|̂bd [k]− bd [k]|22), (19)

where the expectation is with respect to the effective CFRs
and the additive noise. If assuming the number of subcarriers
is large enough, we get [27]

1
K
sH(τl)s(τp) = sinc

[
π (τl − τp)K

T

]
ej
π (K−1)

T (τl−τp)

≈

{
1, τl = τp
0, τl 6= τp

. (20)

Using (20) and the results in Appendix A, we can obtain

MSE = K
L−1∑
l=0

Tr{UH
s Rs,lUs}

{
1− sinc2

[
π (̂τl − τl)K

T

]}
+N0LD, (21)

where

Rs,l = {rs,l[m− n]}
M−1
m,n=0, (22)

is the sub-SCM caused by the subpaths inside the l-th path
with rs,l[m] indicating the sub-correlation-function,

rs,l[m] , E(αn+m[l]α∗n [l]). (23)

From (2), it is easy to verify that Rs =
∑L−1

l=0 Rs,l .

In (21), the overall error is composed of a quantization
error and an estimation error, that is, τ̂l − τl = (̂τl − τ̃l) +
(̃τl−τl).When the number of antennas is large, the estimation
error is very small [25]. Similarly, the quantization error is
also very small if assuming the number of quantization bits is
sufficiently large. Under those assumptions, τ̂l and τl will be
very close and we therefore have

sinc
[
π (̂τl − τl)K

T

]
≈ 1−

π2K 2

6T 2 (̂τl − τl)2. (24)

Using (24), the MSE expression in (21) can be rewritten as

MSE =
π2K 3

3T 2

L−1∑
l=0

Tr{UH
s Rs,lUs}E(|̂τl − τl |2)+ N0 LD

=
π2K 3

3T 2

L−1∑
l=0

Tr{UH
s Rs,lUs}

[
E(|̂τl − τ̃l |2)

+ E(|̃τl − τl |2)
]
+ N0LD, (25)

where we have omitted the high-order error terms since
τ̂l − τl is small. The second equation in (25) follows from
the fact that the estimation error and the quantization error
are independent random variables. Substituting (14) and (16)
into (25), we obtain

MSE=
π2K 3

3T 2 Tr{UH
s RsUs}·

(
τ 2max

12 · 4B
+σ 2

)
+N0LD. (26)

From (26), we can observe that the MSE can be reduced by
adopting more quantization bits or increasing the accuracy
of path delay estimation. In an extreme case where the path
delay estimation is ideal and the number of quantization bits
is infinite, the MSE can be reduced to

MSE = N0LD, (27)

which is proportional to the number of effective complex
amplitudes as well as the dimension of the effective channel.

To obtain more insights, we rewirte the term, Tr{UH
s RsUs},

in (26) as

Tr{UH
s RsUs} = L · gD

(
1
L
Rs

)
, (28)

where gD(·) denotes the sum of the D largest eigenvalues of
a given matrix, that is

gD

(
1
L
Rs

)
=

D−1∑
d=0

λd

(
1
L
Rs

)
, (29)

where λd (·) denotes the d-th largest eigenvalue of a given
matrix. From [28], [29], gD(·) is a convex function, and

gD

(
1
L
Rs

)
= gD

(
1
L

L−1∑
l=0

Rs,l

)
≤

1
L

L−1∑
l=0

gD(Rs,l), (30)

where the equation holds when Rs,l =
1
LRs for all l’s. In this

case, we have

E{|βd [l]|2} =
1
L
uHs [d]Rsus[d], (31)
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which means that E{|βd [l]|2}’s are constant for all l’s.
If assuming the D largest eigenvalues can capture all the
power of Rs,l , then

gD(Rs,l) = Tr{Rs,l} = Mσ 2
l , (32)

and therefore (30) can be rewritten as

gD

(
1
L
Rs

)
≤
M
L

L−1∑
l=0

σ 2
l =

M
L
. (33)

As a result, by substituting (33) into (28), we can obtain

Tr{UH
s RsUs} ≤ M , (34)

where the equality holds only when the effective channel has
equal power among the paths. In this case, the worst channel
estimation performance is obtained, which is

MSE =
π2K 3 M
3T 2

(
τ 2max

12 · 4B
+ σ 2

)
+ N0LD. (35)

B. COMPARISON WITH MMSE ESTIMATOR
It is necessary to make a comparison with the MMSE esti-
mator since it can achieve the best performance. If using the
MMSE estimation for the effective CFR in (5), the associated
MSE can be given as [30]

MSEMMSE = Tr

{(
R−1b +

1
N0

AHA
)−1}

, (36)

where A = (A0, · · · ,AD−1) and

Rb =

 E(b0bH0 ) · · · E(b0bHD−1)
...

. . .
...

E(bD−1bH0 ) · · · E(bD−1bHD−1)

 , (37)

with bd = (bd [0], · · · , bd [K − 1])T. Similar to [31], we use
E(AHA) = I to replace AHA in (36) such that the analysis
can be greatly simplified. Then, from Appendix B, the MSE
in (36) can be given as

MSEMMSE = N0

LD−1∑
i=0

λb[i]
λb[i]+ N0

, (38)

where λb[i] indicates the i-th eigenvalue of Rb.
Since λb[i](λb[i]+ N0)−1 < 1, we can obtain that

MSEMMSE < N0LD, (39)

which means the MMSE estimator is always better than
the proposed strategy. However, when the signal-to-noise
ratio (SNR) is large enough, λb[i](λb[i] + N0)−1 ≈ 1 and
thus

MSEMMSE ≈ N0LD. (40)

Compared to (27), the proposed approach can achieve the
performance of the MMSE estimator if accurate path delay
estimation and enough quantization bits when the SNR is
large enough.

FIGURE 3. MSE versus the quantization bit number for different variances
of estimation errors with SNR = 10 dB.

V. SIMULATION RESULTS
For the simulations, we consider an OFDM based massive
MIMO system with K = 256 subcarriers and 15 KHz
subcarrier spacing and a uniform-linear-array (ULA) with the
space between neighboring antennas as half wave-length. The
number of BS antennas is M = 64 and the dimension of the
effective channel is D = 6 [4]. The physical channel is com-
posed of L = 6 paths. An exponential power delay profile is
assumed and the path delays are uniformly distributed within
[0, τmax] with τmax = 5µs. Each path has 20 unresolvable
subpaths and each subpath has a random angle of departure
(AoD). In practical systems, the AoDs for different paths can
be distributed within a local or a rather wide range. To take
various cases into account, the AoDs are assumed to be inde-
pendently and uniformly distributed within a range that has a
random central angle and a random angular spread uniformly
distributed within [−π, π) and [0, π/2], respectively.
Fig. 3 shows the MSE versus the number of quantization

bits in the cases of different variances of estimation errors
for path delays. The variance of estimation errors are normal-
ized by τmax2/12. Theoretical results in (26) are also shown
in Fig. 3. It can be seen that the simulated MSEs almost
coincide with the theoretical ones when B is large while there
exists a gap when B is small. That is because the theoretical
result is derived under the assumption that the number of
quantization bits is large enough. It is also observed that for
σ 2
= −40 dB, the MSE cannot be improved further more

when B > 8. The reason is that the estimation error becomes
dominant in this situation. The MSE can be further reduced
by adopting more quantization bits if the accuracy of the path
delay estimation improves.

Fig. 4 shows the MSE versus the variances of the esti-
mation errors for different quantization bit numbers with
SNR = 10 dB. From the figure, the MSE can be hardly
improved by further increasing the estimation accuracy if
the number of quantization bits is small. This is because the
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FIGURE 4. MSE versus variances of estimation errors for different
quantization bit numbers with SNR = 10 dB.

FIGURE 5. MSE versus SNR for different quantization bit numbers and
variances of the estimation errors.

quantization error is dominant in this situation. It can be also
observed that when adoptingmore quantization bits, theMSE
performance can be further improved as the reduction of the
variance of estimation error for path delays.

Fig. 5 illustrates the MSE versus the SNR for different
quantization bit numbers and variances of the estimation
errors. From Fig. 5, the MSE can be improved by increas-
ing the accuracy of path delay estimation or using more
quantization bits. When the quantization bit number is large
enough and the path delay estimation is accurate enough,
the proposed approach can achieve near-MMSE performance
in the high SNR regime. This also coincides with the previous
analysis in Section IV.

Fig. 6 shows the capacity versus the number of bits for
different variances of estimation errors. In this figure, the BS
uses the effective CSI fed back by the UE for downlink
precoding. We assume the estimated channels at the UE can

FIGURE 6. Capacity versus quantization bits with different variances of
the estimation errors.

FIGURE 7. Capacity versus variances of estimation errors with different
number of quantization bits.

be perfectly fed back to the BS such that the performance is
only affected by the channel estimation error. From the figure,
only 5 bits are enough to achieve the case with ideal effective
CSI.

Fig. 7 shows the capacity versus variances of estimation
errors with different number of quantization bits. Similar to
that in Fig. 6, we still assume the estimated channels at the
UE can be perfectly fed back to the BS. From the figure,
the capacity can be hardly improved when σ 2 < −25 dB,
which means that more accurate path delay estimation is
unnecessary.

VI. CONCLUSIONS
In this paper, we have proposed a limited feedforward strat-
egy for downlink channel estimation in FDD massive MIMO
systems. Due to the reciprocity, the downlink and the uplink
path delays are identical. Therefore, the path delays can be
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first estimated at the BS, and then quantized and fed forward
to the UE through a dedicated feedforward link. In this way,
the a priori knowledge of the downlink channel is avail-
able for UE, and the accuracy of downlink channel estima-
tion can be therefore significantly improved. Our simulation
results have shown that the proposed approach can achieve
near-MMSE performance given accurate path delay estima-
tion and sufficient quantization bits, which also coincides
with our theoretical results.

APPENDIX A
The MSE for channel estimation in (19) can be rewritten in a
matrix form as

MSE =
D−1∑
d=0

E(‖̂Sβ̂d − Sβd‖
2
2)

=

D−1∑
d=0

Tr{̂SE(β̂d β̂
H
d )̂S

H
− SE(βd β̂

H
d )̂S

H

− ŜE(β̂dβ
H
d )S

H
+ SE(βdβ

H
d )S

H
}. (A.1)

Therefore, we need calculate the values of E(βdβ
H
d ),

E(β̂d β̂
H
d ), and E(βd β̂

H
d ), respectively.

A. CALCULATION OF E(βd βH
d )

From (7), the correlation function of βd [l] can be given by
E(βd [l]β∗d [l1]) = uHs [d]Rs,lus[d]δ[l−l1]. Therefore,Rβ,d ,
E(βdβ

H
d ) is a diagonal matrix with the (l, l)-th entry given by

[Rβ,d ](l,l) = uHs [d]Rs,lus[d]. (A.2)

B. CALCULATION OF E(β̂d β̂
H
d ) and E(βd β̂

H
d )

For the calculation of E(β̂d β̂
H
d ) and E(βd β̂

H
d ), from (17),

we have

β̂ =

(
1
K
X̂HX̂

)−1 1
K
X̂HXβ +

(
1
K
X̂HX̂

)−1 1
K
X̂Hz.

(A.3)

1) CALCULATION OF 1
K X̂HX̂

Note that

1
K
X̂HX̂ =


1
K Ŝ

HŜ · · ·
1
K Ŝ

HAH
0 AD−1Ŝ

...
. . .

...

1
K Ŝ

HAH
D−1A0Ŝ · · ·

1
K Ŝ

HŜ


(A.4)

For the diagonal submatrices in (A.4), we have

1
K
ŜHŜ = I, (A.5)

where we have used the identity in (20).

For the (d1, d2)-th off-diagonal submatrix (d1 6= d2)
in (A.4),

1
K
ŜHAH

d1Ad2 Ŝ

=
1
K

 sH (̂τ0)AH
d1

...

sH (̂τL−1)AH
d1

 [Ad2s(̂τ0), · · · ,Ad2s(̂τL−1)], (A.6)

the (l1, l2)-th entry is given by

1
K
sH (̂τl1 )A

H
d1Ad2s(̂τl2 ) =

1
K

K−1∑
k=0

ejϕ[k], (A.7)

where ϕ[k] = φ[k] + 2πk
T (̂τl1 − τ̂l2 ) with φ[k] =

φd2 [k] − φd1 [k]. Since φd [k]’s are uniformly distributed
within [−π, π) and mutually independent for different
subcarriers and different eigen-beams, φ[k]’s with k =
0, 1, · · · ,K − 1 can be viewed as independently identically
distributed random variables with zero means and a common
probability density function (pdf)

pX (x) =


1
2π
−
|x|
4π2 |x| < 2π

0 otherwise
. (A.8)

Accordingly, ϕ[k]’s with k = 0, 1, · · · ,K − 1 are also
independently distributed random variables but with mean
E(ϕ[k]) = 2πk

T (̂τl1 − τ̂l2 ). Since the functions of independent
random variables are still independent, ejϕ[k]’s are therefore
independent for different subcarriers. Then, following the law
of large numbers, we have

1
K

K−1∑
k=0

ejϕ[k] =
1
K

K−1∑
k=0

E(ejϕ[k])

=
1
K

K−1∑
k=0

ej
2πk
T (̂τl1−τ̂l2 )E(ejφ[k]). (A.9)

Using the pdf in (A.8), we have

E(ejφ[k]) =
∫ 2π

−2π

(
1
2π
−
|φ[k]|
4π2

)
ejφ[k]dφ[k] = 0. (A.10)

Substituting (A.10) into (A.9), we obtain

1
K
sH (̂τl1 )A

H
d1Ad2s(̂τl2 ) =

1
K

K−1∑
k=0

ejϕ[k] = 0, (A.11)

and therefore,

1
K
ŜHAH

d1Ad2 Ŝ = 0, (A.12)

for d1 6= d2. In other words, the off-diagonal submatrices
in (A.4) are all zeros when the number of subcarriers is large
enough.

As a result,

1
K
X̂HX̂ = I. (A.13)
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2) CALCULATION OF 1
K X̂HX

Similar to the derivation above, we can obtain that

1
K
X̂HX =


1
K Ŝ

HS
. . .

1
K Ŝ

HS

 , (A.14)

since the off-diagonal submatrices are zeros. If we assume the
quantized delays, τ̂l’s, are close to the real delays, τl’s, then
1
K Ŝ

HS can be approximated by

1
K
ŜHS = 3, (A.15)

where 3 is an L × L diagonal matrix with the (l, l)-th entry

[3](l,l) = sinc
[
π (τl − τ̂l)K

T

]
ej
π (K−1)(τl−τ̂l )

T , (A.16)

and therefore

1
K
X̂HX =

3 .. .

3

 . (A.17)

Using (A.13) and (A.17), (A.3) can be simplified as

β̂d = 3βd +
1
K
SHAdz. (A.18)

It is therefore easy to obtain that

E(β̂d β̂
H
d ) = 3Rβ,d3

H
+
N0

K
I, (A.19)

E(βd β̂
H
d ) = Rβ,d3H. (A.20)

Using (A.2), (A.19) and (A.20), (A.1) can be rewritten as

MSE =
D−1∑
d=0

Tr
{̂
S
(
3Rβ,d3H

+
N0

K
I
)
ŜH − SRβ,d3HŜH

−Ŝ3Rβ,dSH + SRβ,dSH
}

=

D−1∑
d=0

{
K

L−1∑
l=0

[Rβ,d ](l,l)(1− |[3](l,l)|2)+ N0 L

}

= K
L−1∑
l=0

D−1∑
d=0

[Rβ,d ](l,l)

{
1− sinc2

[
π (̂τl − τl)K

T

]}
+N0LD. (A.21)

From (A.2), we have

D−1∑
d=0

[Rβ,d ](l,l) = Tr{UH
s Rs,lUs}. (A.22)

As a result, the MSE of channel estimation can be finally
obtained as

MSE = K
L−1∑
l=0

Tr{UH
s Rs,lUs}

{
1− sinc2

[
π (̂τl − τl)K

T

]}
+N0LD. (A.23)

APPENDIX B
Replace AHA with E(AHA) = I, then, similar to the deriva-
tion in [31], the MSE in (36) can be expressed by

MSEMMSE = N0

DK−1∑
i=0

λb[i]
λb[i]+ N0

. (B.1)

From (8), we have bd = Sβd and thus Rb can be rewritten as

Rb = (I⊗ S)Rβ (I⊗ SH), (B.2)

where ⊗ denotes the Kronecker product and

Rβ =

 E(β0β
H
0 ) · · · E(β0β

H
D−1)

...
. . .

...

E(βD−1β
H
0 ) · · · E(βD−1β

H
D−1)

 . (B.3)

From Appendix A, E(βd1β
H
d2 ) is a diagonal matrix and thus

rank{E(βd1β
H
d2 )} = L. Accordingly,

rank{Rβ} = DL (B.4)

Actually, rank deficiency ofRβ is a very strong condition that
can be hardly achieved in practical engineering problems, and
therefore Rβ is always with full rank.
When the number of subcarriers is very large, the relation

in (20) means that the columns of S are mutually orthogonal
and therefore S is full column rank matrix. As a result, we can
obtain from (B.2) that

rank{Rb} = rank{Rβ} = DL. (B.5)

In other words, there are only DL significant eigenvalues for
Rb while the others are very small and thus can be omitted.
As a result, the MSE in (B.1) is reduced to

MSEMMSE = N0

DL−1∑
i=0

λb[i]
λb[i]+ N0

, (B.6)

which is exactly (38).
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