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ABSTRACT Acoustic emission (AE) analysis is a powerful potential characterization method for fracture
mechanism analysis during metallic specimen testing. Nevertheless, identifying and extracting each event
when analyzing the raw signal remains a major challenge. Typically, the AE detection is carried out
using a thresholding approach. However, though extensively applied, this approach presents some critical
limitations due to overlapping transients, differences in strength and low signal-to-noise ratio. In this paper,
to address these limitations, advanced methodologies for detecting AE hits have been developed. The most
prominent methodologies used are instantaneous amplitude, the short-term average to long-term average
ratio, the Akaike information criterion, and wavelet analysis, each of which exhibits satisfactory performance
and ease of implementation for diverse applications. However, their proneness to errors in the presence
of non-cyclostationary AE wavefronts and the lack of thorough comparison for transient AE signals are
constraints to the wider application of these methods in non-destructive testing procedures. In this paper,
with the aim of making aware of the drawbacks of the traditional threshold approach, a comprehensive
analysis of its limiting factors when taking into regard the AE waveform behavior is presented. In addition,
in a second section, a performance analysis of the main advanced representative-methods in the field is
carried out through a common comparative framework, by analyzing first, AE waves generated from a
standardized Hsu-Nielsen test and second, a data frame of a highly active signal derived from a tensile
test. In this paper, with the aim to quantify the performance with which these AE detection methodologies
work, for the first time, time features as the endpoint and duration accuracies, as well as statistical metrics
as accuracy, precision, and false detection rates, are studied.

INDEX TERMS Acoustic emission, materials testing, AE thresholding method, short-term average to long-
term average ratio, instantaneous amplitude, Akaike information criterion, wavelet analysis, Otsu’s method.

I. INTRODUCTION
High demands are placed on safety and reliability specifica-
tions in the design and manufacturing of metallic materials,
particularly in the transportation sector, where the lifetime,
performance and cost of structural parts are critical aspects.
This has led to extensive scientific and technical study of the
mechanical properties of metallic components [1], [2].

Characterisation of the mechanical properties of metallic
components commonly requires estimations of the post-yield
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strength, the tensile strength and the elongation of metal-
lic specimens, which are evaluated through a standardized
tensile test [3], [4]. This takes the form of a relatively sim-
ple destructive assay, which typically consists in fastening
(either gripped or screwed) the specimen at the clamps of the
apparatus and pulling until it breaks. Outcomes for the assay
usually include records of the applied load force and the strain
experienced by the specimen.

Determination of the plastic strain evolution exhibited by
the specimen is critical to estimating the actual properties of
the metallic material. Video extensometer-based systems are
used to record the test, enabling visual forensic analysis to
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be conducted. However, this approach has two main draw-
backs: the frame digitization period, which is usually in the
order of milliseconds, and the restriction to surface moni-
toring, which implies a significant loss of information about
internal dislocations [5].

In recent years, the analysis of the acoustic emission (AE)
phenomenon has been included as an additional mechanical
descriptor to enhance the characterization capabilities of the
assay [6]. Acoustic emission methods detect, locate or assess
damage by means of the sudden materialization of elastic
waves on the inspected material. These waves are the final
effect of a previous process by which the mechanical capa-
bilities of the material are surpassed with the application of
a stress field. Therefore, the manifestation of each AE wave
reflects an irreversible change in the crystalline structure of
the material. This is an active field of research [7]; however,
in order to conduct such an analysis, proper detection and
capture of every AE event is highly desirable.

In order to automatically detect the AE events, also known
as hits the most frequently used technique is to compare
the obtained electrical signal against a predefined voltage
threshold level; whenever the signal rises above this thresh-
old, a hit has been detected. This technique was used in the
first applications of AE as an evaluation tool and emerged
due to the lack of digital hardware capable of handling the
payload from the large data stream required for proper digital
processing of the near-baseband signal [8].

With the advent of fully digital platforms, and given the
relative efficiency and ease of implementation, nearly all the
established standards for AE [9], [10], as well as commer-
cially available instrumentation (and, as a result, most field
work), use the threshold voltage technique as the default for
AE activity detection. However, although it has not been
exhaustively analyzed in the literature, the threshold method
has critical drawbacks and limitations that could impair per-
formance in the case of an irregular AE waveform.

Typically, once a set of AE hits has been detected, different
features of each hit are extracted in order to locate or assess
damage to the specimen. As might be expected, the more
accurate and precise the detection, the better the quality
of the subsequent evaluation [11]. Indeed, in recent years,
significant efforts have been made to develop advanced
signal processing approaches for better AE hit detection
outcomes [12], [13].

Due to similarities in the origination of AE emission and
earthquakes, some of the most widely used alternatives are
inspired by geophysics. Four main approaches are outlined
in the literature: the instantaneous amplitude (IA) threshold
method [14], the short-term average to long-term average
(STA/LTA) ratio [15], the Akaike information criterion (AIC)
[16] and time-frequency distributions based on the continu-
ous wavelet transform (CWT) [17].

Nevertheless, although these methods perform well for
determining the onset time of transient AE signals, their
performance for determining the signal endpoint and their
efficiency in the case of a burst of AE events, remain

unconcerned. Due to the lack of a common frame bench-
marking, there are significant constraints on the widespread
application of the four methods in non-destructive testing
procedures, particularly fracture mechanism tests that could
potentially be used to improve the methods.

Consequently, the contribution of this study is twofold:
first, it identifies and analyses the main drawbacks and lim-
itations of the classic threshold approach for AE detection;
second, it offers a quantitative performance analysis of the
main alternative methods currently available against a com-
mon benchmark of comparison.

Novelty of this work includes a comprehensive perfor-
mance comparison of current AE hit detection methods,
based on the scrutiny not only on their onset accuracies, but
also in the endpoint and duration determinations, as well as
in their statistical metrics. It should be noted that the perfor-
mance of each method is verified against two test benches:
first, a set of AE signals generated through a standardized
Hsu-Nielsen test, and second, an AE signal obtained from a
standardized tensile strength test. This is the first time that
the IA, STA/LTA, AIC and time-frequency methods have
been compared in the context of metallic material testing
procedures for AE hit detection.

This paper is organized as follows: Section II presents a
comprehensive analysis of the limitations of the classical AE
threshold approach; Section III introduces the IA, STA/LTA,
AIC and time-frequency methods; Section IV discusses the
performance of the methods and experimental results, and
Section V presents the conclusions.

II. ACOUSTIC EMISSION THRESHOLDING METHOD:
LIMITATIONS AND DRAWBACKS
Although widely applied in many industrial applications,
the thresholding approach used to detect and extract hits
from an AE waveform presents some important shortcom-
ings that must be identified in order to assess its suitabil-
ity for high-performance applications. The main weaknesses
of this method when dealing with AE signals, and their
impact on the resulting AE hit detection, are presented and
discussed below. The signals presented in this section were
captured during unidirectional tensile tests (with a load rate
of 1 mm/min). Each image corresponds to a different metallic
component specimen, all of which have the same dimensions;
height (h) = 240 mm, width (w) = 55 mm, and thickness (t)
of 2 mm.

A. INABILITY TO DETECT BIPOLAR ONSET ACTIVITY
Only the positive part of the resulting electrical signal
(or negative, according to the configuration) is considered
for onset detection, as shown in Figure 1. The first motion
direction (i.e., up or down) of an AEwave cannot be predicted
deterministically, so depending on the chosen configuration
for the threshold detector (i.e., rising or falling edge trigger-
ing), the onset times of a significant number of hits will be
inaccurate. This is particularly relevant in damage location
techniques where an accurate time of arrival or time of flight
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FIGURE 1. Actual onset (vertical dotted green line), and automatic onset
determination (vertical dash-dot orange line) for two different AE events
(solid blue lines) showing opposite p-wave arrival directions, using a
positive threshold level (horizontal dashed yellow line) of 50mV. Signal
obtained from a complex phase steel specimen.

(i.e., relative measurement time between elements of a sensor
array) is crucial [18]. Alternatively, in the case of damage
assessment methods (like those based on moment tensor
inversion), information about the direction of the primary
wave (i.e., p-wave) is essential [19], [20].

This problem can be lessened with the use of: a) secondary
thresholds (i.e., positive and negative thresholds detecting in
parallel); b) pre-trigger buffering, which considers a certain
number of data samples before a detection at the cost of an
inaccurate measure of the actual onset time, as well as adding
the risk that the detection will overlap with a previous hit,
and c) signal transformation towards a characteristic function
(CF), where it is common to use hardware to work with a
rectified voltage or by means of software to work with a
simple absolute value function.

B. VARYING BACKGROUND NOISE INACCURACIES
Varying background noise may cause: (i) false detection,
due to increasing noise, (ii) incomplete detection, due to
increasing noise, and (iii) insufficient sensitivity to trigger a
detection, due to decreasing noise. Acoustic emission waves
are highly susceptible to noise and are therefore likely to
exhibit dynamic behaviour during surveys, reducing detec-
tion quality due to the fixed threshold level.

Despite extensive research into noise treatment strategies
for AE signals [21], [22], which can be applied before or after
hit detection, the problem of varying noise during discrimi-
nation of AE activity remains inherent to the method when
a fixed threshold value is used. Traditionally [23], and in
recent studies [24], [25], this issue has been addressed by
using a floating threshold (also known as an automatic, adap-
tive or smart threshold) whose value is continuously adapted
to noise. To obtain a floating threshold, a simple moving-
average filtered version of the raw signal acquired from the
AE-sensor is typically used, and as in the case of the fixed
threshold approach, a hit is detected when the raw signal rises
above the new floating threshold level.

Ultimately, however, this technique does not solve the
problem, since there is a trade-off between detection sensi-
tivity and the capacity to avoid noise, according to the time
segment value of the moving-average function. In the case of
the use of extreme values, for a very short time frame, the new

FIGURE 2. Five different floating threshold configurations on a highly
noise-tainted data frame. Signal obtained from a TRIP bainitic ferrite and
quenching-and-partitioning steel specimen.

threshold will behave as an envelope of the raw signal,
avoiding all transient noises however inhibiting detection; if,
however, it is too long, the floating threshold behaves as a
fixed threshold. Consequently, this approach is best suited
to applications in which background noise varies gradually;
nevertheless, in applications prone to sudden mechanical
noises (e.g., friction or slip) or with high AE activity it is
difficult to find an optimum time response value [26], [27].

This, is depicted in Figure 2, for a 140 ms data frame
containing four AE events, located at 18.8, 46.5, 55.2 and
90.0 ms, respectively (shaded green areas). First, it can be
seen that a fixed threshold (horizontal red line), which is
calibrated at 3.5 mV (just above the background noise level
at the beginning of the signal frame) is not suitable in this
instance, since after 8 ms a highly variable noise floor affects
the signal, leading to a saturation detection error (except at
around 80 and 110 ms, where the background noise returns
to similar levels to the beginning of the data frame).

Additionally, five floating thresholds are implemented
using a simple boxcar filter (zero-lag correction) for frame
time configurations of 1 ms (orange curve), 5 ms (yellow
curve), 10ms (magenta curve), 15ms (green curve) and 20ms
(cyan-blue curve) respectively. In this instance, although
the floating thresholds clearly perform better than the fixed
threshold, none of them completely solves the problem, since
each one leads to its own detection errors.

This trade-off is evident in the case of the 1 and 5 ms
configurations, where there is a choice between respond-
ing rapidly to non-transient background noise (achieved at
8.5 and 112 ms, respectively) and detecting more AE events
than the slower configurations (third AE event located
at 55 ms), but losing accuracy for determining the durations
of all hits. By contrast, for longer time values, as in the
case of the 10, 15 and 20 ms configurations, the determined
durations are closer to the actual values (hits 1, 2 and 4). These
configurations can also avoid some highly energetic transient
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noises by being far from the noise floor (as at 30 and 75 ms),
but at the cost of requiring too much time to respond to the
variation in background noise (as can be observed for the time
ranges 8.5–10 ms and 112–130 ms).

Finally, none of the configurations is capable of avoiding
transient mechanical noises when the floating threshold value
is close to the noise floor (as at 8.2, 76 and 111 ms).

C. RANDOMNESS OF EVENT INCIDENCE AND DURATION
The appearance and duration of AE events seem to behave
stochastically during surveys. To address this, the fixed
threshold technique is extended to include two time-driven
parameters, hit definition time (HDT) and hit lockout time
(HLT), which aim to prevent error detection, establishing a
mechanism that determines the end of the event. However,
and as in the above case of the floating threshold technique,
these additional parameters imply a trade-off between detec-
tion sensitivity and robustness against errors.

Hit definition time, also known as duration discrimination
time (DDT), uses a fixed timer to establish the end of a
hit. Once a hit is detected, the system that implements the
threshold technique will trigger the HDT timer with the con-
dition that it restarts whenever the raw AE signal crosses the
threshold level again before the time is complete.

However, the use of this timer also entails a latent risk in
the quality of detection of AE activity, since it is impossible
for a pre-set value to take into account the variety of durations
(i.e., lifetime or lifespan of an AEwave) that the different hits
will exhibit during a survey. In other words, a short pre-set
duration will cause most of the identified hits to be truncated
after detection and possibly split into two (or more) different
events, whereas a long pre-set duration risks poses the risk
of splicing the identification of two or more hits into a single
event (sometimes misinterpreted as a cascaded hit).

Hit lockout time, also known as rearm time (RAT), aims to
avoid the splicing of a detected hit with its own reflection,
which is achieved by triggering the timer once the HDT
reaches the end of its count. While HLT is active, the detector
will not accept any further activity on the raw AE signal
(whatever the nature is) until the HLT timer reaches the end of
its count. The drawback of its implementation is that a short
pre-set time will result in false-positive hit detection due to
reflections or a split hit, while a long pre-set time will lead to
the truncation or, in the worst case, the misdetection of a hit
due to the risk that a hit will emerge during the HLT timing
process [28].

Precise selection of the DHT and HLT timer values will
obviously increase the detection accuracy of the threshold
technique during a survey. However, even if instrumentation
is carefully calibrated according to the characterization of
the material under inspection (e.g., attenuation, speed of
sound, etc.), the implementation of pre-set times will eventu-
ally induce errors as consequence of applying a fixed param-
eter to a stochastic phenomenon.

This trade-off is depicted in Figure 3, where two different
AE event detection outputs are compared by slightly varying

FIGURE 3. Two different outputs for the same AE frame signal, using two
slightly different calibrations for the HDT and HLT parameters, and
maintaining the same threshold level value (horizontal dashed yellow
line) of 3.25mV. Automatic durations are indicated by the upper
horizontal solid black guidelines. (a) Larger time values. (b) Smaller time
values. Signal obtained from a ferrite-pearlite annealing steel specimen.

theHDT andHLT parameters for a 920µs data frame. Shaded
green areas indicate the actual durations of each of the hits
found at 43.4, 471.5 and 527.3 µs, respectively. Vertical
dotted lilac lines and vertical dash-dot pink lines, respectively,
indicate the automatic onset and endpoint detections made by
the conventional threshold technique.

The calibration shown in Fig. 3 (a) (HDT = 40 µs,
HLT = 100µs) is intended to achieve the best approximation
for the durations of each hit, using higher timer values in
order to reject detection errors caused by reflections of the hit.
As can be observed, the selected values meet the objective,
but at the cost of truncating the first hit (located at 43.4 µs
and automatically detected after 1.2 µs), as well as splicing
the second and third hits (471.5 and 527.3 µs, respectively)
into a single event.

By contrast, the aim of the calibration shown in Fig. 3 (b)
(HDT = 15 µs, HLT = 5 µs) is the timely detection of
each hit. Thus, the highest timer values are used in order to
identify the minimum required time difference in the values
of the HDT and HLT parameters between calibrations. As can
be observed, the onset of every hit is properly detected, but
reflections of the hits are mistakenly detected as independent
AE events. Moreover, the reflections of hits one and three are
miss-detected as AE events.

D. HIGH DYNAMIC SIGNAL RANGE
The amplitudes of the AE waves will exhibit highly diverse
scales, ranging from the order of picometres, giving rise to a
transduced electrical signal that covers a range frommillivolts
to volts.

To address this issue it is a common practice to use a
CF based on the logarithmic absolute value of the rawAE sig-
nal. This approach seeks to improve the calibration of the
instrumentation by enhancing the visual deployment of the

71122 VOLUME 7, 2019



F. Piñal Moctezuma et al.: Performance Analysis of AE Hit Detection Methods Using Time Features

FIGURE 4. Differences in amplitude ranges of AE waves, for sixty-six AE
events (durations indicated by shaded green areas). (a) Linear scale.
(b) Same frame presented in a logarithmic scale. Signal obtained
from a press hardening steel specimen.

signal to process, so that the level of the fixed threshold can
be adjusted. By using this approach, the threshold level is
typically given in decibels.

Figure 4 illustrates this approach, showing the same 200ms
data frame for a linear scale (a) and a logarithmic scale (b).

As can be observed, there is a significant difference
between peak amplitudes for the different AE events, ranging
from a minimum of 2.8 mV at 176.3 ms to a maximum
of 2.6V at 25.3 ms. Figure 4 (a) shows that in a linear repre-
sentation of the raw signal, only the most energetic events are
discernible. In Figure 4 (b), having depicted the data frame
on a logarithmic scale, it is less difficult to distinguish the
different AE events.

Nevertheless, the use of this alternative approach still poses
a risk to detection quality, as a fixed threshold is applied
despite the large variance in the amplitudes of the AE events.
This aspect leads to an additional trade-off when selecting the
threshold value, forcing a choice between detection sensitiv-
ity and robustness to detection errors.

While it is true that increasing the threshold value reduces
detection errors due to transient background noises, it also
reduces detection sensitivity due to the loss of detection of
the less energetic events and leads to inaccurate onset deter-
mination due to the misdetection of p-waves.
Conversely, reducing the threshold value increases detec-

tion sensitivity (since more AE events can be identified) as
well as improving the accuracy of onset detection. Never-
theless, these improvements also raise susceptibility to false-
positive detection errors (due to transient background noises,
particularly those of a mechanical nature), as well as increas-
ing the likelihood of splicing two or more hits into a single
event.

This trade-off is illustrated in Figure 5, which compares
two different output determinations of AE events by using
two different threshold levels for the same 33 ms data frame.

FIGURE 5. Output determinations of two slightly different calibrations for
the threshold level value over the same AE frame signal. (a) 4.2mV,
(b) 2.195mV. Voltage axis is zoomed in for a better depiction of the
trade-off between calibrations.

Shaded green areas indicate the actual durations for each
of the nine hits found at 0.38, 2.75, 3.66, 6.44, 7.68,
18.42, 20.82, 23.59 and 28.06 ms, respectively, ranging from
2.795 mV (at 2.75 ms) to 2.5 V (at 7.65 ms).

Vertical dotted lilac lines and vertical dash-dot pink lines,
respectively, represent automatic onset and endpoint detec-
tions. Both calibrations are set with the same HDT and HLT
values of 250 µs and 400 µs, respectively. Automatically
determined durations are also indicated by the upper horizon-
tal solid black guidelines.

In Fig. 5 (a), the threshold level value is set at 4.2 mV,
the aim of the calibration being to accurately determine the
duration of the AE events while avoiding any false-positive
detection. To achieve this, the threshold level is lowered
to its minimum value before any error detection is gener-
ated. Although the approach achieves duration determina-
tions close to the actual values, the number of AE events
effectively detected is reduced considerably, with only five
of the nine hits detected.

In Fig. 5 (b), this trade-off is highlighted by lowering
the threshold level to the largest value that is required for
detecting the nine existing AE events. As can be observed,
each hit is detected effectively, but several transient noise
events are mistakenly detected as hits, resulting in three false-
positive events at 16.91, 21.86 and 22.57 ms. Moreover,
events number eight and nine are spliced and detected as if
they were a single event.

III. ADVANCED ACOUSTIC EMISSION HIT DETECTION
METHODS
In order to overcome the limitations described above for AE
hit detection based on the classical thresholding approach,
some alternative CFs are implemented with the aim of avoid-
ing the application of the threshold level to the raw signal,
as is the case of the envelope of the signal by means of
the absolute value function, as well as by the instantaneous
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energy of the signal [15], [29]. Nevertheless, due to sim-
ilarities in the origination of AE and earthquake phenom-
ena, some of the most widely used methods are inspired by
geophysics discipline (where these tools are known as phase
pickers).

For this study, four advanced methodologies representative
of the current literature were considered: IA, STA/LTA, AIC
and time-frequency distribution methods.

One current trend is to build the CF bymeans of the Hilbert
transform [14], [15], [30]. The aim of this approach is to
obtain by means of the analytic signal of the captured data
(preserving only the positive side of its frequency spectrum)
a decomposition of the AE signal into two different time-
variant components: instantaneous amplitude (IA) and instan-
taneous phase (IP). Instantaneous amplitude is of particular
interest as it enables the construction of a CF that geomet-
rically depicts the envelope of the AE wave with greater
accuracy (in comparison to the conventional absolute value
function). Once the CF has been obtained, the classic thresh-
old scheme is applied. However, although under this scheme,
uncertainties associated with the inability to detect bipolar
onset activity are overcome; those related to background
noise, randomness of the phenomenon and high dynamic
range remain unaddressed.

The STA/LTA ratio picking method was proposed by
Allen [31] for determining the onset time of earthquake
events, with the aim of reducing false-positive alarms in
seismic monitoring. First, a CF is obtained from the raw
AE signal (typically an absolute value or its instantaneous
energy), then each of the STA and LTA contributions derived
from the CF is calculated bymeans of amoving average filter,
with two different response times for each one. The short-
term against long-term contributions of the CF are compared
through the STA/LTA ratio, and then a fixed threshold level
is applied directly to the ratio to detect AE hits. This reduces
the influence of rapid events such as mechanical background
noises, while maintaining a reasonably good response of
the ratio in relation to the original signal. The drawback of
this technique is the delay induced by the LTA contribution,
which affects the precision of onset detection measurement,
in particular losing detail for primary wave detection.

The AIC is a tool for statistically modeling time series,
developed for automatic control applications by Akaike [32],
first proposed by Maeda for seismic data [33], later imple-
mented byKurz [34] in the field ofAE, and broadly revised by
several authors of the AE discipline [18], [35]–[38]. It works
by modeling the time series data of the raw AE signal under
an autoregressive scheme (of low order). By estimating two
locally stationary parametric components of the framed orig-
inal signal (noise and AE activity); to later compare the
entropy of each point of the modeled data, with the aim to
find a critical point (the minimum). Thus, this critical point
will indicate the arrival time instant of the AE wave.

Based on non-parametric signal processing methods, the
time-frequency distribution analysis is a more accurate
tool for detecting the onset time of AE waves. Using the

short-time Fourier transform, Unnthorson proposed a fully
automatic hit detector method [26], [39]. However, most
current research focuses on the use of the wavelet transform
(WT) [17], [40]–[43], which improves the resolution of the
energy localization of the AE event in the time-frequency
plane, increasing the accuracy of onset determination.

The AIC and CWT techniques clearly provide a more
accurate onset determination of AE events than the classical
threshold method, however, in a fully automatic AE hit detec-
tor application, typically they only serve to refine a coarsely
detected hit (i.e., their use implies prior detection of the
AE wave of interest). Clearly, this adds a degree of uncer-
tainty to the outcome of these methods, since they will nec-
essarily require an early thresholding detection framework.

Finally, it should be considered that although these
advanced methods improve the detection accuracy for
AE waves, the high data rates required to process the phe-
nomenon make them computationally expensive, so they are
usually implemented in an offline framework (first capturing
the data of a survey, later extracting the AE events). Never-
theless, efforts have also been made to implement hardware
architectures that can work in an online approach [44]–[46].

IV. PERFORMANCE OF ADVANCED ACOUSTIC EMISSION
HIT DETECTION METHODS
As stated above, the most significant methods should be
compared within a common analytical framework in order to
establish a quantitative assessment of their performance. Con-
sequently, based on the current literature, this study considers
four AE detection methods: a) a classical threshold technique
enhanced by the instantaneous amplitude component [14];
b) a typical STA/LTA [47]; c) a two-step AIC picker [16],
and d) a CWT-Otsu detector over binary imagemapping [17],
which like c), uses the same function derived from Allen’s
formula as CF for the threshold-based preliminary detection.

Performance of methods is evaluated using two different
datasets. First, to measure the precision of onset and endpoint
detection, a collection of one-hundred different AE waves
derived from a standardized Hsu-Nielsen test are processed
by eachmethod; then for each resulting outcome, the absolute
detection errors are measured.

The second test bench measures the quality of event detec-
tion (i.e., accuracy, precision, false-positive rate, etc.) of each
method using a data frame derived from a tensile test of a
metallic component, which contains a wide variety (in terms
of duration, amplitude and incidence) of AE waves.

For both experimental test benches, one sensor (Physical
Acoustics WSα, 100-1000 kHz) was attached to the surface
of each metallic component (using a silicon-based couplant).
The resulting electrical signals were amplified (by a Mistras
preamplifier 2/4/6) with a gain of 20 dB (BW 10–2500 kHz).
The amplified electrical signals were recorded under a free-
running sampling scheme (using a CSE4444 digitizer from
GaGe), with a sampling frequency of 5 MHz for the Hsu-
Nielsen data and 10 MHz for the tensile test data (both
samplings with 16-bit depth resolution). Before processing
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FIGURE 6. Standardised Hsu-Nielsen setup over a 1500 press hardening
steel plate (guide-ring tube from Vallen Systeme).

FIGURE 7. (a) Typical AE waveform analyzed in the synthetic data test
bench. (b) Synchrosqueezed wavelet transform used to assist in the
manual determination of the onset and endpoint pick locations of
the AE wave (green and red vertical lines, respectively).

the test bench, raw signals are band-pass filtered by using a
FIR equiripple implementation (10–2200 kHz).

For each method, the most suitable calibration parameters
for the test bench are set following the recommendations in
the literature [16], [48]–[52] and in line with current stan-
dards [9], [10], [53]–[57]. Prior to performing the correspond-
ing test benches, the onset and endpoint times of each of the
AE waves were manually picked supported by time-voltage
plots and a high-resolution time-frequency distribution [58].

A. HSU-NIELSEN DATA TEST BENCH
For the pencil-lead break test bench, for each of the one-
hundred iterations, a graphite lead of ø 0.5 mm and 2.5 mm
tip-length with a contact angle to the surface of 30◦ is used.
A distance of 12 cm between source and sensor is maintained
(see Figure 6).

For repeatability purposes, each synthetic AE wave is
edited so that its peak value is centered on 5 ms and its length
extends an additional 40 ms; a typical waveform obtained
from this procedure is shown in Figure 7.

The objective of this test bench is to quantify the accu-
racy of each method in the measurement of onset, endpoint

TABLE 1. Calibration parameter values for the Hsu-Nielsen test bench.

TABLE 2. Absolute error and standard deviation for onset, endpoint and
duration detections in the Hsu-Nielsen test bench.

and duration times, by means of the absolute error of each
measure. To assure accuracy, a strategy is used to calibrate
the parameter values for each method, lowering the fixed
threshold value to just above the background noise level for
each characteristic function (see Table 1).

Since each method involves different signal-processing
strategies, different CFs are obtained (except in the case of
AIC and CWT-Otsu, and only for early detection). Thus, spe-
cific calibrations (i.e., threshold levels and timing values) are
required for the selected technique (as reflected in Table 1).
Once each of the methods has been applied to each synthetic
AE wave, the accuracy of the onset, endpoint and duration
times are quantified using the absolute error from the out-
comes of the methods with respect to the manually selected
time locations (see Table 2).

Table 2 shows that despite dealing with a challenging
signal, by having to detect the AE onset when the p-wave
arrives (which clearly has less amplitude than secondary
waves), all methods perform relatively well for this detection
stage, where in general terms the error is less than 20 µs for
all cases. However, by executing a refinement of this onset
examination, the AIC and CWT-Otsu methods present the
lowest errors and can be considered to perform better.
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Nevertheless, while the CWT-Otsu technique gives the
lowest absolute error, it also shows the greatest dispersion
values. The high accuracy and low precision can be attributed
to the fact that the grayscale image derived from the CWT
analysis of the signal (with which Otsu’s method operates),
when it contains a strong presence of either s-waves or noise
regarding p-waves, tends to reduce the quality of the bimodal
distribution of the image histogram, leading to segmentation
errors. In the case of AIC, the inherent separation between
noise and signal components, by means of finding the mini-
mum in the calculated entropy of the raw signal, gives greater
precision for the onset detection but at the cost of less accurate
detections (i.e., lower dispersion error values but higher error
detection values).

For the endpoint detection stage, all methods show poorer
performance than for onset determination, which also has a
direct effect on the estimation of the duration time. AIC and
CWT-Otsu give nearly the same error values because they
use the Allen’s formula derivative as CF. However, IA and
STA/LTA are the best options, reducing the average error of
the AIC and CWT-Otsu methods by 80%.

As can be observed, the endpoint determination has not
yet been satisfactorily resolved, since the absolute error is
approximately 2–18 ms. This problem derives from the fact
that instead of using a measure based on a tangible indicator
extracted from the signal, in all of themethods endpoint deter-
mination is based on the combination of a fixed threshold and
a fixed timer. Despite this drawback, the results also illustrate
the advantage of obtaining a better representation of the signal
through a more accurate CF, since although IA and STA/LTA
also give significant endpoint determination errors, they can
be considered to perform better thanks to lower absolute error
values. In the case of IA this is achieved by a more responsive
waveform, while in the case of STA/LTA, it is due to the
consideration of future values of the signal with respect to
current values.

B. FIELD DATA TEST BENCH
The objective of the second test bench is to quantify the
quality of event detection for each method using field data.

This is carried out by means of a tensile test of a metallic
component (see Fig. 8). The AE signal produced by the
tensile test is recorded. For the field data test bench derived
from this assay, a frame of 500 ms in length, containing
380 AE events (corresponding to an early damage stage of
the specimen), is used as the input for each detection method
(see Figure 9).

For this test bench, each of the AE events (as well as their
onset and endpoint locations) is picked using the waveform
of the frame and supported by its time-frequency distribution.

In comparisonwith the artificial AE events produced by the
standardized Hsu-Nielsen procedure, real AEwaves typically
exhibit smaller amplitudes and shorter durations (depending,
of course, on the damage stage of the specimen). Therefore,
for the calibration used for this test bench (see Table 3),
the time-driven parameters and the threshold level have been

FIGURE 8. Standardised tensile test setup for a ferrite-pearlite annealing
steel specimen (load rate of test 1mm/min).

FIGURE 9. (a) Signal used for the field data test bench. (b) Zoom of 40ms,
showing the variety in the incidence, duration and amplitudes of the
AE waves present in the test bench (manual onsets indicated by
vertical lines).

shortened to increase the sensitivity of the methods (with
regard to temporal and amplitude detection capabilities).

Once all of the methods have processed the field data
frame, the quality of event detection is quantified in two steps.
The first consists in quantifying the total number of detected
events that each method concludes against the true locations
of the 380 AE events. This step also inspects the sum of cor-
rectly detected events (true positive), the sum of undetected
events (false negative) and the sum of the incorrectly detected
events (false positive); see Table 4.

For this field data test bench, and only considering the total
number of true positive events, the absolute errors for the
onset, endpoint and duration are calculated (see Table 5).

Similar results are observed in the experimental scenario
to those exhibited in the Hsu-Nielsen test bench. For the
onset detection measure, all methods perform relatively well,
showing in all cases error values of less than 10 µs, and with
a difference among them of less than 7 µs.
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TABLE 3. Calibration parameter values for the field data test bench.

TABLE 4. Detected events with respect to 380 AE waves.

TABLE 5. Absolute error and standard deviation for the onset, endpoint
and duration detections with the field data test bench.

For the endpoint detection measure, the results are also
consistent with the Hsu-Nielsen test bench, with all meth-
ods showing poorer performance than for onset detection.
Nevertheless, STA/LTA seems to be the most balanced tech-
nique, particularly when dispersion error values are also taken
into account, yielding values that are approximately 25–85%
lower than the dispersion generated by IA and AIC, respec-
tively. As can be seen, this endpoint error value also directly
affects the absolute duration time error.

The second step in this field data test bench consists
in quantifying the quality of event detection achieved by
each method. Using the number of detected events shown
in Table 4, the following statistical metrics are calculated:

FIGURE 10. Statistical metrics corresponding to the quality of event
detection in the data field test-bench.

(a) accuracy (the ratio of true positive events to all detected
and undetected events), (b) precision (the ratio of true posi-
tive events to the number of true and false positive events),
(c) sensitivity (the ratio of true positive events to the sum
of true positive and false negative detections, (d) f1-score
(the harmonic average of precision and sensitivity), (e) false
discovery rate (the ratio of false positive detections to all
detected events), (f ) false negative rate (the ratio of false
negative detections to the sum of false negative and true
positive events).

With regard to the statistical metrics, Table 4 and
Figure 10 show that although, on average, all of the methods
quantitatively detect nearly 99% of the total detection target
(i.e., 380 AE events), the quality with which these detections
are performed still differs from the target.

Looking at the accuracy of the methods (i.e., the ratio
of correctly detected events), although all of them perform
reasonably well, with a lowest value of 66%, none achieves a
value greater than 75%. STA/LTA and IA achieve accuracies
nearly 10% greater than those of AIC and CWT-Otsu. This
superior performance is consistent with the results obtained
for the absolute endpoint error, since better determination of
the event conclusion eventually raises the overall detection
accuracy.

For the precision indicator (i.e., the ratio of correct positive
detections) all methods perform better than for accuracy,
achieving an average value of 83%. This improvement per-
formance is due to the nature of the assay, in which there is
a low proportion of false AE events (most of them derived
from high-energy reflections and mechanical noises) relative
to the number of true AE events in the analyzed data frame.
Again, STA/STL and IA perform approximately 5% better
than theAIC andCWT-Otsumethods, since they do not detect
the false positive events for more cases in the test bench.

With regard to the sensitivity metric (i.e., the ratio of
correctly detected positive events), all methods show similar
behaviour to that observed for the precision metric, achiev-
ing nearly the same values. However, with the exception
of STA/STL, performance decreases by about 2%, with a
propensity for false negative detections, caused by low energy
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AE events and, predominantly, by misdetection of spliced
AE waves.

For the F1 score, all methods achieved satisfactory results,
due to the fact that only minor deviations were obtained
between the sensitivity and precision metrics.

For the false discovery rate metric (i.e., the ratio of false
alarm detections), all methods show reasonably low values,
completing the ratios observed for the precision metric, with
the lowest value of 20% obtained by the AIC and CWT-Otsu
techniques.

For the false negative rate (i.e., the proportion of actual
events which do not produce detections), all methods show
tolerable values consistent with the results for the sensitivity
metrics, with the lowest value of 22% scored by the AIC and
CWT-Otsu techniques.

V. CONCLUSIONS
Four critical characteristics influence the detection of
AE events under the classical thresholding approach: bipolar
onset activity, varying background noise, high dynamic signal
range, and randomness in the incidence and duration of the
events. The drawbacks and impacts of these characteristics
have been discussed and analyzed.

Four advanced AE detection methods representing the cur-
rent state of the art have been presented, and their perfor-
mance quantified with AE data generated from standardized
Hsu-Nielsen tests and for a standardized tensile test.

In general, all methods showed suitable capabilities for
accurate onset detection, achieving absolute errors of less
than 20 µs for the Hsu-Nielsen test and less than 10 µs for
the tensile test.

By contrast, all methods exhibited low and nondeterminis-
tic performance for endpoint determination, yielding absolute
errors of 2–18 ms for the Hsu-Nielsen test and 10–100 µs for
the field data test bench. This lack of accuracy is due to the
fact that all methods define the end of an event by means of
the combination of a fixed threshold and a fixed timer instead
of using an indicator extracted from the signal, which also
critically increases the event duration error.

With regard to detection quality, none of the methods
achieved an accuracy of more than 75%, with IA and
STA/STL achieving scores approximately 10% higher than
obtained with AIC and CWT-Otsu. For the precision and
sensitivity metrics, due to the low proportion of false events
in the test bench, all methods scored higher than for accuracy,
achieving average scores of 83%. All methods were also
found to be slightly more susceptible to false negative detec-
tion errors, most of them derived from spliced detections.

In general, statistical metrics are directly affected by the
lack of accuracy of endpoint determination, and by four par-
ticular characteristics of the AE signal (i.e., duration, ampli-
tude, appearance and floor noise).

In this study, AIC and CWT-Otsu are the best methods for
accurate onset measurement. In particular, despite exhibit-
ing significant error dispersions, CWT-Otsu improves onset
measurement by approximately 90–95% with respect to all

methods for the Hsu-Nielsen test and by 60 and 73% relative
to AIC and IA, respectively, for the tensile test. Nevertheless,
since these methods were conceived for AE event location
applications, in which highly accurate event arrival times are
critical, their scopes must be carefully considered to only
refine this onset detection.

For this study, IA and STA/LTA can be considered the most
suitable techniques for fully automatic AE event detection
application, having achieved the highest scores for quality of
detection analysis. This high performance is strongly related
to the use of characteristic functions that are more suitable
for detection purposes, which are more responsive in the case
of IA and more accurate in the case of STA/LTA.

STA/LTA stands out in this study as the most balanced
option between low-error accuracy for onset and endpoint
determinations and the quality of detection metrics.

Finally, it should be noted that, due to the stochastic nature
of the AE phenomenon, there is no overall method capable
of guaranteeing reliable detection across all different appli-
cations, materials and instrumentation. Thus, careful consid-
eration must be given to selecting the most suitable detection
method for the performing environment in question.

For the further development of this topic, two branches
can be defined. First, additional analysis of the performance
of existing methods (such as the specificity of the threshold
levels) and further experimental scenarios (such as in-service
applications). Second, toward achieving meaningful and reli-
able AE assessing applications through the proper separation
of eachwave, the necessity of development of novel strategies
that can determine more accurately not only the onset of an
AE event but the conclusion as well.
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