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ABSTRACT Artificial neural networks (ANNs) can be used to replace the traditional methods in various
fields, making signal processing more efficient and meeting the real-time processing requirements of the
Internet of Things (IoT). Recently, as a special type of ANN, the feedforward neural network (FNN) has
been used to replace the time-consuming Lorentzian curve fitting (LCF) method in Brillouin optical time-
domain analysis (BOTDA) system to retrieve the Brillouin frequency shift (BFS), which could be used
as the indicator in temperature/strain sensing and so on. However, the FNN needs to be re-trained if the
generalization ability is not satisfactory, or the frequency scanning step is changing in the experiment.
This is a cumbersome and inefficient process. In this paper, the FNN only needs to be trained once with
the proposed method, and 150.62 km BOTDA is built to verify the performance of the trained FNN. The
simulation and experimental results show that the proposed method is promising in BOTDA because of its
high computational efficiency and wide adaptability.

INDEX TERMS Feedforward neural networks, Brillouin optical time-domain analysis, Lorentzian curve
fitting, sensor fusion, optical fiber sensors.

I. INTRODUCTION
The Internet of Things (IoT) is constantly progressing as
multiple technologies are evolving, especially the sens-
ing technologies [1]. As an important branch of sen-
sors, optical fiber sensors, have been studied by many
researchers due to their unique advantages [2]. Particularly,
distributed optical fiber sensing (DOFS) systems are of
great interests since they can turn fiber cables into mas-
sive sensor arrays [3]–[6]. Brillouin optical time-domain
analysis (BOTDA) system is an important type of DOFS,
which could achieve high precision, long distance, and fast
scan-rate sensing [7]–[9].

The stimulated Brillouin scattering (SBS) effect is the basis
of BOTDA [10], [11]. In BOTDA, usually pump pulse and
continuous-wave (CW) probe light are counter-propagating
inside the fiber to sample the Brillouin gain spectrum (BGS),
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then the Brillouin frequency shift (BFS) is retrieved for the
purpose of temperature/strain sensing [12], [13]. Before the
traditional Lorentzian curve fitting (LCF) method is used
to find the BFS [14], the non-local means (NLM), wavelet
denoising (WD) or block-matching and 3D filtering (BM3D)
can be used to reduce the noise of the BGS in general [15].
All of those processes are time-consuming operations, espe-
cially for longer sensing distance and finer spatial resolution.
Recently, denoising convolutional neural network (DnCNN)
is used for BOTDAfiltering [16], which can achieve real-time
filtering as long as the DnCNN is trained properly. However,
the training process of DnCNN is complicated.

On the other hand, artificial neural networks (ANNs) have
been applied in BOTDA [17]–[19]. As an important type
of ANN, the feedforward neural network (FNN) can be
used to replace the traditional LCF method and improve
the processing speed. Ideal BGSs are used for FNN train-
ing [17]. During the FNN testing phase, the noise in the
measured BGS needs to be reduced as much as possible,
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which means that the filtering operation cannot be omitted.
However, using traditional filtering methods will not meet the
requirements of real-time analysis. Although using DnCNN
can achieve fast filtering, the training process is complicated.
Without filtering, it means that FNN trained by ideal BGSs
may not has generalization ability for the noisy BGSs in
the experiment. Regularization method is needed in order to
enhance the generalization ability of FNN [20]–[22]. This is a
time-consuming task.

Also, the frequency scanning step is one of the key param-
eters in BOTDA operation. It usually varies between 1 MHz
and 10MHz depending on the required accuracy and speed of
the measurement. Previous work required training different
FNNs to meet the needs of different frequency scanning
steps [17], which is a tedious task.

In this paper, an optimized FNN training method is pro-
posed for BOTDA. As a result, BFS retrieval from the BGS
can be efficiently carried out with a wide range of BGS
linewidths, signal-to-noise ratios (SNRs) and frequency scan-
ning steps. The results show that the accuracy of FNN is
similar to LCF, while FNN is much faster than LCF. The
23.95 km and 150.62 km BOTDA at the frequency scanning
step of 1 MHz and 4 MHz are established respectively to
experimentally verify the performance of FNN.

This paper is organized as follows. Section II describes the
principles of LCF and FNN to get BFS from BGS. Section III
describes the FNN training and test phase. Section IV
explains how to enhance the adaptability of the trained FNN.
Section V presents the experiments and analyses the results.
Section VI gives the conclusion.

II. THE PRINCIPLES OF LCF AND FNN
The principles for BFS retrieval from the BGS using LCF and
FNN are explained respectively in this section.

A. THE PRINCIPLE OF LCF
In BOTDA, the obtained BGSs conform to the shape of
the Lorentzian curve. Equation (1) is the core of BGSs
simulation [10].

g(v, z) =
gB(z)

1+ [2(v− vB)/1vB]2
. (1)

where1vB is the BGS linewidth. z is the position of the fiber.
gB(z) is the gain coefficient. v is the scanning frequency. In the
experiments, the scanning frequencies v are discrete values,
and the frequency scanning step varies between 1 MHz to
10 MHz usually. g(v, z) is the measured BGS. vB is BFS
which reflects information about temperature or strain. If the
fiber is placed in a stable environment, the change of BFS is
only caused by temperature theoretically [23]:

vB2 − vB1 = CT (T2 − T1). (2)

where CT is the temperature coefficient. Fig. 1 shows the
relationship between temperature and BFS. In order to
obtain BFS, the least squares estimation (LSE) method is

FIGURE 1. BFS changes with temperature.

FIGURE 2. Typical FNN with three layers.

used in LCF.

R2=
∑N

i=1
[g(vi, z)− yi]

2
. (3)

The purpose of (3) is to minimize the R2 by modifying
parameters during iterations. At the end of the iteration, y is
the result of LCF.

B. THE PRINCIPLE OF FNN
A typical FNN is shown in Fig. 2. The number of the input
layer, hidden layer, and output layer are N , I and J , respec-
tively. The input and output of the hidden layer ki are ui and
vi, respectively. The weights from xm to ki and from ki to yj
are ωmi and ωij, respectively. The FNN accepts a vector of
length N as the input data, and finally generates a vector of
length J as the output data.

The input of the hidden layer ki in the nth iteration is:

ui(n) =
∑N

m=1
ωmi(n)xm(n). (4)

The output of the hidden layer ki is:

vi(n) = f (ui(n)). (5)

where f (·) is the sigmoid function. The output of the network
is:

yj(n) =
∑I

i=1
ωij(n)vi(n). (6)

Y (n) = [y1(n), y2(n), ..., yJ (n)]. (7)

The expected output of the network is:

H (n) = [h1(n), h2(n), ..., hJ (n)]. (8)
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FIGURE 3. FNN training process.

The error signal in the nth iteration is defined as:

ej(n) = hj(n)− yj(n). (9)

In order to minimize the errors, the basic method is to
use the gradient descent algorithm for backpropagation (BP)
calculations, which modifies the weights according to (10)
and (11).

1ωij(n) = −η
∂e(n)
∂ωij

. (10)

ωij(n+ 1) = 1ωij(n)+ ωij(n). (11)

where e(n) is the cost function.
The input vector is the BGS, and the output vector is BFS

of the BGS. It should be noted that both the input BGS
and the output BFS need to be normalized. As the sensing
distance increases, the gain of the BGS decreases, and the
normalization eliminates the effects of different gains. At the
same time, when the output BFS is normalized, the actual
BFS of different parameters in the experiment can be con-
veniently calculated. The training process of FNN is shown
in Fig. 3. In the sample space, the features of the BGS include
BFS, BGS linewidth and SNR. It should be noted that the
BFS changes with the temperature. The BGS linewidth will
be broadened due to the shorter pulse width or the other
nonlinear effects, and it can be narrowed by proper synthesis
of loss/gain spectrum. The SNR of BGS is mainly determined
by the average times in the experiments.

The SNR of the simulated BGS [24] is calculated
according to (12). Due to the normalization, gB is equal to 1.

SNR = gB2/σn2 = 1/σn2. (12)

where σn2 is the noise variance. The SNR of the measured
BGS [24] is calculated by the (13) and (14).

SNR = gB2/E(Nr 2). (13)

Nr = yF − yM . (14)

where yM is the measured BGS, and yF is the fitted curve. Nr
is a vector of residual which can be calculated by subtracting
the measured BGS from the fitted curve. E(Âů) is the arith-
metic mean. gB is the gain factor of the fitted curve.

This section provides the principles for BFS retrieval by
these two methods. As a traditional method, LCF has a guar-
anteed accuracy but a time-consuming process, while FNN
has the ability to calculate quickly but it requires verification
of accuracy.

FIGURE 4. A Simulated BGS with the frequency scanning range
of 150 MHz at a frequency scanning step of 1 MHz.

III. OPTIMIZED FNN TRAINING: SIMULATION RESULTS
Training an FNN with good generalization ability is not
an easy task. The optimized training process includes two
aspects. One is adding noise to ideal BGS in order to improve
the generalization ability of FNN [25]. The other is using the
symmetry of BGS in order to reduce the amount of training
data to improve training efficiency. It will be described in this
section.

In BOTDA, the measured BGS needs to be scanned over
a wide frequency range, which is typically greater than
150 MHz, in order to correctly locate the BFS and achieve
wide temperature monitoring range. As for the frequency
scanning step, generally 1 MHz is chosen, which will change
according to the actual needs in the experiment. Here, the fre-
quency scanning range and frequency scanning step of the
simulated BGSs are set to 150 MHz and 1 MHz, respec-
tively. Therefore, each simulated BGS forms a vector of
length 151 as a sample, and the label of each sample is
its BFS, as shown in Fig. 4. In the simulation, the starting
frequency is V1 =10.7 GHz, and the ending frequency is
V151 =10.85 GHz. If the BFSs of two Lorentzian curves
satisfies the following symmetry condition:

vB2 + vB1 = (V151 + V1) ≡ 2× V76. (15)

Bring (15) to (1), we can get the relationship between two
Lorentzian curves that are symmetric with respect to the line
where V76 is:

g2(v, z) = g1(−v+ 2V76, z). (16)

It means that only half of the data is needed to represent
the entire sample space.

A. FNN TRAINING PHASE
In [17], the features of the simulated BGSs only contain
BFS and linewidth. However, the addition of random noise to
training data can enhance the generalization ability of FNN.
Therefore, in this work, the features of BGSs include BFS,
linewidth, and SNR. As shown in Table 1, Datasets 1 and
2 are created for FNN training, and Dataset 3 is used as
the validation-dataset in training phase. Dataset 4 is used as
test-dataset after FNN training. For the samples in Dataset
1, the BFSs range from 10.7075 GHz to 10.7825 GHz at
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TABLE 1. The simulated four datasets.

a step of 1 MHz. The linewidths range from 10 MHz to
60 MHz at a step of 1 MHz, and the SNRs range from
15 dB to 35 dB at a step of 10 dB. Meanwhile, since
the added noise is random, 20 noisy copies of each sample
are created based on their SNR. The number of samples in
Dataset 1 is 76×51×3×20=232,560. As for the labels in
Dataset 1, the BFSs can be normalized according to (17):

vB,Norm = (vB − V1)/(V151 − V1). (17)

where V1 and V151 are the starting frequency and the ending
frequency of the BGS, respectively. vBB,Norm is the normalized
BFS, which is the label of each sample. After normalization,
normalized BFSs range becomes 5% to 55%. There is no
need to set the normalized BFSs range to 5% - 95%, because
according to (15) and (16), the sample space can be fully
expressed in half range of the data. Three samples and its
labels are selected for observation from Dataset 1 and shown
in Fig. 5.

FIGURE 5. The simulated BGSs with different BFSs, linewidths and
SNRs. (Sample 1: vB = 10.7075 GHz 1vB = 10 MHz, SNR=15 dB, Label 1:
vB,Norm = 5%. Sample 2: vB = 10.7450 GHz, 1vB = 60 MHz, SNR=25 dB,
Label 2: vB,Norm = 30%. Sample 3: vB = 10.7825 GHz, 1vB = 35 MHz,
SNR=35 dB), Label 3: vB,Norm = 55%.

FIGURE 6. The mean squared error (MSE) of each iteration of the FNN
trained by the noisy BGSs.

The dimensions of each sample and label are 151 and
1, respectively. According to the number of training data,
and the number of input and output nodes, the layout of the
hidden layers is set to 40-15 after several attempts. Therefore,
the layout of FNNs is set to 151-40-15-1. Early stopping
happens when validation performance has increased more
than 3 times since the last time it decreased. Weights and
biases are initialed by the Nguyen-Widrow algorithm. Using
the Levenberg-Marquardt (LM) training algorithm to solve
the problem of slow convergence of the gradient descent
algorithm, it takes about 3 hours in 15 iterations for FNN
training. The errors of the Dataset 1 and Dataset 3 have the
same order of magnitude at Iteration 15, indicating the trained
FNN can accurately retrieve the BFSs from the samples in
Dataset 3, as shown in Fig. 6.

For comparison, Dataset 2 without noisy samples is
used as the training-dataset. Other training parameters are
consistent. The errors of the Dataset 2 and 3 have differ-
ent orders of magnitude at Iteration 7, indicating that the
trained FNN cannot retrieve the BFSs from the samples
in Dataset 3 accurately, as shown in Fig. 7. The error of
the Dataset 2 is driven to a small value while the error of
the Dataset 3 still at a high level, which means the overfitting
occurs.
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FIGURE 7. The MSE of each iteration of the FNN trained by the ideal BGSs.

FIGURE 8. The MAE versus SNR.

B. FNN TEST PHASE
Dataset 4 is used to demonstrate FNN and LCF ability to
retrieve the BFS after FNN training. Since the labels in
Dataset 4 range from 5% to 95%, the BFS can be retrieved
by FNN using (18):

vB(F) =

{
F(X ) ×Frange + V1, xPmax < V76(
1− F

(
X ′
))
×Frange + V1, xPmax ≥ V76.

(18)

where vB(F) is BFS retrieved by FNN. X is a normalized BGS.
X ′ is the X flipped in the up-down direction. F(X ) is the
output of the trained FNN. Frange is the frequency scanning
range and its value is equal to 150 MHz. xPmax indicates the
location of the maximum power of the X . The mean absolute
error (MAE) can be calculated from the retrieved BFS and
the label of the samples according to (19).

MAE = E(|vB − vB(F/L)|). (19)

where vB is the BFS of the sample. vB(F/L) is the BFS pre-
dicted by FNNor LCF. The distribution ofMAE calculated by
FNN and LCF of the samples in Dataset 4 at different SNRs
is shown in Fig. 8. In this range of SNR, the accuracy of the
FNN can be compared to the LCF.

The error distribution for all 15 dB samples in Dataset
4 is analyzed under different BFSs and linewidths, as shown
in Fig. 9 and 10. The errors of FNN are better than LCF in
the edge regions. This makes sense for increasing the effec-
tive range of temperature recognition in a limited frequency
scanning range. Moreover, for both FNN and LCF, the error
increases as the BGS linewidth increases, which is the same
as the theoretical conclusion in [26].

FIGURE 9. The MAE versus normalized BFS.

FIGURE 10. The MAE versus linewidth.

The trained FNN can be used to calculate BFS
accurately from BGSs with different BFSs, linewidths and
SNRs. Through this optimized training process, the trained
FNN has generalization ability and greatly improves the
training efficiency without additional regularizationmethods.

IV. THE FNN ADAPTABILITY: SIMULATION RESULTS
The FNN trained in the previous section will not be available
if the frequency scanning step is not 1MHz in the experiment,
which means that samples at the corresponding frequency
scanning step need to be simulated again and used as the
training-dataset to train another FNN, as shown in Fig. 11(a).
In long-distance BOTDA, it is more desirable to use a higher
frequency scanning step, such as 4 MHz. This will improve
the speed of measuring BGS at the expense of the accuracy
of the temperature measurement. Correspondingly, a lower
frequency scanning step, such as 1 MHz, is selected under
high precision requirements.

However, the FNN training is a cumbersome process that
involves generating simulated data, adjusting hidden layers
and other parameters until the FNN has generalization ability
and satisfactory error results. Therefore, it will be convenient
if only one FNN needs to be trained, which can retrieve BFS
from BGSs at different frequency scanning steps. In order to
achieve this process, the linear interpolation method can be
used to reconstruct the other frequency scanning step of the
BGS to 1 MHz.

The frequency scanning range should not be lower than
150MHz because, in the previous section, the FNN is trained
with the samples in the frequency scanning range of 150MHz
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FIGURE 11. (a) Previous work needs to train separate FNNs at different frequency scanning steps; (b) combining the two technologies, only one FNN
needs to be trained.

TABLE 2. Relationship between various parameters.

at a step of 1MHz. This can be expressed in (20) and itemized
in Table 2.

Frange = (N − 1)× Step ≥ 150MHz. (20)

whereFrange is the frequency scanning range.N is the number
of points of the BGS. Step is the frequency scanning step.

As shown in Fig. 12, if the frequency scanning step
is 4 MHz, the frequency scanning range should at least
152 MHz. Only in this way, after using linear interpolation,
a BGS with a frequency scanning range of 150 MHz at a
step of 1MHz can be reconstructed. In short, discrete data are
serialized by linear interpolation. Then reconstruct a vector of
length 151 from the continuous function, and the BFS can be
retrieved according to (18). After these processes, only need
to train one FNN to handle BGSs with different frequency
scanning steps, as shown in Fig. 11(b).

The BFS is retrieved by three methods from the 10 dB,
15 dB, 25 dB and 40 dB BGSs with different BFSs
(10.7075 GHz - 10.8425 GHz) and linewidths (10 MHz -
60 MHz) at different frequency scanning steps (1 MHz -
10 MHz), and the error results are shown in Fig. 13(a).
Method 1 is using the proposed method shown in Fig. 11(b).
In order to verify the performance, Method 2 is using the

FIGURE 12. The process of reconstruction for a simulated 25 dB BGS at a
step of 4 MHz.

separately trained FNNs shown in Fig. 11(a). The layouts of
separately trained FNNs are shown in Table 2. Others training
parameters are consistent. Method 3 is using LCF. Three
methods are defined as FNN, FNNs and LCF in Fig. 13(a),
respectively. The errors of FNN and FNNs are basically the
same for the high SNR signals. For the BGS with 10 dB,
the performance of the FNN is worse than that of the sepa-
rate FNNs with the increase of the frequency scanning step.
However, due to the large error in this case, the sensing
information is lost. In conclusion, the sensing performance
of Method 1 is similar to that of Method 2 for the effective
sensing signals. Three different interpolation methods are
compared. i.e.: 1. Linear interpolation: linear; 2. Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP): pchip; 3.
Spline interpolation: spline. Their continuities are zero-order
(C0), first-order (C1) and second-order (C2), respectively.
The results are shown in Fig. 13(b). The high-efficiency linear
interpolation method has better performance in this situation.

In order to compare efficiency, the BFS is retrieved by FNN
and LCF from 100,000 sets of the BGS at each frequency
scanning step, as shown in Table 3. The consumption time
for LCF is the Lorentzian curve fitting time and BFS retrieval
time, while for FNN is interpolation time, reconstruction time
and BFS retrieval time.
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FIGURE 13. The MAE versus frequency scanning step. (a) Three methods
for BFS retrieval; (b) three different interpolations for Method 1.

TABLE 3. Comparison of efficiency between FNN and LCF for
100,000 BGS samples.

The interpolation method enables BGSs at different fre-
quency scanning steps to be input into a trained FNN and
then obtain the BFS accurately. The high efficiency and
wide adaptability of FNN will promote the development
of BOTDA. Although linear interpolation is not smooth at
the nodes, from another perspective, it can be considered
as noise-induced. This disadvantage can be overcome well
because the FNN is trained by Dataset 1 with noise sam-
ples. Therefore, by combining the two methods of optimized
FNN training and linear interpolation, the more effective
application of FNN in BOTDA is realized.

FIGURE 14. Experimental setup of 23.95 km BOTDA. AWG: Arbitrary
waveform generator; OC: optical coupler.

V. EXPERIMENTAL DEMONSTRATION
In order to analyze the ability of the FNN for calculating
the BFS from the BGSs in the experiment, the 23.95 km
BOTDA with 200 MHz frequency scanning range at a fre-
quency scanning step of 1 MHz and 150.62 km BOTDA with
156 MHz frequency scanning range at a frequency scanning
step of 4 MHz are established, respectively.

A. EXPERIMENTAL SETUP OF THE 23.95 km BOTDA
The experimental setup of the 23.95 km BOTDA is shown
in Fig. 14. This is a dual-sideband BOTDA experimental
system.

The 10% branch of the laser output is modulated by a
Mach-Zehnder electro-optic modulator (EOM). With a tun-
able microwave generator, the carrier of the probe signal
is suppressed and two sidebands are generated. Through an
80 MHz acoustic-optic frequency shifter (AOFS), a variable
optical attenuator (VOA1) and an isolator, the probe light is
routed to the fiber. The 90% branch of the laser output is
modulated by an 80 MHz acousto-optic modulator (AOM) to
generate the pump pulse. The symmetrical dual-sideband of
the probe wave relative to the pump pulse is formed since the
frequency shift of AOFS is the same as the AOM. Then after a
polarization scrambler (PS), the influence of polarization fad-
ing is reduced. The pump pulse and probe light are counter-
propagating inside the fiber under test (FUT) to experience
SBS. After that, the probe light is routed to the low-noise
erbium-doped fiber amplifier (EDFA) for amplifying. The
fiber Bragg grating (FBG) is used to separate the dual-band
of the probe light. The 125 MHz balanced photodetector
(BPD) has two input ports. One receives the Stokes light-
wave, and the other receives the anti-Stokes lightwave. The
photocurrent is sampled by a 100 MS/s A/D converter. The
BGS is measured after averaging 300 times in the frequency
scanning range of 200MHz, with the frequency scanning step
of 1 MHz. The spatial resolution is 16 m.

The heating location is around 23.7 km. The SNR is about
30 dB calculated from (13). As can be seen from Fig. 15,
the position of the BFS changes due to heating.

The input of the FNN is the BGS in the frequency scanning
range of 150 MHz at a frequency scanning step of 1 MHz.
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FIGURE 15. BGSs at different locations of 23.95 km BOTDA.

FIGURE 16. The frequency difference around the heating location in the
23.95 km BOTDA.

However, the frequency scanning range of the measured BGS
is 200MHz at a frequency scanning step of 1MHz. Therefore,
the BGS with appropriate 150 MHz frequency scanning
range is selected according to the position of the power peak
and input to the FNN to retrieve the BFS. Also, the BFS is
calculated by LCF for comparison. Subtracting BFS before
and after heating to obtain the frequency difference, which
reflects the change of temperature, as shown in Fig. 16.

The temperature coefficient is 1.3MHz/◦C, and the applied
temperature difference is 31.9◦C. The differences in temper-
ature measured by LCF and FNN are 31.60◦C and 31.64◦C,
respectively. The measurement uncertainties calculated by
LCF and FNN are ±0.25◦C and ±0.26◦C, respectively. The
MAE of the frequency difference of BFS calculated by FNN
and LCF is analyzed every 1 km according to (21).

MAE = E(|FDL − FDF |). (21)

where FDL and FDF is the frequency difference calculated
by LCF and FNN, respectively. The error is shown in Fig. 17.
Compared to LCF, it indicates that FNN can calculate BFS
from the measured BGS accurately.

B. EXPERIMENTAL SETUP OF THE 150.62 km BOTDA
To further analyze the performance of the FNN, an advanced
BOTDA of 150.62 km is built. The spatial resolution is 9 m,
which means more than sixteen thousand sensing units are
fused along the fiber to sense the change of temperature.

FIGURE 17. The MAE (every 1km) of the calculated BFS between FNN and
LCF for the 23.95 km BOTDA.

FIGURE 18. Experimental setup of 150.62 km BOTDA.

FIGURE 19. The frequency difference around the heating location in the
150.62 km BOTDA.

A variety of technologies, such as hybrid distributed amplifi-
cation, frequency division multiplexing (FDM), wavelength
division multiplexing (WDM), time division multiplexing
(TDM), and 127-bit Simplex coding are combined and used
in the experiment [7]. The experimental setup is shown
in Fig. 18.

Since Simplex coding is used in 150.62 km BOTDA,
measuring BGS is time-consuming especially in a wider
frequency scanning range and lower frequency scanning step.
Therefore, 156 MHz frequency scanning range at a step
of 4 MHz is set to sample the BGS in 150.62 km BOTDA
after averaging 16 times. The SNR of the BGS of the four-
segment fiber is analyzed. The first three segments have the
same SNR, about 30 dB, and the last segment is about 19 dB.
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FIGURE 20. The MAE (every 1km) of the calculated BFS between FNN and
LCF in the 150.62 km BOTDA.

Since the frequency scanning step of the measured BGS
is 4 MHz, linear interpolation is required to reconstruct the
BGS with appropriate 150 MHz frequency scanning range
before it is input to the FNN. The frequency difference of
BFS calculated by FNN is compared with LCF, as shown
in Fig. 19. The temperature coefficient is 1.0 MHz/◦C, and
the applied temperature difference is 18.2◦C. The differences
in temperature measured by LCF and FNN are 18.67◦C
and 18.50 ◦C, respectively. The measurement uncertainties
calculated by LCF and FNN are ±0.82◦C and ±0.75◦C,
respectively. The measurement uncertainties are higher than
the 23.95 km BOTDA at a frequency scanning step of 1MHz.

Similarly, theMAE of the frequency difference is analyzed
every 1 km according to (21), as shown in Fig. 20. It is
acceptable that the MAE is less than 0.2 MHz compared with
the measurement uncertainty.

By constructing and analyzing BOTDA experiments,
it confirms that FNN can retrieve BFS accurately under dif-
ferent experimental parameters.

VI. CONCLUSION
Using the proposed FNN training method, BFS can
be retrieved from the BGSs under various experimental
parameters. Compared with LCF, FNN trained with the pro-
posed method is much more efficient, without sacrificing the
measurement uncertainty. This work proves the value of FNN
in DOFS system and promotes the development of DOFS for
real-world applications.
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