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ABSTRACT The process of recording electroencephalography (EEG) signals is onerous and requires
massive storage to store signals at an applicable frequency rate. In this paper, we propose the event-related
potential encoder network (ERPENet), a multi-task autoencoder-based model, that can be applied to any
ERP-related tasks. The strength of ERPENet lies in its capability to handle various kinds of ERP datasets
and its robustness across multiple recording setups, enabling joint training across datasets. The ERPENet
incorporates convolutional neural networks (CNNs) and long short-termmemory (LSTM), in an autoencoder
setup, which tries to simultaneously compress the input EEG signal and extract related P300 features
into a latent vector. Here, we can infer the process for generating the latent vector as universal joint
feature extraction. The network also includes a classification part for attended and unattended events
classification as an auxiliary task. We experimented on six different P300 datasets. The results show that
the latent vector exhibits better compression capability than the previous state-of-the-art semi-supervised
autoencoder model. For attended and unattended events classification, pre-trained weights are adopted as
initial weights and tested on unseen P300 datasets to evaluate the adaptability of the model, which shortens
the training process as compared to using random Xavier weight initialization. At the compression rate
of 6.84, the classification accuracy outperforms conventional P300 classification models: the XdawnLDA,
DeepConvNet, and EEGNet achieving 79.37%– 88.52% classification accuracy depending on the dataset.

INDEX TERMS Electroencephalography, P300, deep learning, pre-trained model, spatiotemporal neural
networks, multi-task autoencoder.

I. INTRODUCTION
Brain informatics-based large-scale architecture and its appli-
cations have been introduced in recent years [1]. The pipeline
of brain informatics comprises data acquisition (physical
layer), brain data center (storage and computational layer)
and service objects (application layer). The tools used to
acquire data on the physical layer are wearable devices,
non-contact sensing, high cognitive measurements (such as
brain activity) and questionnaires. Then, the data is trans-
ferred to perform data management, mining, clustering, and
computing (including machine learning and deep learning
algorithms) in the storage and computational layer. At the
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end of the pipeline, the application layer provides a service
for various groups of users such as researchers, physicians,
healthcare-related businesses, etc. In this study, we focus on
the large-scale non-invasive brain signal data called elec-
troencephalogaphy (EEG), which is stored inside the com-
putational layer. Regarding high sampling rate of EEG signal
over multiple channels, a massive storage is required to main-
tain data in the size that can be used for future applications.
A large volume of data has been exploited from EEG-related
research such as brain-computer interface (BCI) and cogni-
tive neuroscience to create a downstream model that capable
of encoding EEG in smallest size that maintains features
requires for various classification tasks in application layer.

Due to the potentially large volume of data, the appli-
cation requires an effective way to compress and store the
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collected data. Several studies have attempted to reduce the
amount of data by decreasing the length of each sample. One
popular procedure achieving this is compressed sensing (CS).
It projects a portion of the input signal onto a random matrix
like Gaussian, sparse binary, or binomial such that the size
of the projected data is smaller than the length of original
samples. Prior to data analysis, we needed to reconstruct
the projected data using certain variants of CS techniques
such as sparse Bayesian learning [2]–[5], or reconstruction-
based inter-channel and intra-channel correlations [6]–[10].
However, the reconstruction of CS involves the solution of
optimization problems which can be time-consuming, so is
impractical for use in real-time applications such as online
BCI for electrical appliances controls [11].

Recently, a CS method based on deep learning (DL),
namely the Autoencoder (AE), was applied in body area net-
works and tele-monitoring systems [12]. The authors reported
the advantages of AE over the classical CS technique in both
computation time and accuracy for bio-signal data recon-
struction. The goal of their work was not only to find the
optimal data compression procedure but also to classify the
event type. To combine the data compression and address
classification problems, a multi-task AE was applied due
to its capability of class labeling, along with reconstruction
(The concept of a multi-task AE is described further in the
methodology section of this paper). Epileptic, eyes-closed
and eyes-opened EEGs from five subjects and five classes
in total, [13], were used in their proposed model evalua-
tion. Unlike their model which was merely formed by two
fully connected (FC) layers, we proposed our own multi-
task AE, using stacks of two-dimensional convolutional
neural networks (2D-CNNs) and long short-term memory
units (LSTMs) in order to capture both spatial and tem-
poral information. The CNN-LSTM combined model was
first introduced in the video classification problem domain
which outperformed conventional spatial-temporal classifi-
cation models, such as Support Vector Machine, standalone
1D-CNNs, and standalone LSTMs [14]. Recently, the combi-
nation of CNN-LSTM has been adapted, using 2D-CNNs to
extract spatial feature over EEG montage instead of video-
frame feature extraction, to classify EEG signal in various
tasks [15], [16]. However, training CNN-LSTM architecture
needs a sufficiently large amount of EEG data which is
inconceivable in some of EEG classification tasks because
of the complexity and the expense of EEG signals record-
ing. In [15], the authors proposed a multimodal classifica-
tion of EEG video and optical flow to solve insufficient
data problem, but the training duration was significantly
longer than other methods. Here, we propose an ERPENet,
a CNN-LSTM pretrained model, to migrate insufficient data
problem.

To prove the concept of brain informatics on large-scale
EEG data, EEG responses known as event-related poten-
tials (ERPs) are examined. ERPs are widely known EEG
responses from brain activity related to human perceptual
and cognitive processes [17], [18]. Furthermore, the major

ERP components are narrowed down, namely P300 using
simple experimental tasks or paradigms across BCIs and cog-
nitive neurosciences (the oddball paradigm). A fundamental
experimental design is then adopted to study P300 responses
from both attended and unattended events according to the
human perceptual and cognitive processes [19]. The attended
event is one where a human is waiting to perceive the target
information with a low probability of occurrence. In con-
trast, an unattended event perceives non-targeted informa-
tion with a higher probability of appearances. Here, six
P300 datasets (large-scale EEG data) are examined from
various studied events including Documenting, Modeling
and Exploiting P300 Amplitude in Donchin’s Speller [20],
BCI Competition III - Dataset II [21], Auditory Multi-Class
BCI [22], BCI-Spelling using Rapid Serial Visual Presenta-
tion (RSVP) [23], Examining EEG-Alcoholism Correlation
(control group) [24] and Decoding Auditory Attention [25]
behaving (more details in Section IV). These six ERPs were
designed and recorded for distinct tasks, but can be classified
as attended and unattended events, according to P300 classi-
fication systems. The aggregated P300 frommultiple datasets
was used to train a universal feature extractor as a pre-trained
model, in which its pre-trained weights are able to speed up
the training process and reduce the overfitting problem in any
P300 models with limited training data.

The previous multi-task AEwork [12] also lacks the ability
to handle and exploit information shared across different
recording setups, whereas the proposed multi-task AE in this
study is trained and validated across six datasets, obtained
from various experimental studies with different numbers
of EEG channels. To deal with the dataset inconsistencies,
2D-CNNs are introduced to the model, which will be further
discussed in Section III. However, all have common EEG fea-
tures such as P300 or ERPs from either the attended or unat-
tended events. We conducted two experiments to verify the
academic merits and novelty of our work. Firstly, an experi-
ment was conducted to demonstrate the performance of large-
scale EEG compression on an unseen P300 dataset using
the purposed multi-task AE, containing ERPENet. Then,
the ERPENet was adopted as a pre-trained network to the
attended and unattended event classification network. The
results were compared to the state-of-the-art P300 dimension-
ality reduction algorithm [26] named Xdawn with Bayesian
LDA classification [27] and state-of-the-art in EEG classi-
fication deep learning models, EEGNet [28] and DeepCon-
vNet [29]. EEGNet and DeepConvNet were deep learning
models, designed for various EEG classification tasks, and
yielded state-of-the-art results.

Three main contributions of this work can be summarized
as follows:
• A CS method that compresses P300 for classifica-
tion and restoration in the application layer of Brain
information-based large-scale architecture.

• A robust multi-task autoencoder, composes of 2D-CNNs
and LSTMs, is proposed to extract P300 features in
classification task and compress EEG signal across
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various experimental studies with different setups of
EEG recording.

• ERPENet, a pre-trained encoder network of proposed
multi-task autoencoder, is capable of can be fine-tuned
and applied to a new related application with limited
training data.

The rest of this paper is organized as follows. Section II
provides backgrounds in DL which are the basis of our pro-
posed model. Section III illustrates the designing of multi-
task autoencoder in detail. Section IV presents the datasets
used in the experimental studies. Section V discusses the
experimental protocols used to evaluate the proposed model.
Finally, the results, discussion and conclusion are contained
in Sections V, VI and VII, respectively.

II. BACKGROUND
In this section, we first introduce CNN and LSTM, two Deep
Neural Network (DNN) layers that are the backbones of
ERPENet, in SectionA andB. Then, the concept and previous
works of AE is described in section C.

A. CONVOLUTIONAL NEURAL NETWORK
CNN is a grid-like topology neural network with a convolu-
tion operation at its core. It is proficient at extracting spatial
information; such is the basis of many state-of-the-art DNNs
in various vision models such as VGG16 [30], Resnet [31],
Alexnet [32], R-CNN [33] because of its parameters shar-
ing and equivalent representations properties. Furthermore,
CNN is also adopted in time-series related applications, such
as sentence-level classification [34] that uses CNN on top
of word2vec, and similarly in this work. Most CNNs con-
tain an assortment of four different layers: convolutional
layer, pooling layer, fully connected layer, and activation
layer.

The convolution layer consists of small learnable ker-
nels that are convolved over the entire input space
to linearly transform the input, providing translation
invariance.

The pooling layer is often placed after the convolution
layer to downsample the spatial size of incoming data,
thereby reducing the number of computation when stacking
multiple convolution layers.

The Fully Connected (FC) layer is a traditional neural net-
work and usually included at the final part of the CNN, where
high-level representations are extracted, to classify the input.
Unlike the convolutional layer, the linear transformation is
not restricted by spatial invariance constraints.

The activation layer is typically a non-linear function
which allows the stacking of linear layers. There are many
kinds of functions used for the activation function, however,
the one commonly used between convolution layers are
the rectified linear unit (ReLU). ReLU is a non-saturating
activation function, discarding inputs with negative val-
ues by setting them to zero. Another vital activation
used in binary classification task is the Sigmoid
function.

B. LONG SHORT-TERM MEMORY
Long short-term memory (LSTM) is a type of recurrent
neural network (RNN), which has the capacity of sequence
prediction from self-feedback. Each RNN node has its own
internal memory which can produce arbitrary sequences, but
RNN suffers from the vanishing and exploding gradient prob-
lems. To alleviate these problems, long short-term memory
(LSTM) was developed [35] by adding three gates inside the
RNN cell. The three gates are the input gate (g(t)i ), the forget
gate (f (t)i ) and the output gate (q(t)i ). Intuitively, the input
gate controls the flow of new information entering the cell.
The forget gate then decides on which information should
be kept in the cell, and the output gate decides when to
generate the output. Every gate is based on the state unit(s(t)i ).
Mathematically, it can be represented using the following
equations.
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where U is the weight matrix connecting the inputs to the
current hidden layer. W is the weight matrix connecting the
previous hidden layer and current hidden layer. b is the bias
matrix. The subscript ofU ,W and b indicates filter number(i)
and the superscript indicates the responding gate. x(t) is the
current input vector and h(t)i is the current hidden layer vector,
where i denotes a dependent cell, and t denotes the time step
in each cell. σ is the sigmoid function acting as a gate in the
LSTM unit.

C. AUTOENCODERS
Autoencoders (AEs) were first introduced in the 1980s for
unsupervised feature extraction [36], dimensionality reduc-
tion [37] and data compression [38]. AEs have twomain com-
ponents: the encoder and the decoder. The encoder network
(E) maps an input signal (s) to a latent representation (h) and
the decoder network (D) tries to reconstruct the input signal
at the output layer using the latent representation. Ideally,
there should be fewer nodes in the latent representation than
in the input, resulting in the creation of a bottleneck effect,
limiting the information passed to the decoder network. The
network is trained to minimize reconstruction loss, defined as
L(s,D(E(s)). In a complex supervised learning models [39],
AEs was used to initialize the weights one layer at a time by
minimizing the reconstruction loss.

In a recent work [40], AE was previously adopted to pre-
train the classifier network for EEG. They proposed deep AE
for solving the problems on EEG datasets with scarce label
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FIGURE 1. An overview of our data pre-processing. All data were aggregated from six datasets that differ in
number of channels and sampling rates (as shown in Table 2). The data in each dataset was preprocessed
(described in Section III) and partitioned into attended and unattended events, labeled in one-second lengths.
Only samples measuring from 0.2 to 0.6 seconds were selected, resulting in 100(250Hz × 0.4s) points per
recording (as described in Section III). Only the midline and occipital parts of the scalp were included (indicated
by the orange circles in the figure) and mapped into a 5 x 9 x 100 matrix. Finally, these were used as inputs for
the multi-task AE.

information. The AE was first pre-trained using unlabeled
data to extract EEG features in an unsupervised manner.
Then, the encoder network was attached with a classifier and
further trained with labeled data. Another work [41] created
an optimized framework for seizure prediction using huge
EEG datasets. In their framework, AEs played an impor-
tant role as an effective data compression method. However,
most studies only applied typical stacked-AEs or modified-
AEs (denoising sparse AE) through unsupervised learning to
extract the features. The learned features were then passed
through various classification methods for the target task as
presented in [42]–[45]. As stated in the introduction, we pro-
pose the a multi-task AE, consisting of both 2D-CNNs and
LSTMs, to perform feature extraction, data compression and
classification on large-scale EEG datasets, which are dis-
cussed in the following sections.

III. METHODOLOGY
In section A, we first provide themotivations of incorporating
CNN and LSTM into the AE. Then, the architecture of the
multi-task AE is described in Section B, followed by its loss
function in Section C.

A. INTEGRATING CNN AND LSTM INTO AES
In the recent years, modern AEs have become more com-
plex due to the integration of various kinds of layers into

the encoder network and decoder network. In this work,
the encoder and decoder are comprised of CNNs to learn the
high-level features in spatial domain of multi-channel EEG
and LSTM to learn the temporal relationship.

Our proposed model was trained on a combination of six
public datasets, which have different electrodes positioning,
different resolution and different sampling rate. This cre-
ates a need for a network architecture that can handle these
differences. The EEGs were recorded by using the scalp
electrodes placement known as 10-20 system standard [46].
In higher resolution recordings of EEG, a Modified Combi-
natorial Nomenclature (MCN) was developed by adding 10%
divisions to increase the EEG channels creating discrepancy
across multiple resolutions. To overcome the inconsistency
in electrode positioning across multiple datasets, 2D-CNNs
were included at the beginning of the network to extract the
spatial information in our proposed model.

Each EEG channel was mapped directly on 2D-grid topog-
raphy representing the 2D scalp-map to preserve spatial fea-
tures, as shown in mapping procedure in Figure 2. In the
montage with smaller number of electrodes, the missing
topography was filled out with zero, which could be handle
by CNN. Since P300 tasks were our focus, we selected only
the EEG channels between midline and occipital (marked
with orange color in Figure 1), totaling 35 channels(Cz,
C1-6, T7,8, TP7,8, CPz, CP1-6, Pz, P1-8, POz, PO3,4,7,8,
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FIGURE 2. The multi-task AE is composed of two main parts. The first part is the AE containing an encoder network(ERPENet) and
a decoder network. The encoder of the AE includes two blocks of CNNs followed by an a LSTM layer in a many-to-one setup. From
the LSTM output, a latent vector of the AE was obtained. At ?, the latent vector was then repeated 100 times and used as input to
the decoder of the AE. The decoder has symmetrical CNN blocks and LSTM sizes, but the number of filters in each layers is
different, as shown in the figure. The LSTM in the decoder is also set to return the full sequence (many-to-many). The output of the
decoder represents a reconstruction of the input signal. The second part of our model is the supervised classifier. The latent vector
from the first part was fed into a single FC layer using sigmoid activation in order to classify the data into two classes: attended
and unattended events.

O1,2 and Oz). These were previously reported as the optimal
set of channels in BCI P300 [21]. The 2D-grid of size 5 × 9
was constructed to maintain spatial information from all
35 channels.

However, CNN is known to lack the ability to cap-
ture the long-term relationships within time series, since
only the data points within the CNN filters are used for
information extraction. To combat this problem, the LSTM
was incorporated into our proposed model. A LSTM layer
was included after the 2D-CNNs layers, to learn the long-
term representation of the sequential data and compressed
data in the temporal dimension. The mechanism of LSTM
provides an efficient method to encode the representation
of EEG into a single vector, which can be decompressed
in the decoder network or be used as input to a related
task.

B. MULTI-TASK AUTOENCODER
The multi-task autoencoder model comprises three networks:
encoder network, decoder network and supervised classifier
network as shown in Figure 2 and more details of each layer
in the Table 1. However, they are trained simultaneously to
reconstruct the input in the decoder network and to classify
the input in the supervised classifier network.

The encoder network is composed of 2 CNN blocks fol-
lowed by a LSTM layer. The arrangement of CNN blocks
and its composition, including three time-distributed CNNs,
a Batch Normalization(BN) layer, a Leaky Rectified Linear
Unit(LReLU) [47] and a dropout layer, was inspired by the
VGG16 architecture [30]. The final CNN block is connected
to a many-to-one LSTM. The input has a dimension of
(100,5,9,1), formatted by time, vertical coordinate, Horizon-
tal coordinate, data.

Each CNN block has three stacked CNNs, with a larger
number of filters and a stride of 2 in the first CNNs. The filter
sizes in the network were optimized by gradually decreasing
from a larger number until a degradation in performance was
observed(more details in Section V: Experiment A). The lay-
ers parameters are listed in the Table 1. A stride of 2 is applied
to reduce the size of the model, in a similar way to max
pooling. Max pooling was avoided in this study because there
was a report of checkerboard artifact that generated high-
frequency noise in the reconstruction output [48]. The latter
two CNNs extract the information without any additional
compression. After every CNN layers, dropout regularization
with a 0.20 dropout rate was applied prior to feeding into the
next CNN layer to avoid overfitting. The dropout rate was
recommended to be increased if overfitting was observed, but
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TABLE 1. The configuration of the multi-task autoencoder architecture.

it should be between 0.2 and 0.5. In this work, the dropout
rate of 0.2 was used throughout the network since there was
no severe overfitting observed. An output of the last CNN
block has a shape of (100,96), which is fed into a LSTM
layer, comprising 512 LSTM units with a recurrent dropout.
The output of the LSTM at the final time step is considered
as the latent vector, encapsulating the compressed informa-
tion. Because the size of the LSTM unit is also the size of
latent vector, which we want to minimize while maintaining
data representation, 512 is a number that we found robust
towards multiple P300 tasks. As a result, the EEG signal is
compressed in the spatial and temporal domains into a single
vector of size 512.

In the decoder network, all layers are aligned symmetri-
cally with the encoder network. The latent vector is repeated
100 times to construct the data in a temporal format, match-
ing the input format required for the many-to-many LSTM.
In the CNN blocks of the decoder network, upsampling and
zero-padding layers are added to reconstruct the network.
Zero-padding layer and zero-padding option in CNNs are

used to reverse the dimensional reduction by convolution
kernel without padding in the encoder network. Similarly
to the encoder section, we decide not to use deconvolution,
because of the reported checkerboard artifact generated [48].
After two blocks of CNN, the input EEG signal is
reconstructed.

To prevent the AE from over-compressing the EEG,
a supervised portion was added - extended from the latent
vector. Thus, the model is capable of learning to clas-
sify the input signal along with that of the reconstruc-
tion. A basic supervised classifier was added, composed
only of a single FC unit and sigmoid activation after the
latent vector, which could be considered as an auxiliary
input to the model. This extended supervised network cre-
ates a constraint for the latent vector to become inter-
pretable as well as a compression of EEG. The encoder
network is a transferable model called ERP Encoder Network
(ERPENet). Here, we proposed a multi-task AE with CNN
and LSTM model to reconstruct and classify EEG signals
(Figure 2).
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C. LOSS FUNCTION
Our proposedmulti-task AEmodel was trained for two differ-
ent tasks: reconstruction and binary classification. The Two
loss functions, which were implemented in TensorFlow [49],
were incorporated and combined with a weight (β) on the
classification loss function.

For the reconstruction loss, the Mean Square Error (MSE)
metric was computed from the difference between the recon-
struction and the input. Due to the fact that most channel
mapping is blank, the MSE function needs to be modified to
compute the reconstruction loss only on the feature (xj) not
filled with zero as in Eq. 6.

LMSE (s) = ‖sj − D(E(s))j‖2, sj 6= 0 (6)

sj is the input signal where j denotes the channel containing
blanks on 2D mapping. This prevents the reconstruction pre-
ferring to output zeros in the early training stage.

In the latent supervised classifier, attended and unattended
events are classified by the sigmoid binary cross-entropy as
shown in Eq. 7.

LBinary(y, y′) = −
1
n

n∑
i=1

yi ln(y′i) (7)

where n denotes the total number of the input signals(s).
The prediction (y′) was predicted straight from the sig-
moid attached to the f (x) while y is a true label. Binary
class weights (Wc,i), where c denotes class of sample i,
was optimized to penalize the imbalances classes. β is
introduced to weight the classification loss to the recon-
struction loss. To find β, grid search over a set,
[0.25, 0.333, 0.5, 0.667, 0.75], has been performed to min-
imize Ltotal(s, y, y′) which beta equals to 0.667 yielded an
optimal result. Finally, the total loss function was a sum-
mation of both objective loss functions weighted by dataset
weights (Wd,i),where d denotes the sample of dataset i.

Ltotal(s, y, y′) = W(d,i)[βW(c,i)LBinary(y, y′)+ LMSE (s)] (8)

IV. DATASETS AND DATA PREPROCESSING
A. DATASETS
The following six datasets were incorporated in this study.
All were from the P300-BCI experimental tasks based on
the oddball paradigm, including visual and auditory stimuli,
each of which has their own specific attended and unattended
events. Moreover, these datasets were chosen in order to rep-
resent the strength of the model in which the neural networks,
especially the CNN, are still able to capture the essential
features from the input signals even though they were derived
from various montage systems, sampled at different sampling
rates, collected with diverse hardware filtering methods, and
recorded in an unequal number of channels. Descriptions of
the datasets are shown in Table 2 as follows:
• Exploiting P300 Amplitude changes [20]: this dataset
resulted from a visual stimuli experiment. The study
aimed at identifying the factors limiting the performance
of BCIs based on ERPs, in order to improve the transfer

rate and usability of these interfaces. In every run, each
subject was asked to look at a 6x6 matrix, including
36 different characters. The rows and columns of the
matrix were randomly highlighted one at a time for a
short period, specifying a target character before each
run. Each subject was then asked to mentally count
the number of times any row or column, including
the target character, intensified. During the experiment,
EEG signals were collected using a BioSemi ActiveTwo
EEG system. Subsequently, the signals were bandpass
filtered in the band 0.15-5 Hz.

• BCI Competition III - Dataset II [21]: this study used a
visual stimulus with an intra-subject classifier proposed
to predict the desired character from EEG signals. The
experiments were similar to those in the above dataset.
They also used the 6x6 matrix and attended events also
occurred when any row or column with the target char-
acter was flashed. Instead of focusing on one character
for each run, participants in this experiment were asked
to focus on a single word containing a sequence of five
characters. For each character epoch, rows and columns
were randomly highlighted 180 times (6 rows x 15 times
and 6 columns x 15 times), 30 of which included the
target character specified as an attended event. For every
run, each subject had to monitor five characters per
epoch. Signals from the subjects were collected using a
montage system not specified in the paper. Finally, they
were bandpass filtered from 0.1-60 Hz.

• auditory multi-class BCI [22]: ]: this dataset was col-
lected from a study using auditory experiments. They
tried to propose a multi-class auditory-BCI classifica-
tion using spatially distributed, auditory cues. In the
experiment, each participant was surrounded by eight
speakers, only five of which were used. These speakers
were programmed to turn on at random, one at a time.
In each run, a subject was instructed to mentally keep
track of the extent to which the target direction (target
speaker) was stimulated. The EEG was recorded using
a number of Ag/AgCl electrodes, amplified using a
128-channel amplifier from Brain Products, fil-
tered by an analogue bandpass filter between 0.1
and 250 Hz.

• BCI-Spelling using Rapid Serial Visual Presentation
(RSVP) [23]: the aim of this study was to develop a
visual speller that did not require eye movements to
overcome the limitations of conventional BCIs. Each
subject participated in two experiments: In the first
experiment, geometric shapes were randomly flashed
on the screen. Each geometric contained a unique set
of five characters and had a unique shape and color.
In the second experiment, each shape was changed to
contain only a single character. For every run in both
experiments, each participant was asked to mentally
count the number of times the target character was
shown on the screen. The signals were recorded using
an actiCAP active electrode system from Brain Products
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TABLE 2. Datasets used to train ERPENet.

(Munich, Germany). All skin electrode impedances
were kept below 20 k�. The bandpass of the hardware
filter was 0.016-250 Hz.

• Examining EEG-Alcoholism Correlation [24]: This data
was obtained from a large study of visual stimuli experi-
ments. There were two groups of subjects: alcoholic and
control (healthy subjects). Only control subjects were
selected in order to avoid outlier samples which may
be affected by alcoholism. Each subject participated in
two experimental sets. Firstly, a single stimulus (S1) of
one picture was randomly shown on the screen. The
attended events were when the target picture was shown.
Secondly, two pictorial stimuli (S1 and S2) were shown
at the same time and the attended events were when both
were identical. During the experiments, each subject
was attached with a 61-lead electrode cap (Electro-Cap
International). The impedances were kept below 5 k�.
The signals were filtered with a bandpass of 0.02-50 Hz,
and recorded on a computer with subsequent 32 Hz low
pass digital filtering.

• Decoding auditory attention [25]: This experimental
study of auditory stimuli attempted to prove the con-
cept that paying attention to a particular instrument
in polyphonic music (music with several instruments
playing in parallel) can be inferred from EEG. In the
experiment, each subject listened to four different types
of polyphonic music clips in which each clip included
three types of instruments. Before each clip, one out
of three instruments were specified as a target instru-
ment. Normally, all instruments played simultaneously
in a repetitive simple pattern. Each subject was asked
to attend to the target instrument and count the num-
ber of times the pattern deviated from the original.

The EEG signals were recorded using an actiCAP
active electrode system from Brain Products (Munich,
Germany). All skin electrode impedances were kept
below 20 k�. The bandpass of the hardware filter
was 0.016−250 Hz.

B. DATA PREPROCESSING
Prior to use these datasets to evaluate our method, power
line noise (50 Hz) was manually checked, and a Notch fil-
ter was applied if a noise was found. A low pass second
order Butterworth filter of 30 Hz and high pass second order
Butterworth filter of 0.5 Hz were then applied to normalize
the datasets. We used a low order filter because some of the
datasets had already been preprocessed. For consistency, they
were resampled from the original sampling rates to 250 Hz
using Fourier method.

From previous works [50], [51], the P300 interest period
was shown to be between 0.2 and 0.6 seconds after the
stimulus. Therefore, we reduced the length of the EEG signal
to 0.4 seconds.

V. EXPERIMENTAL EVALUATION
In this section, the evaluation methods were constructed to
examine the properties of proposed multi-task AE model
in two different perspective. The first evaluation (Experi-
ment A) measured the performance of trained multi-task
AE model on an unseen dataset, by comparing reconstruc-
tion error and classification accuracy with a previous work.
In Experiment B, weights in encoder network was taken from
Experiment A as a pre-trained network and continued the
training on an unseen P300 dataset to classify attended, and
unattended events.
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A. EXPERIMENT A: MULTI-TASK AE RECONSTRUCTION
ERROR
In the first experiment, the compression performance of the
proposed multi-task AE was measured by reconstruction
error and attended/unattended events classification accuracy
on an unseen dataset. This evaluation method was designed
to test the robustness of our proposed model over multiple
P300 datasets. One dataset was held back from the multi-
task AE training and used as a testing dataset to evaluate
the trained AE. Excluding the testing dataset, five datasets
were aggregated, stratified, and randomly split into two sets:
training and validation, with the ratio of 90:10. Here, one
dataset was held back from the training, as a testing set,
to demonstrate the robustness of our proposed multi-task
AE model across multiple unseen datasets.

Our input data contains 0.4 seconds of 35 EEG chan-
nels (Cz, C1-6, T7,8, TP7,8, CPz, CP1-6, Pz, P1-8, POz,
PO3,4,7,8, O1,2 and Oz). The data were compressed via
the encoder network into a latent vector of size 512. Hence,
the compression ratio of our proposed AE model was
6.84(0.4s× 250 Hz× 35/512).

To compare the model capabilities for compression and
classification, we tested our model against the multi-task
Stacked Label Consistent Autoencoder (SSLC-AE) [12], pro-
posed by Hoffmann et al. The baseline shared a certain
level of similarity with our proposed model. Specifically,
the SSLC-AE contained AE and a supervised network and
was trained as a multi-task model. However, the reconstruc-
tion and classification losses in the SSLC-AE model were
not combined into a single loss but kept separate and applied
alternatively with the Split Bregman technique, instead of the
reverse-mode auto differentiation used in our model. Unlike
our proposed model, the SSLC-AE model contains only two
FC layers in the encoder and decoder networks. FC is known
to be sensitive to the training data and may easily overfit,
limiting the size of SSLC-AE model to be small and shal-
low. To overcome this problem, they augmented the training
data to avoid the overfitting problem while our proposed
model was constructed by CNNs and LSTM, which tends to
make the model robust to overfitting than FC as described in
Section II, and trained using aggregated EEG from multiple
datasets, which is an alternative way to combat the limited
data problem.

For the original SSLC-AE, the encoder network is com-
posed of 2 FC layers, 125 nodes and 63 nodes, with a sym-
metrical decoder and supervised classification on the latent
vector. However, for a fair comparison with our proposed
model, we increased the number of nodes in FC layers to
500 and 250, respectively. As such, the latent vector in
SSLC-AE was comparable to that in our proposed AEmodel.
The overfitting of SSLC-AE was not observed in this exper-
iment dues to the massive size of combined datasets. The
2D-grid map was flattened to a single vector and used as
the input of SSLC-AE. The reconstruction error of SSLC-AE
was also modified to compute only on the non-blank inputs.
Prior to the training of SSLC-AE, optimization in the

SSLC-AE model was tuned with the same grid search as our
proposedmodel. The RMSprop optimizer with a 2−6 learning
rate and a decay rate of 10−5 yielded the lowest loss in all
dataset permutations. The AE was trained until there was no
improvement in validation loss for 100 epochs.

In the multi-task AE training, the optimization algorithm
and learning rate were chosen by grid searching between
RMSprop [52] and vanilla SGD [53], with the initial learning
rate between [2−10, 2−5] in the decreasing power of 2, and
the decay rate between [10−7, 10−4] in the decreasing power
of 10. After grid searching all six permutations, vanilla SGD
with a learning rate of 2−8(0.002) and a decay rate of 10−5

achieved the lowest validation loss. The AE was trained
until there was no improvement in the validation loss for
100 epochs.

Another objective of our proposed model was to use the
latent vector to predict ERP attended and unattended events
directly without any additional neural network layers besides
the sigmoid. For each test dataset, we train a supervised clas-
sifier using 10-fold cross-validation. Eight folds were used in
training. One was used as a validation set to tune the network.
The last fold was used to test the algorithm. The supervised
classification network (a single FC node) was trained using
the features extracted from the encoder. In the results, only
attended and unattended event classes were predicted from
the supervised network.

B. EXPERIMENT B: ADOPTION OF PRE-TRAINED
MODEL(ERPENET)
Instead of using the encoder as a fixed feature extractor, in this
experiment we trained (fine-tuned) the pre-trained ERPENet
on an unseen P300 dataset to only classify attended and
unattended events as a supervised learning task. The primary
objective of the pre-trained network was to partially combat
a drawback of DL that requires a substantial amount of data
in the training process, as an alternative approaching to data
augmentation mentioned in Experiment A.

For a small single dataset, DL performance was often
outperformed by the traditional machine learning algorithms.
Our proposed multi-task AE was trained with a variety of
large EEG datasets, which partially solved the problem.

General representations of EEG was learned via multi-task
training, thereby minimizing the overfitting problem. In this
section, the trained weights of CNN blocks and LSTM in
the encoder network have been adapted and extended using a
supervised classifier as shown in Figure 2.

First, we compared the training losses of an adapted
pre-trained model and the same model with Xavier [54]
initialized weights (random initialization). In the adapted
model, a concave-down triangular learning rate technique
was applied as shown in Figure 3 [55]. The model with
Xavier initialized weights was trained using the SGD with
learning rate of 2−8(0.002) and the decay rate of 10−5 as in
the Experiment A.

To further validate our model using a state-of-the-art
P300 feature extraction method, we compared our ERPENet
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FIGURE 3. The learning rate used in training of the pre-trained model.
Learning rate gradually increases from 0.00002 to 0.002 at epoch 100,
and linearly decreases until reaching 0.0002 at epoch 800.

against one traditional P300 feature extraction, the Xdawn
algorithm [56], and other three deep learning models:
EEGNet [28], DeepConvNet [29] and SSLC-AE. Xdawn is
one of state-of-the-art [26] dimensional reduction algorithms,
enhancing the features of ERP-based EEG. Bayesian LDA
classification was applied to classify the attended and unat-
tended event classes [27], with 10-fold cross-validation used
to cross-validate the Xdawn-LDA. Eight folds were used
in training one as a validation set to tune the number of
components in Xdawn. The last fold was used to test the
algorithm as reported in the next section.

EEGNet [28] model comprises three compact CNNs to
classify EEG-based BCIs in various tasks, including P300.
Each CNN layer is convoluted in different input dimension to
extract the representative features. In this evaluation, we con-
figured the filter sizes to match the model with the best per-
formance reported in [28], which were eigth temporal filters
and two spatial filters per temporal filter. Unlike ERPENet,
EEGNet avoids overfitting problems by limiting the trainable
parameters instead of dropout regularization, which reduces
classification performance in advance tasks. In [28], the per-
formances of EEGNet in P300 task outperformed Xdawn
algorithm and were comparable with DeepConvNet.

DeepConvNet [29] model comprises five CNNs which is
a deeper model than EEGNet. Hence, Dropout layers with a
rate of 0.5 are added after CNN layer to prevent the overfitting
in the same way as in ERPENet.

SSLC-AE, EEGNet and DeepConvNet models were also
pre-trained and fine-tuned with the same technique and
hyperparameter optimization as in ERPENet. The parameters
in EEGNet and DeepConvNet were configured as recom-
mended in [28] to match inputs in this work.

All models were trained and tested on a machine with
NVIDIA P100 GPU, E5-2667 CPU and 128 GB of mem-
ory with a batch size of 32 in the training and 128 in the
testing. We report the average training and testing times
for each trial per epoch over all datasets in second unit
in Table 3. Please note that the total training time(Ttotal) in

TABLE 3. Time complexity (seconds per trial per epoch) for all models
and number of trainable parameters for all deep learning models.

TABLE 4. Reconstruction error of the proposed multi-task AE and SSLC-AE
on six different datasets trained by holding out the testing dataset.

all models depends on the size of dataset, which is Ttotal =
NpreDpreTpre + NfineDfineTfine, where Npre denotes number
of training epochs in the pre-training, Nfine denotes number
of training epochs in the fine-tuning, Dtrain denotes size of
pre-trained dataset(5 datasets), Dtest denotes size of fine-
tuning dataset, which is 80% of holding out dataset as the
testing dataset, Tpre denoted time used in pre-training and
Tfine denoted time used in fine-tuning. The number of training
epochs depends on the data, which we observed the value to
be between 500-800 epochs in the pre-training process and
less than 300 in the fine-tuning process. In the fine-tuning
process, only the encoder network and classifier network
were trained, resulting in the difference between times used
in pre-training and fine-tuning.

VI. RESULTS
In this section, the results of Experiments A and B are shown
and statistically analyzed to evaluate our proposed multi-task
AE model.

A. EXPERIMENT A: MULTI-TASK AE RECONSTRUCTION
ERROR
Our proposed multi-task AE was trained on six datasets
using permutation testing and evaluated by reconstruction
error(MSE), and classification errors (accuracy and area
under the curve).

In table 4, the mean of reconstruction error and its standard
error was reported for both the proposed multi-task AE and
SSLC-AE. The results relating to the significantly outper-
formed methods are in bold text. With the Wilcoxon signed-
rank test, a two-sided p-value for the null hypothesis where
the mean difference of zero is less than 0.01 indicates that
the MSEs of the proposed multi-task AE are competitive
against SSLC-AE.

In the classification evaluation, the area under the curve
(AUC) of the receiver operating characteristic (ROC) is
reported in addition to classification accuracy (ACC), to test
the discriminability of the models. AUC is also known to
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TABLE 5. Attended and unattended event classification ACC and AUC of
the ERPENet and SSLC-AE on six different datasets trained by holding out
the testing dataset.

FIGURE 4. The validation loss from training the ERPENet model on
BCI-Spell dataset using pre-trained weights and Xavier initialization.

be insensitive to imbalance classes, validating the binary
classification model better than the accuracy metric.

Table 5 summarizes the quality of the latent vector by
comparing the ACC and AUC. Statistically, we cannot reject
the null hypothesis that the ACC and AUC are equal to
the Wilcoxon signed-rank test in every dataset. Only in one
dataset, namely P300-Amplitude, ERPENet outperforms the
SSLC-AE, while SSLC-AE outperforms the ERPENet in
two datasets. SSLC-AE performs slightly better than our
proposed model. However, as we will show in Experiment
B, fine-tuning was required for efficient use of the ERPENet.
This is consistent with a recent study in computer vision that
better models do not necessary extract better features without
appropriate adaptation of the feature extraction network [57].

B. EXPERIMENT B: ADAPTATION OF PRE-TRAINED
MODEL(ERPENET)
In theXavier weight initialized trainings, the validation losses
show signs of overfitting around epoch 25 on the BCI-COMP
dataset and around epoch 100 on BCI-Spell dataset, as shown
in Figure 4. This signifies the important of training ERPENet
with joint datasets. Moreover, the validation loss value indi-
cates that the pre-trained model at epoch 0 already outper-
forms all epochs of the Xavier initialized model.

In Table 6, there are only three datasets (P300-Amplitude,
BCI-COMP, EEG-Alcohol) that can be discriminated well
by all classifiers (ERPENet, ERPENet, DeepConvNet,
SSLC-AE and XdawnLDA), indicated by the AUC higher
than 70. The Wilcoxon signed-rank test, a two-sided p-value
of null hypothesis, is computed to compare the performance

between ERPENet and four baseline models. The test yields
a mean difference in significant values less than 0.01 for all
three datasets. The result indicates that the ERPENet outper-
formed all models in the three datasets, except for EEGNet
tested by EEG-Alcohol dataset. Moreover, adaption of the
ERPENet in the proposed multi-task AE improves perfor-
mance both in time efficiency and classification accuracy
showing the importance of adaptation.

VII. DISCUSSION
In Experiment A, the SSLC-AE is much shallower than our
proposed model, converging in only 295 epochs. On the other
hand, our proposedmulti-task AEwas trained for 833 epochs.
The training epochs required to train our model were about
three times greater, representing a trade-off for a more com-
plex model.

In Experiment B, EEGNet and DeepConvNet were pre-
trained in the same way as ERPENet. Regardless of the
compact size in EEGnet and the claim in [28] that EEGNet
could be trained with very limited data, EEGNet did not
perform well in BCI-COMP which is the smallest dataset in
this evaluation. Table 6 also shows that ERPENet outperforms
DeepConvNet, while DeepConvNet has comparable results
as in EEGNet, which is consistent with the experiments with
P300 dataset in [28]. ERPENet has a larger size of trainable
parameters and longer training and inference times than the
others, but with the speed of nowadays GPU, ERPENet is
capable of predicting more than 2600 P300 trials per second.

Among all datasets, BCI-COMP, EEG-Alcohol and P300-
Amplitude have the smallest number of samples, with
ERPENet obtaining a higher ACC and AUC than the Xdawn
algorithm on all three datasets. The results indicate that
ERPENet can extract the important feature better than
XdawnLDA, a state-of-the-art in traditional machine learning
algorithm in ERP, dues to the adaptiveness of CNN. It could
be inferred that the pre-trained model would improve the
training of DL models on datasets with a small number of
samples.

In ERPENet training, multiple P300 datasets from various
sources and tasks were combined together to improve the
model. There was some incompatibility in recording stan-
dards and protocols across the datasets, increasing the bias
of the model. Before incorporating the supervised classifier
part, experiments were also conducted using variational AE,
but high diversity between P300 tasks prevented the models
from reaching the optimal points and ultimately overfited to
the dominated dataset.

In this work, comparisons across all datasets were possible,
since the EEG was normalized before the training process.
From Table 4, Auditory-BCI, BCI-Spell, and Decode-Audi
datasets had higher MSE compared to the others for both
the multi-task AE and SSLC-AE. In the classification tasks,
the AUCs of auditory-BCI, BCI-Spell, and Decode-Audi
datasets were below 70 for all methods. A single FC in
ERPENet was considered a simple model which might not be
suitable classifiers for these three tasks. Increasing the size of
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TABLE 6. Attended and unattended event classification ACC and AUC of fine-tuned ERPENet, EEGNet, DeepConvNet and SSLC-AE, in comparison with
XdawnLDA on six different datasets.

the classifier without pre-trained weight might lead to over-
fitting problem which we would like to avoid. Additionally,
Auditory-BCI and Decode-Audi are both auditory tasks, and
P300 might not be able to capture all of the critical features.
Other constituents of the ERP, such as N200 and increasing
the size of the classifier network could be considered for
inclusion in future works.

VIII. CONCLUSION
In conclusion, we have shown that our proposed multi-task
AE, incorporating CNN and LSTM, has the capability for
better compression than the previously proposed multi-task
AE (SSLIC) composed of FCs, while maintaining high accu-
racy in the prediction of attended and unattended events
on single trials of P300 EEG. Moreover, the encoder part
of our proposed model can be extended as a pre-trained
network, namely ERPENet, for other P300 tasks thereby
reducing overfitting during training and hastening the training
of complex models. This extended classification model also
outperformed EEGNet and DeepConvNet, which are state-
of-the-art deep learning models in EEG classification tasks,
along with a state-of-the-art dimensional reduction algorithm
designed for P300, Xdawn. This is a pioneer work that
proposes the concept of the pre-trained networks for other
EEG-related applications.
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