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ABSTRACT It is a great challenge to achieve interpretable collaborative object classification in multi-
sensor networks. In this situation, argumentation-based object classification has been considered a promising
paradigm, due to its natural means of justifying and explaining complicated decision making within multiple
agents. However, disagreements between sensor agents are often encountered because of various object
category levels. To address this category of granularity inconsistent problem in multi-sensor collaborative
object classification tasks, we propose a cognitive context knowledge-enriched method for classification
conflict resolution. The cognitive context is concerned, in this paper, to investigate how rich contextual
knowledge-equipped cognitive agents can facilitate semantic consensus in argumentation-based object
classification. The empirical evaluation demonstrates the effectiveness of our method with improvement over
state-of-the-art, especially in the presence of noisy sensor data, while giving argumentative explanations.
Therefore, it is suggested that people who can benefit from the proposed method in this paper are the
human user of multi-sensor object classification systems, in which explaining decision support is one of
the important factors concerned.

INDEX TERMS Multi-sensor networks, argumentation, cognitive context, explainable artificial intelligence,
object classification.

I. INTRODUCTION
As multi-sensor networks for object classification become
increasingly complex, it has been one of the most impor-
tant requirements to build explainable artificial intelligence
(XAI) systems for human users [1], [2]. Since most of
intelligent algorithms to classify objects are lack of trans-
parency and interpretability (i.e. black box), it is urgently
needed to give the reasons behind the decision support of
multi-sensor systems, e.g. battlefield situational awareness
scenarios. In particular, semantic explanations, rather than
evidences, are expected to reveal the underlying reasoning
process in human-interpretable terms. Hence, explaining the
predictions of intelligent systems, as a basic component
of XAI [3], [4], poses a serious challenge to researchers from
academics and industry in multi-sensor networks.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jianshan Sun.

One research area in which explanation is available is that
performing classification tasks towards the use of agent argu-
mentation [5], i.e. a popular approach to commonsense rea-
soning [6]. It is noted that argumentation provides a natural
means of justifying agents’ point views that greatly resemble
the way, in which humans come to a well-founded consensus.
Thus, multi-agent argumentation based object classification
techniques are gaining increasingly interests in intelligent
system research community, due to its interpretability [7], [8].
In addition, to give semantic explanations for classification,
our previous research [9] has shown that argumentation-based
multi-agent collaboration classification could be improved by
semantic attribute-value tree guided rule learning.

However, in the current multi-sensor networks, multi-
granularity often exists in categories of objects [10],
which may confuse the object classification tasks at dif-
ferent abstract levels. Considering space object classifica-
tion for example, its main tasks is to classify the objects
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(e.g. satellites, debris and missiles) with electromagnetic,
optical and other sensors in complex space environments.
Not only the attribute-values (e.g. critical earth orbit, highly
elliptical orbit, tundra orbit) of objects are hierarchical, but
also the categories (e.g. satellite, reconnaissance surveillance
satellite, early warning satellite) of objects are various in
granularity. In this circumstance, different sensor agents may
have classification assertions at different abstract levels [11],
thus lead to disagreement of categorizing in argumentation
based object classification. This is the problem that how to
cope with category granularity inconsistency in multi-sensor
object classification systems.

In this work, we attempt to bridge the gap between
argumentation based object classification and semantic
knowledge guided machine learning. Our hypothesis is that
cognitive context knowledge could be exploited to construct
arguments for reaching semantic consensus dynamically, and
further increase object classification performance based on
argumentation. Thus we propose a cognitive context knowl-
edge enriched argumentation method for object classification
in multi-sensor networks, called CCEA. Cognitive context
is concerned in our research, for the reason that not only
the static semantic attribute-value tree, but also the dynamic
cognition of object category granularity plays important
roles in reaching agreements and giving semantic explana-
tions. As an implementation of the proposed method, Prism
algorisms [12], which learn human-interpretable modular
classification rules, are used by each sensor agent to generate
classification arguments. In general, two significant contribu-
tions are believed to be provided in this study. First, we bridge
the gap between argumentation based object classification
and semantic knowledge guided machine learning, with a
cognitive context enriched method, which demonstrate the
effectiveness with improved classification performance over
state-of-the-art. Second, a justified and explainable object
classification mechanism is established to reach semantic
consensus of multi-sensor networks through argumentation
in human-interpretable terms.

The rest of this paper is organized as follows. In next
section, related studies are reviewed. Section III presents
our cognitive context knowledge enriched method. The pro-
posed method is evaluated in comparison with state-of-the-
art alternatives in Section IV. Finally, this work is concluded
in Section V.

II. RELATED WORK
Concerning explainable object classification, it is widely
accepted that not only good system performance is required,
but also the reasons behind decision support are quite
important to human users. Generally, object classification in
machine learning research communities is a basic topic on
categorizing new observationswith a classifier, which learned
from lots of categorized examples. To provide easy assimi-
lated object classification for decisionmaking inmulti-sensor
sensor networks, in this paper, the areas of work related
to our method are argumentation based object classification

and machine learning classifiers enhanced with hierarchical
semantic knowledge.

A. ARGUMENTATION BASED OBJECT CLASSIFICATION
Recently, multi-agent argumentation has been known as one
of the effective techniques tomulti-party decisionmaking, for
the reason that it can provide explanations with justified argu-
ments when reaching consensus [5]. In general, according to
different structures of object classification systems, there are
two different argumentation approaches, including concen-
trated ones and distributed ones. On one hand, the basic idea
of concentrated argumentation based approach is to construct
arguments in favor of all possible categorization of the partic-
ular object to be classified, thus a ‘‘valid’’ classification can
be suggested by the so-called argumentation framework [13].
In Carstens’s study [14], they developed a classification
method that combines reasoning through argumentation with
supervised classifiers, thus the possibility of misclassifica-
tion can be reduced. It is noted that an computational argu-
mentation framework, which incorporates high level activity
classification arguments with low level sensor classifiers,
has been proposed by Fan et al. [15]. Their experiments
showed that the CAA (Computational Abstract Argumenta-
tion) frameworks not only can give comparable classification
results within reduced learning time, but also could provide
argumentative explanations. Thus the explanatory power for
object classification can be offered by argumentation [16].
On the other hand, in distributed argumentation based
approaches object classification tasks are performed by
reaching consensus amongmultiple classifier agents. In order
to cope with the inconsistent problem transparently in mul-
tiple classifier system, Conţiu et al. [6] proposed a con-
flict resolution method based on multi-agent argumentation,
instead of voting mechanism. Their experiments, evaluated
on a remote sensing crop dataset, illustrated that the
proposed method could outperform the voting alternatives
significantly. Considering multi-agent learning, an argumen-
tation based framework for multi-agent inductive learn-
ing [17] is proposed by introducing dialogue game, to
improve the performance of classification systems, with
the two agents scenario. Wardeh et al. [18] proposed the
so-called PISA (Pooling Information from Several Agents)
argumentation mechanism that allows each agent to hold
only one fixed assertion, arguing about the categories of
objects. Furthermore, Hao et al. [7] proposed Arguing Prism,
a multi-agent argumentation based approach for collaborative
classification, using the Prism modular classification rule
learning algorithms. The empirical investigation on its toler-
ance of inconsistent data demonstrated the superior classifi-
cation performance of Arguing Prism.

The proposed method in this paper adopts argumentation
based object classification, for the reason that it is a similar
approach to the behaviors that several persons making joint
decisions in the networked environments. Corresponding to
Contin et al.’s work [6], which exploited ensemble learning to
categorize objects, we also perform object classification tasks
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with multiple classifiers, but focuses on leveraging cognitive
context for improving the arguments generation. In addition,
the method proposed in this paper could cope with the multi-
class problem with more than two agents, and each agent
could flexibly alter object classification assertion for multi-
sensor networks, rather than the fixed mechanism in existing
works.

B. MACHINE LEARNING CLASSIFIERS ENHANCED WITH
HIERARCHICAL SEMANTIC KNOWLEDGE
It is well know that hierarchical classification is one of
the main styles for categorizing objects [11]. Through the
use of common semantic taxonomies, which defined in
the ‘‘Is-A’’ subset relationship, hierarchical classifiers could
discriminate objects at different abstract levels, rather than
justmake a ‘‘flat’’ classification. As a typical kind of semantic
taxonomies, Ontology is developed for representing domain
knowledge in cognitive computing. And Ontology based
classifiers, which organize domain knowledge hierarchi-
cally for object classification, have received much research
attention [19]–[21]. For instance, to investigate the typical
object classification dataset ‘‘Animals with Attributes’’ [22],
researchers have constructed a semantic taxonomy, called
AwA-10 [23], by querying theWordNet Ontology [24]. Using
this hierarchical semantic knowledge guided by Ontology,
Liu et al. obtained Hierarchical Classification Rules (HCRs),
and constructed classifiers for object classification at various
abstract levels [25]. Our previous work [9] has demonstrated
that semantic attribute-value trees (SAT), which based on
the hierarchical relations in attribute values of objects to be
classified, can be used to generate object classification rules
at various abstract levels. Besides, Ontology reasoning in the
SAT enriched approach can also be used to generate argu-
ments for agents in argumentation based object classification
tasks.

Here, we propose a cognitive context knowledge enriched
method, by exploring the hierarchical semantic knowledge
both in semantic attribute-values and object categories, for
generating classification arguments dynamically. In previous
works, only the semantic attribute-value hierarchy was used
as a static knowledge source for argumentation based multi-
agent classification, thus ignoring the problem of object cate-
gory granularity inconsistent in object classification systems.
Hence, in this paper, not only the SAT, but also the rich
context knowledge of categories is concerned dynamically,
aiming to discriminate the objects at various abstract levels.

III. THE COGNITIVE CONTEXT KNOWLEDGE ENRICHED
METHOD
In this section, we show how to leverage cognitive con-
text knowledge for argumentation based object classification,
namely CCEA, in order to cope with the category granularity
inconsistent problem in multi-sensor networks. In particular,
we assume that each sensor agent applies not only domain
Ontology guided Prism rule learning technique with semantic
attribute-value trees, but also multi-granular classification

rules, to generate arguments dynamically. An overview of the
proposedmethod appears in Figure 1. The system, which pro-
vides object classification results with semantic explanations
when given object instance to be classified, consists of three
components, showing in three different colors respectively.
The first component, indicated in purple box, is our col-
laborative argumentation model for multiparty classification,
presented in subsection A. Then, Prism rule learning guided
by semantic attribute-value context for each sensor agent,
is detailed in subsection B within the blue box. Finally, in
subsection C, we describe how to generate arguments guided
by category context knowledge dynamically, for reaching
agreements with argument game. It is indicated in the yellow
box, to bridge the gap between the purple one and the blue
one.

A. MULTIPARTY CLASSIFICATION BASED ON THE
COLLABORATIVE ARGUMENTATION MODEL
As indicated previously, in multi-sensor object classification
systems, multiple sensor agents try to reach semantic con-
sensus about the category of a particular object. Here each
sensor agent could learn from its own training datasets, and
make the prediction of object categories. We focus on multi-
sensor collaborative classification, which defined formally as
follows.
Definition 1 (Multi-Sensor Collaborative Classification):

Given a multi-sensor object classification system, where the
set of sensor agents Ag = {Ag1, · · · ,Agn}, the example
spaceX and the shared object category concept spaceC , each
sensor agent has its own training data, T1, · · · ,Tn. For a new
object instance x(x ∈X), the aim ofmulti-sensor collaborative
classification is to predict the category of x, such that it is
compatible with each sensor agent’s learned classifier.

Since computational argumentation has been recognized
as a feasible technique for conflict resolution through multi-
party argument game, we build a multiparty collaborative
argumentation model for reaching agreements in object clas-
sification, via extending Yao et al.’s Arena [26] with different
kinds of arguments. Generally, an argumentation framework
consists of a finite set of arguments and corresponding attack
relations among them. In this case, our argumentation model,
described in purple box of Figure 1, uses different arguments
from Dung’s abstract framework [27], in that classifying
arguments are generated for a given argumentation topic.
Definition 2 (Multiparty Collaborative Argumentation

Model, MCAM): The multiparty collaborative argu-
mentation model is formally defined as MCAM =<

Tc,Par,Ref,O,Roles,ArRul,Q,R >, where: (i) Tc is
the topic to be argued; (ii) Par ⊆ Ag, is the set of all
participant agents in multiparty argumentation; (iii) Ref is
the Referee agent, who manages to coordinate multiple argu-
ing agents; (iv) O is the common context knowledge shared
by agents in Par−; (v) Roles = {Master, Challenger,
Spectator}, is the set of roles played by agents in Par, con-
sisting of masters, challengers and spectators respectively;
(vi) ArRul is the set of argumentative rules abided by
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FIGURE 1. An overview of the proposed method.

agents in Par; (vii) Q is the set of classifying arguments;
(viii) R is the set of attack relationships between arguments,
namely R = Q× Q.

The MCAM is built here to allow multiple sensor agents
to argue about the category of a new object instance
collaboratively. Each sensor agent argues for its own asser-
tion and against other conflicting ones. Classifying argu-
ments for or against a particular category assertion are
generated through learning from a sensor agent’s own
local training dataset. Specifically, it is defined formally as
follows.
Definition 3 (classifying Argument): A classifying argu-

ment Arg=<Ag, x, ca, s, ϑ >, where: (i) Ag ∈ Par is
the proponent agent; (ii) x ∈ Tc, is the object instance to
be classified; (iii) ca ∈ C, is the classification assertion;
(iv) s is the supporting reason of ca, a.k.a. prerequisite;
(v) ϑ ∈ ( 0, 1] is the strength of Ag′ s classifying argument,
noted as strenAg(Arg).

It is noted that the strength of a classifying argument
depends on the choice of machine learning algorithms. With-
out loss of generality, classifying arguments in our study
are generated using Prism inductive rule learning algorithms,
which will be described in the next subsection. In general,
there are three different kinds of classifying arguments in
MCAM, defined from Definition 4 to 6.
Definition 4 (Advocating Argument): An argument

Arg=<Ag, x, ca, s, ϑ > is an advocating argument for the
given topic Tc in MCAM, iff: (i) Ag = Master ; (ii) x ≡
Tc; (iii) ca ∈ C; (iv) x, s ` ca; (v) ϑ ≥ Threshold
(0<Threshold≤1).

Where ‘‘≡’’ represents a equivalent relation between the
two vectors, and ‘‘`’’ represents implication relation inMath-
ematical logic. The subsequent description in this paper fol-
lows the same convention.
Definition 5 (Rebutting Argument): Suppose Agi (Agi ∈

Par) and Agk (Agk ∈ Par) are two participant agents
in MCAM, Arg =< Agi, x, ca, s, ϑ > and Arg′ =<
Agk , x

′, ca′, s′, ϑ ′ > are two classifying arguments proposed
by them respectively. Arg is the rebutting argument ofArg′,
iff: (i) Agi 6= Agk , Agi ∈ {Mast,Challenger},Agk ∈
{Master,Challenger}; (ii) x ≡ x′; (iii) ca 6= ca′, ca ∈ C,

ca′ ∈ C; (iv) Arg �[[Agi,Agk]] Arg′.
Where Arg �[[Agi,Agk]] Arg′ means that Arg is preferred

toArg′ betweenAgiandAgk , considering the strength of these
two classifying arguments.
Definition 6 (Undercutting Argument): Suppose Agi

(Agi ∈ Par) and Agk (Agk ∈ Par) are two partici-
pant agents in MCAM, Arg =< Agi, x, ca, s, ϑ > and
Arg′ =< Agk , x

′, ca′, s′, ϑ ′ > are two classifying argu-
ments proposed by them respectively. Arg is the under-
cutting argument ofArg′, iff: (i) Agi 6= Agk , Agi ∈
{Master},Challenger,AgkMaster,Challenger ; (ii) x ≡ x′;
(iii) ca = P

(
ca′
)
; (iv) s′ @ s.

Where ca = P
(
ca′
)
means that ca′ is the negative concept

of ca, namelyP
(
ca′
)
= ¬ca′, and s′ @ smeans that a more-

general-than relation [17] exists between s′ and s, and s′ is
more general than s.
The classifying arguments are communicated via the

speech acts among multiple sensor agents, and the realization
of these speech acts is detailed through the collaborative

71364 VOLUME 7, 2019



Z. Hao et al.: Leveraging Cognitive Context Knowledge for Argumentation-Based Object Classification

argumentation dialogue protocol in MCAM. Assuming that
we have a new object instance to be classified, the collabora-
tive argumentation dialogue protocol operates as follows:

(1) At the first round, themaster proposes a new classifying
argument Arg, such that its strenAg(Arg) is higher than a
given threshold. The Referee agent establishes a new argu-
ment game tree, showed in Figure 1, whose root represents
the master’s classification assertion;

(2) In the second round, the other participate agents attempt
to defend or attack the proposing argument. If all the agents
fail to perform any speech act, the dialogue terminates, and
the object instance is classified according to the assertion
prompted by the master. Otherwise, the argument game tree
is updated with submitted speech acts;

(3) The argumentation process continues until the master
is defeated, then another round of argumentation begins,
the protocol moves to (1);

(4) If two subsequent rounds passed without any new
speech acts being submitted to the argument game tree, or if
a particular number of rounds have passed without reaching
semantic consensus, the Referee agent Ref terminates the
dialogue.

More details of the implementation of MCAM will no
longer be described in this section due to the limited space.
Once a collaborative argumentation dialogue has been termi-
nated, the status of the argument game tree will indicate the
object classification result and its underlying reasons in form
of classifying arguments.

B. PRISM RULE LEARNING WITH SEMANTIC
ATTRIBUTE-VALUE TREES
As already stated above, each sensor agent in MCAM has
its own local training datasets of object examples for learn-
ing to generate classifying arguments. Here each object
example consists of several attribute-value pairs and a sin-
gle class label indicating its category. In this case, given
a particular object instance to be classified, all the partic-
ipant agents try to find arguments for or against certain
classification assertion through machine learning algorithms.
We choose amodular rule induction algorithm, namely Prism,
rather than the ‘‘black box’’ algorithms (e.g. support vec-
tor machine, artificial neural network, etc.), for the rea-
son that Prism can provide transparent classifiers, even can
be more easily assimilated by human users than decision
trees [28].

Although modular classification rules are readily accept-
able, sensor agents still need to have access to background
domain knowledge, in order to facilitate arguing with other
agents and give semantic explanations to human users. Gen-
erally, domain knowledge can be represented by Ontology,
which is a formal understanding of shared context knowledge.
Thus domain Ontology could be employed by machine learn-
ing algorithms in reasoning and inducing. Considering the
aforementioned space object classification tasks, the domain
Ontology of space objects is a shared understanding within a

community of domain experts, and can be used for reasoning
about the categories of space objects.

Typically, the hierarchical structure in the datasets of a
particular domain is represented by the class-subclass rela-
tions of domain Ontology. Thus, we can make generaliza-
tion over the value of attributes while learning classification
rules, in order to obtain compact and semantic explainable
classifiers. By exploiting the domain Ontology of attributes,
the Semantic Attribute-value Tree (SAT) is proposed to
enhance context knowledge for classification rule learning.
In what follows, we define SAT, and introduce the related
notations of SAT.
Definition 7 (Semantic Attribute-value Tree, SAT): A SAT

associated with a nominal attribute A, noted as SAT(A), is a
tree with root node A, and all the leaf nodes of it relate to
its primitive attribute values. Besides, all the other non-leaf
nodes relate to generalized values of the attribute A. The
edges of SAT indicate the ‘‘class-subclass’’ relations between
attribute value nodes, from the most generalized root node to
the most specified leaf nodes.

According to the definition of SAT, given a nominal
attribute A, the structure of SAT(A) are described as fol-
lows: (i) the root node is noted as Root_SAT (A); (ii) All
the primitive values of A are represented by the set of
leaf nodes, noted as Prim(A), also Leaves_SAT (A); (iii) All
the child nodes of an arbitrary node v (except for the leaf
nodes) are noted as Children(A, v); (iv) Given an arbitrary
node v, the depth Depth(A,v) in SAT(A) is the total number
of edges from the root node to v; (v) Given an arbitrary
node v, let the IsLeaf(A,v) to be the Boolean flag of v, that
is, if v ∈ Leaves_SAT (A), then IsLeaf(A,v) = T , else
IsLeaf(A,v) = F .

As described in the previous subsection, in MCAM, given
a training dataset of object examples T = {ei|ei =
(xi, ci) , xi ∈ X,ci ∈ C,i = 1, 2, · · · }, suppose
A = {A1, . . .AA} is the set of all the referred attributes, S∗ =
{SAT (A) , · · · ,SAT (AA) is the set of the corresponding SAT,
V_A = {v1, · · · , vt} is the set of attribute A’ s values, and
C={c1, · · · , cn} is the set of all the categories. In this case,
we have the following conventions: (i)3(SAT (Ak) , v) is the
set of node v’s ancestors in SAT (Ak); (ii) λ(SAT (Ak) , v) is
the father node of v in SAT (Ak); (iii) σ (ci,T(i = 1, · · · n)
is the accumulated count of the appearance of ci in T;
(iv) σ (Ak, v,T) is the accumulated count of the appearance of
attribute-value pairAk = v inT; (v) suppose {vk1, , · · · , vkV }
is the set of attribute Ak ’s values, then T = {T1, · · · ,TV
means the V subsets of T divided by V values of the very
attribute.

To illustrate the evaluation criterions for the generalization
of attribute values in learning classification rules, we first give
the definition of classification information entropy, and then
the related classification information gain.
Definition 8 (Classification Information Entropy): Given

a training dataset of object examples T = {ei|ei =
(xi, ci) , xi ∈ X,ci ∈ C, i = 1, 2, · · · } with concept space of
categories C = {c1, · · · , cn}, the classification information
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TABLE 1. Attribute value generalization algorithm based on classification information gain.

entropy of C

CInfoEntT (C) = −
n∑
i=1

σ (ci,T)
m(T)

· log2

(
σ (ci,T)
m(T)

)
(1)

where m(T) is the total number of examples in T.
Definition 9 (Classification Information Gain): Given

a training dataset of object examples T = {ei|ei =
(xi, ci) , xi ∈ X,ci ∈ C, i = 1, 2, · · · } with concept space
of categories C={c1, · · · , cn} and the referred attribute set
A = {A1, . . .AA} , the classification information gain of C
and Ak (Ak ∈ A, k = 1, · · ·A, )

CInfoGainT (C,Ak) = CInfoEntT (C)

−

V∑
l=1

m(TV )
m(T)

· CInfoEntTV (C) (2)

where CInfoEntTV (C) is classification information entropy
of C in subset TV .
It is clearly that given a certain concept space C, the larger

the value of CInfoGainT (C,Ak), the greater the contribution
of attribute Ak to the classification task. Thus, we exploit
classification information gain as a generalization criterion
when performing rule learning guided by SAT. In what fol-
lows, our attribute value generalization algorithm based on
classification information gain is presented in TABLE 1. The
main idea of this generalization algorithm is to replace the

nominal attribute values with their father node iteratively,
during the bottom-up induction of Prism learning, until the
value of classification information gain no longer grows.

In Algorithm 1, we first compute the initial value of clas-
sification information gain (line 01), and construct an empty
set Ban for preserving the attribute values that cannot be
generalized (line 02). At the same time a set for preserving
all the values of attribute Ak is constructed (line 03). Then
when there is an attribute value v ∈ Vi that can be generalized
(line 05 to 14), the generalized attribute value v′ is obtained
with SAT. In this case, a new set Vk ′ is created through
replacing v with v′, and the corresponding new training
set T′. Next, it is checked that if the value of classification
information gain drops in this generalization process. If the
value does not change, then replace T with T′, and Vk with
V′k respectively, else put this attribute value v in the set Ban.
The above execution is going on repeatedly, until there is no
attribute value in Vk , which can decrease the classification
information gain.

After the set of generalized values for each attribute in A,
a new SAT guided algorithm is proposed for introducing the
semantic attribute-value tree into Prism induction, to learn
compact and human-interpretable classification rules. This
algorithm is described in TABLE 2.

In Algorithm 2, an empty setH for preserving the learned
classification rules is first constructed (line 01). Then for a
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TABLE 2. SAT guided Prism induction for learning modular classification rules.

particular object category ci(ci∈ C), the attribute value hier-
archy is introduced into Prism rule learning process, guided
by SAT (line 02 to 16). While seeking for the attribute-
value pair, which makes the maximum contribution to object
classification information amount δ, two loops need to be
executed. These two loops consist of the outer one for the set
of generalized attribute value sets VG and the inner one for
each set of attribute values Vl (line 08 to 12). It is noted that
the bottom-up inductive reasoning is executed in both Prism
learning and the hierarchical structure of SAT. Thus they can
be combined seamlessly for learning modular classification
rules. In the next subsection, we will demonstrate how to
generate classifying arguments for MCAM.

C. GENERATING ARGUMENTS WITH MULTI-GRANULAR
CLASSIFICATION RULES
Having presented the multiparty collaborative argumentation
model and each sensor agent’s classification rule learning
enhanced with SAT context knowledge, this subsection
describes the generation of classifying arguments used
in argumentation for MACM. Although it is shown that

Prism learning for classification rules can be enhanced
by the context knowledge of semantic attribute values,
the classifying arguments for collaborative argumentation
in real time are still confronted with category granular-
ity inconsistent difficulties. Thus, in what follows, we first
present the proposed multi-granular classification rule learn-
ing algorithm, and then illustrate how to generate classify-
ing arguments with the rules dynamically for collaborative
argumentation.

In most current research of distributed machine learning
communities, classification tasks are performed with the
‘‘flat’’ structure of object category set, without any consider-
ation on various levels of class labels. In fact, many realistic
object classification tasks themselves contain hierarchical
structures of categories. Thus it is a big challenge for the
sensor agents inMCAM to reach consensus about a particular
category of a new object. In this circumstance, we propose to
learn multi-granular classification rules for generating classi-
fying arguments in a coordinated manner. Here, the definition
of multi-granular classification rule is firstly described as
follows.
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Definition 10 (Multi-Granular Classification Rule): A
multi-granular classification rule mgcr is defined in the
form:IFAirel ivix

∧
· · ·
∧

Ajrel jvjx · · ·
∧
class = ck THEN

class = subck , where Ai, . . .,Aj ∈ A are attributes,
rel i, · · · , rel j ∈ {=, 6=, <,>,≤,≥}, are relational operators,
vix , · · · , vjx are attribute values, and subck is the direct sub-
class of ck in the category taxonomy Ta.
Clearly, the prerequisite of a mgcr , noted as prer(mgcr),

is a logical conjunction of attribute-value pairs and a category
discrimination. The consequent, noted as cons(mgcr) is a
subcategory classification. Here, an attribute-value pair typi-
cally has the form Ai = vix for nominal attributes, and other
forms for numeric attributes. As indicated in the foregoing
subsection, we focus on nominal attributes in this paper,
which can be enhanced with SAT for Prism rule learning.

As seen from Definition 10, using the multi-granular
classification rules top-down recursively, we can easily
obtain the specific category of a new object. In this
way, Given a series of multi-granular classification rules,
mgcr1,mgcr2, · · ·mgcrη, used for hierarchical classifica-
tion, it is obvious that cons(mgcr i) ∈ prer(mgcr i+1)(1 <

i ≤ η + 1). Since the range of a given object category
gradually becomes smaller with the use of multi-granular
classification rules, such a learning process of subsequent
rules converges quickly. Therefore, the various levels of a
new object’s categories required in MCAM can be obtained
by using the multi-granular classification rules.

Following the description of subsection B, multi-granular
classification rules can be learned hierarchically from the
training datasets, referring to the category taxonomy Ta,
which obtained from domain Ontology. Our proposed algo-
rithm for learning multi-granular classification rules is
described in TABLE 3.

In Algorithm 3, a set of multi-granular classification rules
are learned from a training dataset T and category taxon-
omy Ta, concerning target category ck . First, a new training
dataset T′ is created based on T, leaving the examples labeled
by the subclass of ck (line 04 to 11). Then, SATE-Prism
classification rules (described in Algorithm 2) are derived
from T′ with various attribute sets (line 14 to 17). It is noted
that although several rules may have the same consequent,
their prerequisites consist of different attribute-value pairs.
Next, the given target category ck is added to multi-granular
classification rules that are transformed (line 18 to 21). This
mgcr_Learning algorithm executes recursively until the rules
for each subclass of ck are learned (line 22 to 25).
As defined in subsection A, there are three different kinds

of classification rules, namely advocating arguments, rebut-
ting arguments and undercutting arguments. Since sensor
agents in MCAM may have difficulties in reaching agree-
ments about the object categories at various abstract levels,
they need to exploit the cognitive context knowledge men-
tioned above for generating classifying arguments required
dynamically. In what follows, we describe the process of
generating these three kinds of arguments used by sensor
agents, with the learned multi-granular classification rules.

1) ADVOCATING ARGUMENTS
Given an object instance x(x ∈ X) to be classified, a mgcr
based advocating argument α =< Ag, x, ca,h, num,
den, ϑ >, where Ag is the proponent agent, ca is the clas-
sification assertion, h is the corresponding rule giving the
reasons for ca, num is the count of examples covered correctly
by h inAg’s local data repository, den is the count of examples
covered by h in Ag’s local data repository, ϑ is the strength
of α. Here, suppose the given object instance x =

(v1, · · · , vn), then the process of generating advocating argu-
ments is performed by agent Ag in the following steps.
Step 1: Check that whether there are any mgcr that cover-

ing the object instance x. If it is true, then return the rule with
maximum strength, as the supporting rule for the advocating
argument, else, turn to the next step;
Step 2: Considering the category of x, to find its father

concept in the category taxonomyTa. If it exists, then change
the category of x to its father concept, and go back to Step 1,
else turn to the next step;
Step 3: Iterative execute the Step 2 until there is no father

concept for the current category. If the mgcr is find, then
return the advocating argument based on that rule, else return
false, indicating that agentAg cannot generate any advocating
argument for the object instance x.

2) REBUTTING ARGUMENTS
Given an object instance x(x ∈ X) to be classified and its
advocating argument α =< Ag, x,ca,h, num, den, ϑ >,
then its corresponding rebutting argument β =< Ag′, x,
ca′,h′, num′, den′, ϑ ′ >, where: (i) Ag′ 6= Ag, is rebutting
agent; (ii) ca′ 6= ca, means that Ag′ holds a different classifi-
cation assertion from ca; (iii) h′ is another classification rule
giving the reasons for ca′; (iv) num′ is the count of examples
covered correctly by h′ in Ag′’s local data repository; (v) den
is the count of examples covered by h′ in Ag′’s local data
repository; (vi) ϑ ′ is the strength of β. In this circumstance,
the process of generating rebutting arguments is performed by
agent Ag′, following the steps in (1), but requiring to satisfy
the condition of strength, i.e. ξ [[Ag,Ag

′]] (β) > ξ [[Ag,Ag
′]] (α).

3) UNDERCUTTING ARGUMENTS
Given an object instance x(x ∈ X) to be classified and its
advocating argument α=<Ag, x, ca,h, num, den, ϑ >, then
its corresponding undercutting argument γ =< Ag′′, x,
ca′′,h′′, num′′, den′′, ϑ ′′ >, where: (i) Ag′′ 6= Ag, is under-
cutting agent; (ii) ca′′ = P (ca), means that Ag′′ holds the
negation of classification assertion from ca; (iii) h @ h′′, is a
longer classification rule than h, giving the reasons for ca′′;
(iv) num′′ is the count of examples covered correctly by h′′ in
Ag′′’s local data repository; (v) den′′ is the count of examples
covered by h′′ in Ag′′’s local data repository; (vi) ϑ ′′ is the
strength of γ . In this circumstance, the process of generating
undercutting arguments is performed by agent Ag′′, following
the steps in (1), but requiring to satisfy the condition of
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TABLE 3. Learning multi-granular classification rules for generating arguments.

more-general-than relation in Step 1, i.e. a more specific
mgcr is needed for the undercutting argument.

IV. EMPIRICAL EVALUATION
In this section, the empirical evaluation of our proposed
CCEA method is presented. We demonstrate that the cog-
nitive context knowledge can facilitate argumentation based
object classification in multi-sensor networks, and further
improve its classification performance. Thus various exper-
iments were performed using a practical Space Object Clas-
sification dataset, i.e. SOC dataset, and seven benchmark
datasets from the UCI Machine Learning Repository [29]. In
general, two aspects of experiments were designed to evaluate
the effectiveness of CCEA method. On one hand, the hier-
archical categorization performance in argumentation based
object classification can be improved by leveraging cognitive

context knowledge; On the other hand, does our cognitive
context knowledge enriched method exhibit robustness to
noisy sensor data?

For the practical SOC dataset, it was collected from
NORAD_Catalog (North American Aerospace Defense
Command)1 and UCS_Satellite database (Union of Con-
cerned Scientists).2 The NORAD_Catalog contains
8071 space object examples, with 9 attributes (cospar_id,
nord_id, period, perigee, apogee, eccentricity, rcs, size,
amr) and 3 categories (Debris, RocketBody and Satellite).
UCS_Satellite database contains 1346 satellite object exam-
ples, with 17 attributes (cospar_id, nord_id, period, perigee,

1http://www.norad.mil

2https://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-
database
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TABLE 4. Datasets used for our empirical evaluation.

FIGURE 2. The illustration of multi-granular categories in SOC dataset.

apogee, eccentricity, orbit type, orbit class, longitude, power,
dry mass, launch mass, launch vehicle, launch site, owner,
contractor, users) and 15 categories (Communications Satel-
lite, Space Physics Satellite, Navigation Satellite, Earth
Observation Satellite, Surveillance Satellite, Meteorology
Satellite, Early Warning Satellite, Earth Science Satellite,
Reconnaissance Satellite, Remote Sensing Satellite, Tech-
nology Development Satellite, Ocean Satellite, Meteorol-
ogy Satellite, Space Science Satellite, Maritime Tracking
Satellite). For the purpose of our experiments, these two
datasets were merged into the SOC dataset, through left
join on the attribute cospar_id. Thus 9099 object examples
are obtained in the SOC dataset. In general, three SATs
were obtained, including orbit type, payload andRadioWave.
Besides, the multi-granular categories of objects is illustrated
in Figure 2.

The details of the chosen datasets for our experimental can
be seen in TABLE 4. These datasets vary in their numbers of
examples, nominal attributes, categories and category levels.
Without loss of generality, the cognitive context knowledge,
i.e. the semantic attribute-value and category hierarchies were

obtained using the WordNet Ontology [21]. Thus all of these
datasets are ready for learning by each sensor agent to per-
form argumentation based object classification tasks.

It is noted that all the experiment results presented in this
section are estimated using Ten-fold Cross-Validation (TCV).
That is to say, the given dataset was first partitioned into ten
equal sized subsets, and then each subset was used for testing
in turn, while the remaining nine subsets were used in the
training phrase. Considering the CCEA method in this paper,
let’s assume each training dataset was randomly assigned
to five sensor agents for generating classifying arguments.
Then the argumentation based object classification tasks were
executed on the remaining test datasets.

Briefly, our experimental platform has been implemented
with Java Agent DEvelopment Framework (JADE)3 and
WEKA machine leaning workbench [30]. The experiments
were conducted to compare the method of CCEA with
Prism inductive learning algorithm, against two other argu-
mentation based object classification methods, i.e. Arguing
Prism [7] and Arguing SATE-Prism [9]. In what follows,
we first present the evaluation of hierarchical categorization
performance, and then investigate CCEA’s tolerance to noisy
sensor data.

A. HIERARCHICAL CATEGORIZATION PERFORMANCE
This subsection presents experiments conducted to com-
pare the hierarchical categorization performance of CCEA,
against Arguing Prism and Arguing SATE-Prism, using the
datasetsmentioned above. For each of the comparedmethods,
three common hierarchical categorization metrics [11] were
estimated. They are hierarchical precision (hP), hierarchical
recall (hR) and hierarchical f-measure (hF). Supposing there
are M object instances in the test dataset, then these hierar-
chical categorization metrics are defined as follows.

hP =

∑M
k=1

∣∣∣P̂k ∩ T̂k ∣∣∣∑M
k=1

∣∣∣P̂k ∣∣∣ (3)

3http://jade.tilab.com/
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FIGURE 3. Hierarchical precision obtained using different methods.

FIGURE 4. Hierarchical recall obtained using different methods.

hR =

∑M
k=1

∣∣∣P̂k ∩ T̂k ∣∣∣∑M
k=1

∣∣∣T̂k ∣∣∣ (4)

hF =
2 ∗ hP ∗ hR
hP+ hR

(5)

where P̂k is the set, consisting of the most specific categories
predicted for the k th object instance, and all their ancestor
categories; and T̂k is the set, consisting of the true most
specific categories for the k th object instance, and all their
ancestor categories. In this circumstance, it is well known that
hF is a synthesized indicator for the evaluation of hierarchical
categorization performance.

The results of hierarchical categorization are described
from Figure 3 to Figure 5, by comparing the operation of
CCEA, according to hP, hR and hF, with respect to Arguing
Prism and Arguing SATE-Prism. First, in Figure 3, it can be
seen that, considering hP, CCEA produces the best results
in 6 of 8 datasets tested, performing slightly worse than the
other twomethods only on two datasets (D2 and D6). Second,
Figure 4 shows that, although CCEA performs worst on
2 datasets, it still obtain acceptable performance with 5 other
test datasets. Finally, for the synthesized indicator hF, which
is showed in Figure 5, it is noted that the proposed method
in this paper performs best in all the 8 datasets compared

FIGURE 5. Hierarchical f-measure obtained using different methods.

FIGURE 6. CCEA’s classification accuracy with multiple noise rates.

to Arguing Prism and Arguing SATE-Prism. This is a strong
evidence that indicating the superiority of CCEA.

B. NOISE TOLERANCE IN MULTI-SENSOR OBJECT
CLASSIFICATION
To investigate CCEA’s robustness to noise in argumentation
based object classification, we explore to conduct experi-
ments with noisy sensor data for learning. Here, seven version
of the eight datasets used in the previous subsection were
generated by introducing different noise rates. For example,
if the noise rate is 0.15, then for each object example in a
particular dataset, every category, is replaced by another value
in its category taxonomy with a probability of 15%. For each
noise rate (0.05, 0.1, 0.15, 0.2, 0.25, 0.3), the CCEA method,
Arguing Prism and Arguing SATE-Prism were performed
using the same setup to subsection A.
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The experiment results are described in Figure 6, in which
the horizontal axis represents the noise rate and the vertical
one represents the object classification accuracy. It can eas-
ily be observed that, for all the three argumentation based
object classification methods, the accuracy decreases with
the increasing noise rate in the eight investigated datasets.
However, it is noted that CCEA out-performs the other two
methods with presence of noisy sensor data, in 7 out of
8 datasets. Considering the D5 dataset, on which the best
performance is exhibited when the noise rate is more than 0.2.
This robust object classification for noisy sensor data is due to
the shared background knowledge advantages offered by the
cognitive context enriched method in argumentation based
object classification.

V. CONCLUSION
A cognitive context knowledge enriched method has been
proposed for argumentation based object classification
in multi-sensor networks. The method, namely CCEA,
advances static domain-driven knowledge discovery via
exploring cognitive context knowledge to generate classify-
ing arguments dynamically. Thus the category granularity
inconsistent problem of objects among different sensor agents
can be addressed with rich contextual knowledge, not only
consists in semantic attribute-value trees, but also in category
taxonomies. The empirical study demonstrates that CCEA
outperforms state-of-the-art methods, especially for noisy
sensor data. The tolerance to noise in our method due to
the transferred cognitive context knowledge among multiple
sensor agents.

With respect to argumentation based object classification,
our method offers the following advantages: (i) it allows sen-
sor agents to give semantic explanations about object classi-
fication results collaboratively, with easy assimilated context
knowledge in dialogue game process; (ii) it builds an effective
disagreement resolution mechanism for multi-sensor object
classification through dynamic cognitive context knowledge
transfer.

In this paper, we focus on leveraging cognitive context
knowledge for dealing with the category granularity incon-
sistent problem in argumentation based object classification.
Future research will explore knowledge transfer among sen-
sor agents further, to improve the multi-sensor object classifi-
cation. We would like to harness the power of shared context
knowledge for reaching semantic consensus. It is believed
that this explainable artificial intelligence applications are
very close to the thinking way of humans, who are good at
classifying objects via understanding the context using rich
cognitive knowledge.
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