
SPECIAL SECTION ON ADVANCES IN PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT

Received April 16, 2019, accepted May 19, 2019, date of publication May 27, 2019, date of current version July 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919167

Phase Identification and Online Monitoring
for the Uneven Batch Processes
RUNXIA GUO AND YANCHENG JIN
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China

Corresponding author: Runxia Guo (rxguoblp@163.com)

This work was supported in part by the National Key R&D Project of China under Grant 2016YFB0502405, in part by the National
Natural Science Foundation of China under Grant 61603395 and Grant 51707195, and in part by the Special Program of Talents
Development for Excellent Youth Scholars in Tianjin.

ABSTRACT In practice, the batch processes are usually uneven and show significantly different variables’
characteristics in different sub-phases. Therefore, it is necessary to divide each batch into several sub-phases
separately. In this paper, a moving window-based multiway information increment matrix (MWMIIM)
algorithm for the uneven batch processes is proposed for single-batch phase identification and online moni-
toring by combining the moving window technique with an information increment matrix (IIM) algorithm.
Similar to the IIM algorithm, the MWMIIM algorithm captures variables’ correlation changes by calculating
the increment matrix between adjacent covariance matrices, which does not need to extract feature from
data or carry out complicated matrix decomposition, thus improving the computational efficiency. Besides,
the influence of several vital parameters on the phase identification performance is discussed in detail. After
phase identification, the partition points of each sub-phase need not to be strictly aligned. Furthermore,
a batch process is divided into three types of regions, namely common region, transition region, and end
region. Next, fine modeling and online monitoring strategies are adopted in different regions separately. The
comparative experiment is conducted by the window-based stepwise sequential phase partition method for
nonlinear uneven batch processes (WNSSPP-U). A practical application on batch processes, namely aircraft
steering gear system fault diagnosis experiment, is given to confirm the feasibility and effectiveness of the
proposed method.

INDEX TERMS Phase identification, online monitoring, uneven batch processes, moving window-based
multiway information increment matrix (MWMIIM), fine modeling.

I. INTRODUCTION
Batch processes are an important mode of production in mod-
ern industries, and they are widely applied in fine chemical,
pharmaceutical and food industries. Therefore, it is of great
significance to realize the real-time fault diagnosis for batch
processes by means of fine modeling and precise monitoring,
so as to improve the safety and reliability of the operation
processes. Batch processes possess many complex process
characteristics. Among all the characteristics, multi-phase is
the most prominent one, which represents different variables’
characteristics in different sub-phases. Therefore, accurate
phase partition is a prerequisite for fine modeling and precise
monitoring.

Recently, variousmethods have been proposed for accurate
phase partition. Since the prior process knowledge is hard
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to obtain, multivariate statistical analysis methods that only
require to process historical data have attracted consider-
able attention. Among them, MPCA and MPLS proposed
by Nomikos and Macgregor [1], [2] extend the traditional
multivariate statistical analysis methods from continuous
processes to batch processes. Lu et al. [3] developed a phase-
based sub-PCA and sub-PLS models based on the improved
K-means clustering algorithm. Additionally, Li et al. [4]
introduced a phase partition method based on the Gaussian
mixture model (GMM), in which the posterior probability is
used to classify the operation phases. However, the methods
state above do not take into account the time sequence
of operation phases. Consequently, original phase partition
results in [3], [4] may contain some outliers that break
the continuity of the operation phases. Mamede et al. [5]
divided the complete principal component analysis (PCA)
model into several independent sub-models to improve
the prediction accuracy of phase partition points. Besides,
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a multiphase (MP) algorithm is developed to monitor
batch processes. However, this approach is time-consuming
because it requires more than one chronological search across
all sampling points to find the appropriate partition points.
Considering the effect of phase partition on monitoring per-
formance, Zhao and Sun [6] and Qin et al. [7] proposed a
stepwise sequential phase partition (SSPP) algorithm which
automatically determines segments based on time sequence.
In addition, a soft transition multiple PCA (STMPCA)
method is proposed by Zhao and Gao [8] and Zhang et al. [9]
to detect transitions between different sub-phases.
Guo et al. [10] introduced an innovative algorithm, namely
multiway information increment matrix (MIIM), which
directly extracts effective information from the covariance
matrix. Moreover, the algorithm can separate the process
into several different phases based on the accurate capture of
variables’ correlation changes. However, the aforementioned
methods assume that not only do all batches have strictly
equal duration, but also the key process events in all batches
overlap at the same time interval. Nevertheless, the dura-
tion of phase corresponding to different batches is not syn-
chronized in practice because of unavoidable disturbances,
fluctuations in initial conditions, as well as the changes of
operation conditions. Therefore, it is a key problem in the
batch processes to solve the uneven duration problem. That
is to say, if there is an effective method for such a problem,
the data provided for the modeling and monitoring processes
based onmultivariate statistical analysis will bemore reliable.

Since uneven duration problem commonly arises in batch
processes, many studies have been conducted on it. Among
all the methods, the most commonly used one is the shortest
length method [11], which directly cuts the rest of the batches
by the shortest path length. Though this method is easy to
implement, it will lead to a large loss of trajectory data and
decrease the correlations between variables, thus reducing the
reliability of the data. Besides, there are two general solutions
that can be utilized to solve uneven-length problem, dynamic
time warping (DTW) [12], [13] and correlation optimization
warping (COW) [14], [15]. However, DTW and COW suffer
from heavy calculation and low efficiency. Moreover, the
relationship between process variables may be distorted when
the trajectories are stretched or compressed to the reference,
resulting in inaccurate results of trajectory synchronization.
Additionally, warping technique can be only used for offline
modeling owing that online batches cannot be synchronized
to the reference. Li et al. [15], [16] proposed a method
based on time slice sequence alignment. The method cap-
tures the changes of process characteristics by continuously
calculating the correlation changes of each batch data along
the time direction, so as to automatically identify irregular
phases. And the generalized time slice is then constructed
to build the monitoring model for the irregular phase data.
Liu et al. [17] and Jiang et al. [18] proposed a new Gaussian
mixture model (GMM) for offline phase partition. Besides,
a multiple hypotheses testing-based operating optimality
assessment and nonoptimal cause identification method is

extended to handle the online assessment of the batch pro-
cesses with multiphase and uneven-length characteristics.
To improve the monitoring performance of nonlinear batch
processes, Liu et al. [19] developed a window-based step-
wise sequential phase partition method. Moreover, a traversal
algorithm is given to determine the optimal choice of the
KPCA parameters and the window size for phase partition.
Luo et al. [20] andWei et al. [21] developed a new phase iden-
tificationmethod based on thewarpedK-means (WKM) clus-
tering algorithm and phase identification combination index
(PICI). Zhang et al. [22] and Wang and Zong [23] introduced
the statistical analysis and online monitoring method for
uneven batches based on the multi-phase characteristics. Fur-
thermore, the problem of local modeling is solved according
to the detection method of variable moving window-k nearest
neighbor (VMW-KNN). In the above studies, the monitoring
models are established based on the corresponding all sub-
phase data, which makes the scale of data in the monitoring
model so huge that the models are not accurate enough and
online monitoring is not sensitive enough.

In order to automatically identify each sub-phase accord-
ing to the time sequence, a phase identification and
online monitoring method based on moving window-based
MIIM for the uneven batch processes (MWMIIM) is pro-
posed in this paper, which extends the multiway infor-
mation increment matrix (MIIM) algorithm to the uneven
batch processes [10]. Different from the existing MIIM
algorithm, the innovative points of this paper are as fol-
lows: First, phase identification of each batch is carried out
separately by combining moving window technique with
MIIM algorithm. To be specific, determine the partition
points by the variables’ correlation changes in the corre-
sponding moving window. Second, all the sub-phases are
subdivided into common region, transition region and end
region when offline modeling. Moreover, it is necessary to
execute fine modeling in transition region and end region.
Third, different monitoring strategies are adopted in different
regions when online monitoring. Thereinto, new monitor-
ing strategies are carried out in transition region and end
region.

The remainder of this article is organized as follows:
In Section II, the phase identification, data consolidation
and sub-phase modeling algorithm are introduced in detail.
Moreover, parameters N , L and w are discussed theoretically.
In Section III, online monitoring is executed and an effective
fault location method is proposed. In addition, experimental
results are given in Section IV. Finally, conclusion and out-
look are stated in Section V.

II. PHASE IDENTIFICATION AND SUB- PHASE MODELING
A. BASIC OPERATION
Assume that the three-dimensional data X (I × J × Ki) is
collected under normal operating conditions, where I is the
number of batches, J is the number of measured variables
per sampling point, Ki is the number of measured sampling
points in ith(i ∈ 1, 2, · · · , I ) batch. Suppose that I batches
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are considered separately, then each batch corresponds to
a set of two-dimensional data Xi(J × Ki), i = 1, 2, · · · , I
accordingly. Take the ith batch as an example, where
Ki sampling points are denoted as {x(1), x(2), · · · , x(ki)} in
the batch. Besides, a moving window data matrix serves as
the basic data unit for phase identification, then the work-
ing process of the moving window is described as follows.
Starting from the first sampling data, the moving window
covers the continuous w sampling data to form the first data
matrixXwi,1 = [x(1), x(2), · · · , x(w)], wherew is a fixed value
representing the length of the moving window, and w will
be further discussed in section C. Then Xwi,1 is normalized to
zero mean and the unit variance, where Xwi,1 is the 1st normal-
ized moving window data matrix in the ith batch. Besides,
the covariance matrix CJ×J

1 of Xwi,1 is calculated according
to time sequence to characterize the process. Afterwards,
update the window data matrix bymoving one sampling point
backward, namely the first sampling point in the window is
removed and a new sampling point is added at the end of
the window to ensure that the length of the moving win-
dow remains unchanged, and the corresponding data matrix
Xwi,2 = [x(2), x(3), · · · , x(w+ 1)] is obtained. Similarly,
Xwi,2 is normalized to zero mean and unit variance, and the
corresponding covariance matrix CJ×J

2 is calculated. In this
way, the moving window continues to move one sampling
data backward each time until the last sampling point of
this batch get covered. In the process of window sliding,
(Ki − w + 1) data windows are constructed successively,
meanwhile (Ki − w + 1) data matrices are obtained, thus
(Ki − w + 1) covariance matrices CJ×J

k (k ∈ 1, 2, ...,
Ki − w + 1) are calculated accordingly. Note that CJ×J

k is
also known as the correlation matrix of the process vari-
ables, which means that the element in row i and column j
of CJ×J

k represents the correlation coefficient between the
ith and jth variables. Other batches operate similarly. The
whole working process of the moving window is shown
in Fig.1.

B. SEQUENTIAL UNEVEN PHASE IDENTIFICATION
As for uneven batch processes, the duration of the corre-
sponding sub-phase and total duration varies with batches.
Consequently, executing phase identification in uneven
batch processes is more difficult compared with even
conditions.

In this work, an improved phase identification algorithm
for uneven batch processes is developed by analyzing each
batch separately. The detailed calculation process is described
following.

Above all, the moving window technique described in part
A above is required to obtain a series of correlation matrices
CJ×J
k (k ∈ 1, 2, ...,Ki − w + 1). Furthermore, calculate the

increment matrix between two adjacent correlation matrices
CJ×J
k and CJ×J

k+1 , then the multidimensional average gain
index δk corresponding to the increment matrix is derived.
The gain index δk is defined to capture the dynamic variation

FIGURE 1. The whole working processes of the moving window.

of process characteristics

δk =

J∑
p=1

J∑
q=1
|Ck+1(p, q)− Ck (p, q)|

J2
(1)

The most critical point in the sub-phase identification is
to find the ‘starting point’ of the next sub-phase, namely
phase partition point, which requires a benchmark to deter-
mine whether a new sub-phase occurs. Specifically, when
the moving window moves backward in turn, calculate the
increment matrix of two adjacent correlation matrices, and
each corresponding gain indexes δk is compared with the
benchmark to find the phase partition points. The benchmark
in this thesis is the switch control limit σ , which is defined as
follows

σ =
1
L

L∑
k=1

δk (2)

where L is a fixed value.
As can be seen from (2), σ is associated with the latest

L values of δk . In order to ensure that there is a switch
control limit σ at the initial moment of each sub-phase
for comparison, L values of δk are required, which in turn
requires L + 1 correlation matrices, meaning that moving
window need to be moved L times. In other words, there are
at least L + w sampling points in each sub-phase. Therefore,
the basic assumption this algorithm based on is that the first
L +w sampling points of each sub-phase must belong to this
sub-phase.

Based on the above discussion, let the first L+w sampling
points in one batch belong to the first sub-phase, then the
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initial switch control limit σ can be obtained. According to
the time sequence, once a new sampling point is obtained,
the gain index δk is calculated and compared with the switch
control limit σ afterwards to determine whether a new sub-
phase generates. The criteria are as follows: 1) If δk ≥ Nσ ,
then the corresponding sampling point is identified as an
outlier that does not belong to this sub-phase, thus it
does not contribute to the update of switch control limit.
2) if δk < Nσ , then the current sampling point is regarded
as a normal sampling point that will be adopted to update
the switch control limit defined in (2), where N is a tun-
able parameter called tolerance factor that will be fur-
ther discussed in subsection C. Suppose that continuous
L sampling points exceed the switch control limit, then a
new sub-phase is generated, and the first sampling point
beyond the switch control limit is the starting point of the
new sub-phase. Subsequently, the sampling points identified
as belonging to the first sub-phase are removed, and the first
remaining L + w sampling points are utilized as the initial
sampling points for the next sub-phase. Repeat the same steps
as in the first sub-phase until the end of the batch. Considering
that there are at least L + w sampling points in each sub-
phase, if the number of the remaining sampling points of
the batch is less than L + w, then these sampling points are
affiliated into the previous sub-phase herein. By analogy, all
subsequent batches take the same operations. In this way, the
phase partition points of each batch are determined. The flow
chart of the entire phase identification processes for one batch
is described in Fig.2

C. DISCUSSION ON THE SELECTION OF PARAMETERS
The parameters N , L and w presented in the subsections A
and B have a significant influence on the phase identification
performance of the proposed algorithm, thus they are further
discussed as following.

i) The N defined in δk ≥ Nσ is an adjustable param-
eter which is called tolerance factor. A larger value
of N means that there will be fewer sub-phases in a
batch, thus a smaller number of monitoring models
need to be established, which significantly reduces
the modeling complexity. However, fewer monitor-
ing models also mean degraded monitoring accuracy,
because more sampling points are allocated to the same
sub-phase and monitored by the same model. While a
smaller N can lead to the opposite effect. Under some
special circumstances, when N is set to 1, nearly every
L +w sampling points are identified as a separate sub-
phase. While a sufficiently large value is assigned toN ,
only one sub-phase is obtained and the whole process
is monitored by a single model. Therefore, the choice
of N is a trade-off between the model accuracy and the
model complexity.

ii) The L in (2) is a fixed value, which represents the
number of gain indexes used to calculate the switch
control limit σ as well as the number of outliers needed
to generate a new sub-phase. It is difficult to form new

FIGURE 2. Flow chart of the entire phase identification processes for one
batch.

sub-phases when L is large, thus reducing the number
of sub-phases. Similar to N , this results in lower mon-
itoring accuracy. On the contrary, a small L can lead to
the opposite effect. Ultimately, the value of L needs to
be determined according to the actual situation.

iii) The w mentioned in Xwi,1 = [x(1), x(2), · · · , x(w)]
refers to the length of the moving window. Take
the aircraft steering gear system as an example,
data update cycle of aircraft steering gear system is
within 30-40 ms. In order to better reflect the process
characteristics of the data, the length of the window is
set as 3-4 times of the data update cycle. Therefore,
the initial window length is set as 10. The larger the
value of w is, the more the sampling data contained
in the data matrix is, which increases the amount of
computation each time and reduces the accuracy of the
obtained dynamic switch control limit simultaneously.
And the opposite effect occurs when the value of w
is smaller. The L + w, which is raised to improve
the accuracy of the phase identification, represents the
minimum length of a new sub-phase. Obviously,
the value of L + w is affected not only by L, but also
by w.

In summary, adjusting and simultaneously selecting the
optimal values of the parameters N , L and w can change the
performance of the proposed phase identification algorithm
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CHART.I. Summary of Optimal Parameters Selection.

to a large extent. The summary of optimal parameters selec-
tion is shown in Chart I.

D. SUB-PHASE FINE MODELING
After all the sub-phases of all batches have been identified,
the partition points in each batch are available. Subsequently,
the corresponding batch data is consolidated accurately and
normalized for building monitoring models so that each
region can be accurately monitored by an appropriate model.
For the ease of understanding, this section takes five uneven
batches as an example to introduce the proposed data consol-
idation and fine modeling method, as shown in Fig.3.

As can be seen from Fig.3 that each batch is divided into
sub-phase1, sub-phase2, sub-phase3 and sub-phase4. Obvi-
ously, sub-phase partition points of each batch are not aligned.
Therefore, it is necessary to further execute fine modeling.
Taking into account the disparate process characteristics of
disparate regions, all batches are divided into common region,
transition region and end region in this paper. Thereinto,
common region (such as span A and C) denotes that the
sampling points of all batches belong to the same sub-phase,
in which only one common monitoring model is required.
While transition region (such as span B) indicates that the
sampling points in different batches belong to different sub-
phases at the same time. Considering that the variables’ char-
acteristics between different sub-phases change obviously,
the model may be not accurate enough if only one model
is utilized to describe the variables’ characteristics in the
transition region. To improve the accuracy of the model, two
monitoring models are established according to the different
variables’ characteristics of different sub-phases in the tran-
sition region. Specifically, all the sampling points belong-
ing to sub-phase1 in the transition region are merged, the

FIGURE 3. The diagram of the batch processes divided into common
region, transition region and end region.

corresponding monitoring model is established afterwards,
and all the sampling points belonging to sub-phase2 are
merged and modeled similarly. For the end region (such
as span D as shown in Fig.3), not only is the number of
batches gradually decreased, but also the modeling process
is restricted by the termination condition. Therefore, span D
is subdivided into span D1, span D2 and spanD3. Here is a
detailed description of the modeling processes for each of the
three regions as shown in Fig.4.

a: COMMON REGION
Take span A as an example, and suppose that there are
I batches in the region and there are R sampling points in each
batch. Above all, the data segment is unfolded and merged
along the batch-wise direction, and the sample data of all
batches belonging to the same time interval constitutes a
time slice matrix Xr(I × J ), r = 1, 2, · · · ,R. Subsequently,
the mean time slice matrix X (I × J ) of span A as shown in
Fig.5 can be computed via

X I×J =
1
R

R∑
i=1

Xr (3)

Afterwards, add each row of each time slice matrix Xr in
the region to the average matrix X (I × J ) respectively, and
I ∗ R expanded matrices X ri can be derived as

X ri =
[
X I×J
Xr (i, :)

]
(4)

where r = 1, 2, · · · ,R, i = 1, 2, · · · , I . The correlation
matrices of X ri and X can be calculated and express as Cri
and C . Then, the gain indexes δri between Cri and C can be
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FIGURE 4. The illustration of detailed modeling processes for each region.

obtained by

δri =

J∑
p=1

J∑
q=1

∣∣Cri(p, q)− C(p, q)
∣∣

J2
(5)

The statistics δri roughly obey the chi-square distribu-
tion. And the control limit can be approximated obtained

FIGURE 5. The illustration of the mean matrix for common region.

as follows

δlimit ∼ gχ2
h,α (6)

where g = ν/2m and h = 2m2/ν. Specifically, m is the aver-
age of all the δri and ν is the variance of δri. Other common
regions, such as span C, also follow the above procedures to
establish the corresponding monitoring model.

b: TRANSITION REGION
The modeling processes in the transition region is similar
to that of the common region except for the data used for
modeling and the direction to unfold and merge the data
segments. Take span B in subgraph B of Fig.4 as an example,
the data segments belonging to sub-phase1 and sub-phase2,
namely the region in the red dotted line and the blue dot-
ted line, are unfolded and merged along the variable-wise
direction separately. What needs illustration is that the length
of each batch is differentiated in the red dotted line region,
as is the blue dotted line region. Therefore, the average time
slice matrix cannot be obtained by batch-wise unfolding and
merging similar to that of the common region, while can be
just obtained by variable-wise unfolding and merging. Take
the red dotted line region as an example, average the data of
each batch firstly to obtain its average vector xi, which can be
obtained by

x i =
1
Ki

Ki∑
i=1

xi,k (7)

where i = 1, 2, · · · (I − 1), k = 1, 2, · · ·Ki. Thereinto,
Ki represents the number of vectors of the current sub-phase
in ith batch. Then stack the average vectors xi of all batches
in line order to construct the average matrix X ((I −1)× J ) of
span B as shown in Fig.6. The rest of the procedures are the
same as the common region.
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FIGURE 6. The illustration of the mean matrix for transition region.

c: END REGION
With respect to end region as shown in span D in Fig.4,
the number of remaining batches decreases as moving back-
wards. According to the numerical relationship between the
batches and the variables, which is suggested by Johnson
and Wichern [24], the modeling of span D is limited by the
termination condition IE ≥ (2 ∼ 3) J . It is significant to
determine whether a separate model is required between two
adjacent endpoints of different batches.When the termination
condition is satisfied (span D1 and D2 in the Fig.4), the data
segments of all batches between two adjacent endpoints are
unfolded andmerged respectively along the batch-wise direc-
tion, which is similar to that of the common region. Therefore,
the mean time slice matrices X (IE × J ) of span D as shown
in Fig.7 can be computed via

X IE×J =
1
R

R∑
i=1

Xr (8)

where IE is a varying value which represents the number
of batches between two adjacent endpoints and satisfies
2J ≤ IE ≤ I . If not satisfy (span D3 in the Fig.4),
the remaining sampling points in span D will be supervised
by the previous adjacent model (span D2 in the Fig.4).

E. IDENTIFICATION OF VARIABLE CONTRIBUTION RATE
TO PHASE TRANSITION
In the batch processes, the correlations between variables
remain almost constant in the same sub-phase, while there
are significant differences between different sub-phases, and
the correlation matrices will also have an obvious change.
According to this typical feature, the continuous w sampling
points are selected in each sub-phase to form a matrix respec-
tively after phase identification, and the correlation matrix is
calculated to represent the data characteristics of the current

FIGURE 7. The illustration of the mean matrix for end region.

sub-phase. Afterwards, the difference matrix of two adja-
cent correlation matrices is calculated, where diagonal and
non-diagonal elements of the correlation matrix respectively
represent the self-correlation and cross-correlation between
variables. Therefore, a column of the correlation matrix rep-
resents the correlations of variables corresponding to the
column. In the different matrix, the ratio that the sum of the
absolute values of each column occupy the sum of the abso-
lute values of the entire matrix represents the contribution
of the corresponding variable of this column to the phase
transition. In this way, the contribution rate of variables to
the phase transition is identified by

P(j) =

∣∣∣∣∣ J∑j=1C[j,k]
∣∣∣∣∣∣∣∣∣∣ J∑j=1

J∑
k=1

C[j,k]

∣∣∣∣∣
(9)

III. ONLINE MONITORING
A. ONLINE MONITORING
Finemodeling is to better monitor the batch processes. Online
monitoring provides real-time monitoring of the batch pro-
cesses to detect whether it is running properly. For uneven
batch monitoring processes, different monitoring strategies
should be adopted for different regions.

B. CASE A: COMMON REGION MONITORING
In the common region, when a new sampling point xtest of the
test batch arrives, there is a definite monitoring model and a
corresponding fixed control limit to determine whether it is
normal or not according to the time index. Above all, the test
sampling point is normalized to zero mean and unit variance.
Then the gain index δ can be obtained by (4) and (5). The
detailed process is as follows.
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Firstly, the test sampling point is added to the average
matrix of common region as follows

X test =

[
X I×J
xtest

]
(10)

Then, C test and C are used to represent the correlation
matrices of X test and X respectively. In addition, the gain
index δtest can be obtained by

δtest =

J∑
p=1

J∑
q=1

∣∣C test (p, q)− C(p, q)
∣∣

J2
(11)

By comparing δtest with the control limit δlim it obtained
by (6), online monitoring consistently carries out. If δtest <
δlim it , the current sample is considered normal; otherwise
abnormal. Additionally, the fault location method is proposed
to find the root cause of the fault in the next subsection B.

C. CASE B: TRANSITION REGION MONITORING
In the transition region, owing that the phase partition points
of each batch are not aligned, the new test sampling point
either belong to the current sub-phase or transfer to the next
sub-phase, thus it is hard to determine which sub-phase it
belongs to. In other words, it is uncertain which monitoring
model should be utilized to detect the new test sampling
point. Therefore, a flexible monitoring strategy is required.
Originally, the current sub-phase model is adopted to detect
the new test sampling point. Concretely, the test sampling
point is added to the average matrix of transition region of
current sub-phase

X test =

[
X (I−1)×J
xtest

]
(12)

Then, the solution procedures of δtest are the same as that of
the common region. Provided that the test statistic δtest does
not exceed the control limit δlimit of the current sub-phase
monitoring model, it is considered to operate normally in the
current sub-phase. Otherwise, the current sub-phase model
cannot describe the process characteristics of the test sam-
pling point well, and the next sub-phase monitoring model is
used to detect it, likewise. Suppose that the test statistics is
within the control limit of the model, it is considered to be a
normal operation data of the next sub-phase, otherwise it is
abnormal, and a fault alarm signal is generated.

D. CASE C: END REGION MONITORING
In the end region, theremay bemultiple sub-models, and each
sub-model corresponds to an average matrix and a control
limit. Besides, each control limit and the dimension of each
average matrix are different. Different from the above two
regions, the test sampling point is firstly added to the average
matrix of current sub-model as follows

X test =

[
X IE×J
xtest

]
(13)

After that, the rest of the monitoring steps are the same
as that of the common region. When the sampling point
corresponding to the next sub-model arrives, the test sampling
point is added to the average matrix of next sub-model, then
the monitoring steps of the previous sub-model are repeated
until the end of the test batch.

E. FAULT LOCATION
When a fault is detected by the monitoring model, the source
of the fault can be found out by calculating the contributions
of process variables to the change of the correlation matrix.
Specifically, the variable that contributes the most to the
change of the correlation matrix is just the source that causes
the fault. And the contributions of each variable are computed
as follows.

Vs =

J∑
p=1

∣∣C test (p, s)
∣∣+ J∑

q=1

∣∣C test (s, q)
∣∣− ∣∣C test (s, s)

∣∣
J∑

p=1

J∑
q=1

∣∣C test (p, q)
∣∣ (14)

where s = 1, 2, · · · , J .
In some cases, there may be two or more variables that

contribute significantly to the existing fault because process
variables may be interrelated and fault can spread quickly
between process variables, especially in closed-loop systems.
Therefore, the joint effect is further analyzed by

Vst =
2C test (s, t)

J∑
p=1

∣∣C test (p, s)
∣∣+ J∑

q=1

∣∣C test (s, q)
∣∣− ∣∣C test (s, s)

∣∣
(15)

where s = 1, 2, · · · , J , t = 1, 2, · · · , J .

IV. CASE STUDY AND DISCUSSION
A. APPLICATION ON AIRCRAFT STEERING GEAR SYSTEM
The aircraft steering gear is an actuator of automatic flight
control system, which changes the civil aircraft’s atti-
tude or trajectory by controlling the control surfaces. Fig.8 is
a mechanical structure diagram of the aircraft steering gear
system. Under working conditions, the servo motor receives
the control command from the flight control computer. Then,
the control surface is pushed or pulled by the motion of the
actuator cylinder to ensure that the aircraft’s attitude or tra-
jectory approaches the given command value with certain
precision.

During the entire flight of a civil aircraft, the operation
processes of aircraft steering gear system are typical batch
processes, which show significantly different operation char-
acteristics in disparate flight stages. To verify the proposed
phase identification andmodelingmethod, they can be conve-
niently defined as typical uneven multiphase batch processes
for experiments. The six phase-sensitive variables of aircraft
steering gear system collected in the experiments are shown
in Table 1.
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FIGURE 8. The mechanical structure diagram of the aircraft steering gear
system.

Table 1. The six variables of aircraft steering gear system.

The aircraft steering gear system mainly consists of triple
closed-loop structures, which are current loop, speed loop and
position loop. In this experiment, 50 normal batches are used
as training data for modeling, and another 10 batches are used
as test data. To approximately simulate the dynamic change
of practical operation processes, the frequency of the current
loop control is set to 25.0, 26.0, 27.0, 28.0 and 29.0Hz respec-
tively to generate the training data. Afterwards, 10 batches
data are collected for each frequency, and 50 uneven batches
are finally obtained, in which batch duration ranges from
400 to 450 samples.

B. PHASE IDENTIFICATION RESULTS
To verify the effectiveness of the proposed phase identi-
fication method in addressing the uneven-length problem
of the aircraft steering gear system, a comparative experi-
ment is conducted by the window-based stepwise sequential
phase partition method for nonlinear uneven batch processes
(WNSSPP-U). In this algorithm, the principal component
analysis (PCA) algorithm is utilized to extract the principal
component of the moving window data matrix, so as to
realize phase identification. Actually, the function of α in
WNSSPP-U algorithm is basically the same as that of N
in the proposed method, both of which are used to adjust
the phase identification precision. In this experiment, five
different sets of values are tried for N and α. Among them,
N is set to 1.3, 1.5, 1.8, 2, and 2.5 respectively, while
α is set to 2.5, 2.8, 3.5, 5 and 10 respectively. L and w are
set to 3 and 12 here according to experimental results. Take
one batch of each frequency as an example, Fig.9 presents
the phase identification results regarding different N , and
Fig.10 presents the comparison experiment results.

As can be seen from Fig.9, with the increase of the relax-
ing factor N , the number of sub-phases acquired gradually
decreases. And Fig.10 shows a similar pattern, indicating
that N and α have similar effects on phase identification.
Particularly, when N and α are large enough (N = 2.5,
α = 10), the batch is no longer divided and the whole batch
is modeled as a single phase. The possible reason is that with
the increase of the relaxation factor N and α, the sampling
points identified as abnormal points decrease, thus resulting
in a decrease in the number of sub-phases obtained. On the
contrary, when the relaxation factor decreases, the sampling
points are more likely to be regarded as abnormal points and
more sub-phases can be obtained.

Thereinto, when L is set to 3, w is set to 12 and N is
set to 1.5, the phase partition result is the closest to the
actual situation. It can be seen that the operating status of
the steering engine under experimental conditions is divided
into four sub-phases according to the time order after the
phase identification. Specifically, partition points of the first
phase are 95th, 100h, 105th, 120th and 130th respectively;
the second phase partition points are 170th, 180th, 185th,
210th and 220th respectively; partition samples of the third
phase are: 250th, 260h, 265th, 295th and 315th respectively.
At last, the remaining sampling points are the fourth phase
data. Subsequently, the corresponding monitoring model is
established and the control limit is calculated in the common
region and transition region. As for the end region, if the
number of batches between two adjacent endpoints is less
than 12, no new monitoring model is established, and the
remaining sampling points adopt the adjacent model as the
monitoring model.

C. ONLINE MONITORING RESULTS
For online monitoring statistics in WNSSPP-U algorithm,
T 2 statistics focus on tracking the changes of systematic
variations and T 2 monitoring performance may not be signif-
icantly affected by the partition results. While the monitoring
statistics of squared prediction errors (SPE) are more sensi-
tive to changes of process variable correlations. Therefore,
only SPE is used in WNSSPP-U algorithm of this compara-
tive experiment.

Originally, take a normal batch data as test data. The
monitoring results of the proposed MWMIIM-U and the
WNSSPP-Umethods are shown in Fig.11 and Fig.12, respec-
tively. As can be seen from Fig.11, none of the test statis-
tics exceed the control limit of the MWMIIM-U method.
While some individual test statistics exceed the control limit
of the WNSSPP-U method as shown in Fig.12. It can be
concluded that the online monitoring performance of the
proposedMWMIIM-Umethod is superior to theWNSSPP-U
method.

To further illustrate the ability of the MWMIIM-U method
to monitor fault, five aircraft steering engine system fault
types are randomly added to the test batch. In addition,
in order to eliminate the influence of random errors, the exper-
iment is repeated 10 times and the average value is taken as
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FIGURE 9. The sub-phase identification results regarding different values of N for the proposed MWMIIM-U algorithm.

FIGURE 10. The sub-phase identification results regarding different values of α for the WNSSPP-U algorithm.

the final results. Then the monitoring results of the proposed
MWMIIM-U method (L = 3,w = 12,N = 1.5) and the
WNSSPP-U method (α = 2.8) for the five faults are given

in Fig.13 and Fig.14, respectively. It can be seen that these
faults can be detected by both the MWMIIM-U method and
the WNSSPP-U method. However, the number and time of
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FIGURE 11. A normal batch monitoring results of the proposed
MWMIIM-U method.

FIGURE 12. A normal batch monitoring results of the WNSSPP-U method.

fault alarm signals are different, resulting in disparate false
alarming rate (FAR) and alarming delay time1T . Thereinto,
FAR = n/K , where n is the total number of false alarm
signals, and K is the total number of sampling points. 1T =
FAT − FOT , 1T reveals the fault detection ability (FAT is
termed as first alarming time, FOT is called the first occurring
time).

The location of 5 fault points in the test batch, and the
location information is detected by the monitoring meth-
ods of MWMIIM-U and WNSSPP-U are shown in Table 2.
Take the third row of data in the table, the fault is intro-
duced at the 200th sampling point, the monitoring statistics
of the MWMIIM-U method gives the only alarm signal at
the 202th sampling point, as shown in Fig.13, meaning that
only 2 delay exists using the MWMIIM-U method. While
in Fig.14, the fault is introduced at the 230th sampling point,
the monitoring statistics SPE of the WNSSPP-U method
gives the first and second alarm signals at the 238th and
240th sampling points, respectively. To put it another way,

FIGURE 13. Fault monitoring results of the proposed MWMIIM-U method.
(blue line, the monitoring statistics; red line, SPE control limits).

FIGURE 14. Fault monitoring results of the WNSSPP-U method. (blue line,
the monitoring statistics; red line, δ control limits).

the delay time of the MWMIIM-U method is much shorter
than that of the WNSSPP-U method. Besides, the false
alarm rates of the MWMIIM-U method are much lower than
that of the WNSSPP-U method. In conclusion, experimental
results illustrate that the MWMIIM-U method is superior to
WNSSPP-U method in terms of real-time monitoring perfor-
mance and accuracy.

The contribution rate of each variable identified by the
proposed MWMIIM-U method to the transition between dif-
ferent phases is shown in Fig.15. It can be concluded that
the contribution rate of the same variable to different phase
transition processes is different, and the function of different
variables on the same phase transition process is also dif-
ferent. Among them, variable 3, variable 2 and variable 1
contribute the most to the transition from phase 1 to phase 2,
from phase 2 to phase 3 and from phase 3 to phase 4, with
the contribution rates of 30%, 40% and 35% respectively.
In summary, the variables that play a leading role in different
phase transitions are not the same.
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Table 2. Comparison of two monitoring methods.

FIGURE 15. Contribution rate of each variable to different phase
transition.

Replace a part of the aircraft steering engine system with
a part with faults, and collect the corresponding data. Subse-
quently, apply the proposed MWMIIM-U and WNSSPP-U
algorithms for fault identification, and the comparison
results of the fault location effects of the two methods are
shown in Fig.16. It can be clearly seen that the variables
with the highest fault contribution rate obtained by the
MWMIIM-U algorithm and WNSSPP-U algorithm are both
variable 1. Actually, the part corresponding to variable 1
are exactly the fault part, indicating that both fault loca-
tion methods can accurately analyze the source of faults.
In addition, the contribution rate of variable 1 calculated by
the MWMIIM-U method is 33%, which is higher than that
of WNSSPP-U method (24%). Moreover, the variable fault
contribution rate calculated by the proposed MWMIIM-U
method is significantly different from each other, while that
of the WNSSPP-U is almost the same. The results illustrate
that the MWMIIM-U method can better distinguish the fault

FIGURE 16. Contribution charts for fault 1 with the proposed MWMIIM-U
algorithm and the WNSSPP-U algorithm.

parts from the normal parts, so that the obtained results are
more credible and reliable.

V. CONCLUSIONS
In this paper, a moving window-based multiway information
increment matrix method for the uneven batch processes
(MWMIIM) is proposed for single batch phase identification.
Experimental results show that the algorithm can accurately
capture the changes of variables’ correlations in the process of
phase transition, so as to obtain accurate sub-phase partition
results representing different working conditions. Since the
corresponding sub-phase partition points of each batch are
not aligned, the whole batch processes are divided into three
regions. Meanwhile, diverse detailed modeling and online
monitoring strategies are adopted in different regions to more
accurately reflect the variation trend of the process character-
istics. The experiments conducted on aircraft steering gear
system show that the proposed strategies provide competitive
performance of online monitoring and fault location. Future
works will be devoted to the research of online modeling,
the improvement of the design of parameters and the univer-
sality of the proposed algorithm.
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