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ABSTRACT Bearing fault diagnosis is an important technique in industrial production as bearings are one
of the key components in rotating machines. In bearing fault diagnosis, complex environmental noises will
lead to inaccurate results. To address the problem, bearing fault classification methods should be capable of
noise resistance and be more robust. In previous studies, researchers mainly focus on noise-free condition,
measured signal and signal with simulated noise, many effective approaches have been proposed. But in
real-world working condition, strong and complex noises are often leads to inaccurate results. According
to the situation, this work focuses on bearing fault classification under the influence of factory noise and
the white Gaussian noise. In order to eliminate the noise interference and take the possible connection
between signal frames into consideration, this paper presents a new bearing fault classification method
based on convolutional neural networks (CNNs). By using the sensitivity to impulse of spectral kurtosis
(SK), noises are repressed by the proposed filtering approach based on the SK. Mel-frequency cepstral
coefficients (MFCC) and delta cepstrum are extracted as the feature by the reason of satisfactory performance
in sound recognition. And in consideration of the connection between frames, a feature arrangement method
is presented to transfer feature vectors to feature images, so the advantages of the CNNs in the fields of image
processing can be exploited in the proposed method. The proposed method is demonstrated to have strong
ability of classification under the interference of factory noise and the Gaussian noise by experiments.

INDEX TERMS Bearing fault, convolutional neural network, fault diagnosis, spectral kurtosis.

I. INTRODUCTION
Rotating machines are indispensable important equipments
in industry, such as induction motor and turbine, etc. Rolling
element bearings (REB) are one of the most common com-
ponents in rotating machineries, and they are also one of the
most brittle parts [1]. The reasons of failures including heavy
loads, inadequate lubrication, friction caused by foreign mat-
ters owing to bad sealing, etc. Therefore, effective bearing
fault classification methods should be presented to ensure the
safe operation of equipments.

Localized faults in REBs result in specific spectral charac-
teristics, called the bearing fault frequencies. The previous
bearing diagnosis methods mainly include fault frequency
calculation, signal processing, and envelope analysis [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Aysegül Ucar.

Through the processes, fault types can be recognized gener-
ally. But it should be mentioned that it is hard for traditional
methods to distinguish all the fault types and to evaluate
damage degrees. Such as, different radiuses of damages in
the inner race will cause similar bearing fault frequencies.
In recent years, many advanced approaches about machine
learning based fault diagnosis and fault feature extraction
have been proposed [3]–[5].

In a real factory environment, noises contain impulses on
a wide frequency range which may result in violent spec-
tral changes, and this increases the difficulty of diagnosis.
To address this problem, a bearing fault classification method
based on convolutional neural networks (CNNs) for heavy
noise environment is proposed in this paper.

Spectral kurtosis (SK) is a statistical indicator which can
reveal the non-Gaussian components and the corresponding
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FIGURE 1. Framework of the proposed method.

frequency location in a signal, which was first introduced
by Dwyer [6]. If a signal contains series of transients, its
SK will be distinctly different from the signal which obeys
a Gaussian distribution. Based on the theory above, Jerome
Antoni demonstrated the high potential of the SK to detect
and characterize non-stationary signals [7], and used the SK
as a tool for vibration monitoring and rotating machines fault
diagnosis [8]. Recently, SK has been used as feature for fault
detection [9], etc.

CNNs was put forward in the late twentieth century, and
shows a strong capacity in the field of image processing.
Several classical and efficient CNNs models have been pro-
posed, such as LeNet-5 [10] which is identified as the ini-
tial CNNs model, AlexNet [11] for images recognition, and
so on. Meanwhile, CNNs have been successfully applied
in the fields of medical image retrieval and video classi-
fication [12], [13], etc. Compared with traditional manu-
ally engineered features, CNNs can extract effective features
from input data automatically through multilevel convolu-
tion and pooling operation, which tends to be more effi-
cient than the features of artificial selection. On account
of the satisfactory performance of CNNs, the model was
introduced in the area of 1D signal, such as speech and
sound recognition, fault detection [14]–[17], etc. In recent
years, CNNs have been applied in the field of fault diagnosis.
In [18], 1D CNN is built for bearing fault diagnosis, and
in [19], authors present a method that transforms bearing
signals to explore feature images for CNN to classify bear-
ing data. To take advantage of the strength of CNNs in the
fields of 2D data classification, and in consideration of the
possible connection between signal frames, a feature map
arrangement method is presented to transform 1D feature
vectors to 2D feature matrixes for precisely expressing the
data and a CNN is built for fault classification. otherwise,
in some cases, training data are insufficient for training an
accurate fault classifier presented in this work, the proposed
feature map arrangement methods can address the problem
generally.

Normally, bearing fault results in non-Gaussian compo-
nents, while other parts obey Gaussian distribution [8], so the
SK curve can be seen as the amplitude-frequency response
of a filter which can remove Gaussian noises from the
raw signal. Meanwhile, the non-Gaussian parts in factory
noises have no effect with the result if the noise is quite
static. To provide a relatively stable input for the fault
classifier, Mel-frequency cepstral coefficients (MFCC), and
delta cepstrum are extracted as the feature due to the sat-
isfactory application in the fields of sound and vibration

signal processing. At last, a CNN is established as a fault
classifier.

In this work, in consideration of the connections between
signal frames and reducing the impact of erroneous frames,
a novel bearing fault classification method is presented which
transforms 1D bearing data to 2D feature matrix and builds a
CNNas the fault classifier.Meanwhile, based on the character
of outlier sensitively, in response to Gaussian noise effect,
a simple filtering method based on SK is presented in this
paper. The rest of this paper is organized as follows.

The framework of the proposed bearing fault classification
method and the main process are introduced in section II.
In section III, this paper briefly recall the definition of SK
and presenting the filtering method. A brief introduction of
MFCC and delta cepstral is described in section IV. In section
V, the feature arrangement method and the applied architec-
ture of CNNs in this paper are introduced. In section VI,
several experiments are presented to demonstrate the effec-
tiveness of the proposed method.

II. FRAMEWORK OF BEARING FAULT
CLASSIFICATION METHOD
The proposed method mainly includes 5 processes: framing
and windowing, filtering, feature extraction, feature arrange-
ment and classification. The frame work is shown in Fig. 1.

In the process of filtering, the SK of the raw data
should be calculated first. Then thresholding the SK curve
to ensure that the modified SK can be transformed to the
amplitude-frequency response of filters, and filtering the
input data. To represent the bearing fault signals, MFCC and
delta cepstrum are extracted as the two-input-channel fea-
tures. To maintain the continuity and comparability between
samples in the same class, a vector arrangement method
is proposed to transfer 1D feature vectors to 2D feature
matrixes. At last, on account of the satisfactory performance
in 2D signal processing, such as face, license plates detection,
and recognition [20], a CNN is established to give the label
of input samples. The detailed processes are described in the
following sections.

III. FILTERING BASED ON SPECTRAL KURTOSIS
A. SPECTRAL KURTOSIS
Kurtosis has been employed in the signal-processing com-
munity to solve ’blind’ problems, it is very sensitive to
non-Gaussian signals, the kurtosis of a signal x is:

k(x) =
E[(x − µ)4]

δ4
− 3 (1)
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where µ and δ are the mean and standard deviation of the
signal. The spectral version of kurtosis, SK, is the kurto-
sis computed at the output of a perfect filter-bank at each
frequency band [8], and it is commonly defined as the nor-
malized fourth-order cumulate of the Fourier transform [21].
In order to simplify calculating, Antoni [7] presented to
estimate the SK with the short-time Fourier transform
(STFT)-based estimator.

Let Y (n) be a sampled signal, then for a Nw wide analysis
window w(n) and a given temporal step P, the STFT of
process Y (n) over frequency index f is defined as:

Yw(iP, f ) =
+∞∑

n=−∞

Y (n)w(n− iP)e−j2πnf (2)

Then, the definition of the 2mth order empirical spectral
moment of Yw(iP, f ) is:

Ŝ2mY (f ) =
〈
Yw(iP, f )2m

〉
i

(3)

where 〈· · · 〉i is the time-averaged operator over index i. At
last, the SK can be defined as:

K̂Y (f ) =
Ŝ4Y (f )

Ŝ22Y (f )
− 2 (4)

In the actual situation, the length of STFT analysis window
can be set as the length of frames if the signal is framed
previously, then the process of STFT can be regarded as dis-
crete Fourier transform (DFT). For instance, a mixed signal
x which can be represented as:

x(t) = e−5(t−0.4)sin(300× 2π t)ε(t − 0.4)]+ wgn(t)

+ 0.5[sin(100× 2π t)+ sin(200× 2π t) (5)

where the 300Hz part is the non-Gaussian part, wgn is white
Gaussian noise and ε is step function. The SK curve of x is
shown in Fig. 2.

FIGURE 2. The SK curve of the signal x and the amplitude-frequency
curve of the filter.

From the SK curve, the non-Gaussian part is distinctly
different with other parts. Meanwhile, for vibration or sound
signal of bearings, most faults show the non-Gaussian char-
acteristics [8], so it is available to use SK to filter irrelevant
information.

B. FILTERING METHOD
To extract the non-Gaussian part of the mixed signal, the SK
curve can be used as the basis of filtering. The filtering
method based on SK includes:

1) Calculate the SK curve of the noised signal.
2) Thresholding the curve to 0 to 1, as it shows in Fig. 2,

consider the SK curve as the magnitude-frequency
curve of the filter.

K̂Y (f ) =


0 KY (f ) ≤ 0
KY (f ) 0 < KY (f ) ≤ 1
1 1 < KY (f )

(6)

3) Filtering the signal by the obtained filter.
For the step 2), the threshold level of the curve from

0 to 1 will prevent over-amplify non-Gaussian parts of the
signal in the process of filtering and the meaningless nega-
tive value in the magnitude-frequency curve. The filter will
keep all the non-Gaussian parts and restrain others accord-
ing to the magnitude-frequency curve shown in Fig. 2. The
temporal waveform and spectrum of the filtered version of
x(t) are shown in Fig. 3. The result proves that the filtering
method based on SK can extract non-Gaussian components
and reduce the effect of Gaussian parts.

FIGURE 3. The temporal waveform and spectrum of the filtered signal.

IV. MEL-FREQUENCY CEPSTRAL COEFFICIENTS FEATURE
A. MEL-FREQUENCY CEPSTRAL COEFFICIENTS
MFCCs is a commonly used technique in the applications of
sound and vibration signal for feature extraction, which could
reveal the time-variant features effectively [22], [23]. MFCCs
feature was first introduced to simulate the human perception
due to the utilized Mel scale and it reveals the short-term
power spectrum of the signal [24]. Moreover, the delta spec-
trum of MFCCs show the dynamic characteristics of signals
while MFCCs represent the static characteristics. In consid-
eration of the experimental data in this paper are sound and
vibration signal, MFCCs and the delta spectrum are extracted
as the feature.

B. FEATURE EXTRACTION
The process of extracting MFCC and delta cepstrum are:
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1) FRAMING, WINDOWING, AND DISCRETE
FOURIER TRANSFORMATION (DFT)
For processing conveniently, signal should be cut in frames
generally. But framing directly will caused frequency leakage
and lack of continuity. So overlapping framing and window-
ing are used. Normally Hanning window is used for framing
sound and vibration signal, and the overlap is 10% to 50%
window width. A Hanning window can be expressed as:

w(t) = 0.5− 0.5cos[
2π (t + 1)
T + 1

], 0 ≤ t ≤ T − 1 (7)

where T is the length of the Hanning window, w(t) is the
tth point of the window. In addition, the filtering method
is based on the experimental data, so data are filtered after
framing and windowing.

After frames are got, do DFT to every frame to get the
frequency spectrum, the expression of DFT is:

X (n) =
T−1∑
t=0

x(t)w(t)e−j
2πnt
T (8)

where x is a frame of sampled signal and X is the DFT. The
magnitude spectrumM of each frame is obtained by:

M (n) = |X (n)|, 0 ≤ n ≤ T − 1 (9)

2) MEL-FREQUENCY FILTERING
The main processes of Mel-filtering include mapping the
linear frequency magnitude spectrum to Mel-frequency, then
filtering by triangle filter bank. Triangle filter bank is a bank
of triangle band pass filters. The mapping relation of liner
frequency f and Mel-frequency mel is:

mel(f ) = 2595 log10 (1+
f

700
) (10)

All the filters have the same bandwidth and the cut-off
frequency can be expressed as:

fc(j) = fu(j− 1) = fl(j+ 1) (11)

where fc, fu, and fl represent the center, upper cut off and
lower cut off frequency of the jth,(j− 1)th, and (j+ 1)th filter
in the filter bank, respectively. The filter bank B is given by:

B(j, n) =



0 fj(n) ≤ fc(j− 1)
fj(n)− fc(j− 1)
fc(j)− fc(j− 1)

0 < fj(n) ≤ fc(j)

fj(n)− fc(j)
fc(j)− fc(j+ 1)

fc(j) < fj(n) ≤ fc(j+ 1)

0 fc(j+ 1) < fj(n)

(12)

where B(j, n) is the nth value of jth filter in the filter bank and
fj(n) is the corresponding Mel-frequency.

The outputs of the filter bank constitute the vector of Mel
magnitude spectrumMS:

MS(j) =
T−1∑
n=0

B(j, n)M (n) (13)

3) LOGARITHMIC TRANSFORMATION AND DISCRETE
COSINE TRANSFORMATION (DCT)
Logarithm MS to the base e to get the logarithmic
magnitude s:

s(j) = lnMS(j) (14)

At last, do DCT to s to get the MFCC feature vector C :

C(n) =

√
2
N

J∑
j=1

s(j)cos(
πn(2j− 1)

2J
), n = 1, 2, . . . ,N

(15)

where J is the number of filters in the filter bank, N is the
dimension of MFCC feature vector.

4) DELTA CEPSTRUM OF MFCC
Delta cepstrum reflects the variations of MFCC, it shows the
dynamic characteristics. The delta cepstrum of aN dimension
MFCC feature is:

d(n) =


C(n+ 1)− C(n) n < K∑K

k=1 k[C(n+ k)− C(n− k)]√
2

∑K
k=1 k

2
others

C(n)− C(n− 1) n ≥ N − K
(16)

where d(n) is the nth value of the delta cepstrum, K is the
time difference, normally be 1 or 2.

Based on these steps, the MFCC feature C and the delta
cepstrum feature d can be extracted.

V. FEATURE ARRANGEMENT AND CNN ARCHITECTURE
In this paper, in consideration of the possible connection
between signal frames and the combination of multiple frame
feature can reduce the influence of outliers, feature vectors of
frames are arranged into 2D feature matrixes, feature vectors
of several contiguous frames constitute the representation
of the currant signal. CNNs have been applied in fields of
visions and image processing successfully, one major rea-
son is that CNNs can extract distinguishable features auto-
matically and classify accurately. On account of the strong
classification ability and mature application of CNNs in the
fields of 2D feature maps, CNNs can be considered as a
deeper feature extractor of the original cepstrum feature and
bearing fault classifier in this work. The keys to apply CNNs
to bearing fault classification are: The way of input 1D data
into network; Sufficient training samples; Network structure.

A. FEATURE ARRANGEMENT
This paper presents a novel feature arrangement method to
generate feature matrixes using 1D feature. It is worth noting
that the number of feature vectors may not enough for train-
ing a CNN, so data augmentation is required. The proposed
feature arrangement method fulfils the two tasks in the same
time.
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FIGURE 4. Feature vectors of normal, ball, inner race and outer race fault
with different dimensions.

To form a feature matrix, first the size of the matrix should
be chose properly. For an appropriate feature dimension,
the feature vector should accurately represent the bearing
fault types generally, and keep lower size to avoid compu-
tational burden. The feature vectors of normal, ball, inner
race and outer race fault with different dimensions are shown
in Fig. 4. It can be seen that the feature vectors getting clearer
alongwith the increase of feature dimensions. Feature vectors
of different fault types are similar before 20D, and there is
no obvious change when the dimension up to 35. Therefore,
28 is selected as the size of feature vector in this work.
Meanwhile, too many or less feature vectors will cause delay
or inaccuracy in the real case, and square matrix simplify
the calculation for the following steps. Take all into account,
the dimension of the feature matrix is 28 × 28, namely 28
feature vectors(1×28 dimensional) constitute a featurematrix
in this paper. After the size is confirmed, pick feature vectors
from the feature set randomly and arrange them into the
matrix by the order they were picked out. At last, repeat the
steps till the number of matrixes is sufficient.

For the general case, the method of feature arrangement
can be expressed as: to generate a feature matrix P composed
by M MFCC vectors (1 × N dimensional feature), and the
corresponding feature set F which has Z vectors, the basic
steps are:

1) Generate an array R consist of a random permutation
of the integers from 1 to Z

R = randperm(1 : Z ) (17)

2) Take the firstM elements of R as a subset S

S(n) = R(n), n = 1, 2, . . . ,M (18)

3) Take the S(n)th feature vector from the set F and
arrange it into nth row of the feature matrix P

P(n, :) = F[S(n)], n = 1, 2, . . . ,M (19)

4) Repeat 1)-3) until feature matrixes are sufficient for
training the network.

FIGURE 5. The generating process of feature representation matrixes.

Meanwhile, delta cepstrum vectors should be arranged as
the same order as the corresponding MFCC feature vectors.
The process is depicted as in Fig. 5. To improve the visual
effects, the feature vectors and matrixes were expressed by
color block from dark blue to bright red. Feature vectors are
normalized to 0 to 1 according to the Max-min normalization
rule before arrangement operation.

In summary, 28D MFCC feature of filtered data frames
are extracted firstly. Then after feature vector sets are built,
feature maps are generated by the proposed feature arrange-
ment method, every feature map contains of 28 different fea-
ture vectors which are selected by random sampling without
replacement. At last, the feature map set is established by
repeating the process of Feature arrangement.

B. NETWORK ARCHITECTURE
A fundamental architecture of CNNs is composed of an input
layer, hidden layers, which include convolutional and pooling
layers, and a fully connected output layer to fulfill the need
of classification. To evaluate these architectures of CNNs,
normal and 3 types of bearing fault data added with white
Gaussian noise at low SNR level, −10dB, are applied to
verify several architectures of CNNs, the classification result
is shown in Table.1. −10dB SNR level is applied in this
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TABLE 1. Classification result of various networks at −10dB SNR.

FIGURE 6. Architecture of LeNet-5 [10].

part as a representation of low SNR level condition. Under
the condition of higher SNR levels, satisfying fault diagno-
sis results can be got by applying the mentioned different
architectures, it is not a difficult task to classify fault data at
higher SNR levels. Meanwhile, too low SNR level condition
will lose the practical meaning of fault diagnosis. As a result,
−10dB SNR condition is applied for evaluating the different
architectures of CNNs in this part. In this part, 8000 training
sample, 100 batch size and 150 epochs are applied. In the
table, C1 and C2 represent the first and second convolutional
layer, P1 and P2 represent the first and second pooling layer.
The results of applying different numbers of output maps and
convolutional kernel size are included. Meanwhile, a repre-
sentative existing pre-trained CNN model LeNet-5 [10] is
included in the table. The information of convolutional and
pooling layers of LeNet-5 are listed in the table, the architec-
ture of LeNet-5 is shown in Fig. 6. On account of the size of
input maps, the kernel size of the second convolutional layers
of LeNet-5 is set to 4× 4.

In the initialization phase, all the bias are initialized to
0 and the weights ω are set as:

ω = random(−1, 1)

√
6

Inputpoints+ Outputpoints
(20)

Sigmoid function is applied behind each convolutional
layer and in the error back propagation training phase, and
mean squared error (MSE) is used as the loss function. The
table shows that the network No.7 achieves the best result,
and it is more accurate than LeNet-5 in this case. Mean-
while, the presented architecture has fewer output maps in
C1 and C2 which means fewer parameters need to be trained.
According to the result, the convolutional neural network in

FIGURE 7. The network architecture of the proposed method.

this paper contains a input layer, two convolutional layers,
two pooling layers, and a fully connected output layer. The
network architecture is depicted in Fig. 7. To improve the
performance of feature expression, a two-channel-input layer
is applied, one for MFCC feature input and another for delta
cepstrum. The detailed comparison is shown in the experi-
ment section.

In [15], Piczak evaluates the potential of CNNs in clas-
sifying environmental sound and urban recordings. Unlike
the model [15] and LeNet-5, this paper uses less convolution
kernels due to bearing fault signals have relatively stable
frequency components in a short frame compare to environ-
mental sounds and pictures, which means less parameters
need to be trained in the training phase.

VI. EXPERIMENT
In this section, comparison experiments of bearing fault clas-
sification of the proposed method with several comparison
methods are provided. In experiments, the results of fault
classification with white Gaussian noise and real factory
noise are presented. Firstly, the experimental bearing data and
experimental conditions are introduced. Then, experiments
under real factory noise have been presented to verify the
effect of SK-based filtering and input features. In comparative
experiments, the results of the proposed method and methods
in [25]–[32] classifying bearing data with Gaussian white
noise at −10dB signal to noise ratio(SNR) are shown first,
then comparison with the method in [25] is given. At last,
summarized classification results of the proposed method
on bearing data with real factory noise are listed. All the
bearing data in this section come from Case Western Reserve
University (CWRU) bearing data center [33].

A. EXPERIMENTAL SETUP
The CWRU bearing dataset has been widely used for testing
fault diagnosis algorithm and new features, and became a
standard database [34], [35]. Specification of the experimen-
tal bearings in the database is shown in Table 2.

The dataset contains two kinds of fault bearings, drive end
bearing fault and fan end bearing fault. Data were collected
from the base plate (BA), the vertical direction on the housing
of the drive end (DE) and fan end bearing (FE) respectively,
with the motor load of 0hp (_0), 1hp (_1), 2hp (_2), and
3hp (_3). The bearing fault mode include no damage, damage
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TABLE 2. Specification of the experimental bearings.

on inner race (IR), outer race (OR), and ball (B) with fault
diameters of 0.007in (007), 0.014in (014), and 0.021in (021).
For outer race fault, the number after ’@’ means the fault
position in a clock.

FIGURE 8. The envelop spectrum of drive end fault data.

The envelop spectra of drive end fault data from the
equipment base and drive end with 3hp load (rotate speed:
1730rpm) are shown in Fig. 8. The fault character frequencies
of each fault type are marked by red circles in the figures.
The results show that the fault character frequencies of the
base and ball fault data are blur, and the fault type is difficult
to be identified by envelop spectrum. Without enough prior
knowledge, the envelop spectrum analysis is not reliable for
all the fault type in this case.

FIGURE 9. (a) The temporal waveform and spectrum of the factory noise.
(b) The SK curve of the factory noise. The temporal waveform and
spectrum of (c) BA-B021_3, (d) BA-IR021_3, (e) BA-OR021_3 with the
factory noise.

To verify the proposed approach, the test dataset used for
experiments in this section are the CWRU bearing dataset
added with a audible factory noise signal and white Gaussian
noise respectively. The factory noise was download from
Freesound.org [36], the noise contains continuous and inter-
mittent machine noise which can simulate the real case.
The temporal waveform and spectrum of the factory noise,
the bearing data, BA-B021_3,BA-IR021_3, BA-OR021_3,
with the factory noise, and the SK curve of the factory noise
are shown in Fig. 9. From the temporal waveform of the
factory noise Fig. 9(a), the shock can be identified clearly, and
the SK curve Fig. 9(b) shows that the noise includes several
main Gaussian and non-Gaussian components. Moreover,
the signal contains weak noises on the entire frequency band
as it shown in the spectral waveform. Therefore, the noise
signal is regarded as a representative factory noise to verify
the proposed method.

In filtering process, the window width (Nw) is the integral
power of 2 normally, so let the window be 256 points Hanning
window here. Let the points of STFT be 2×Nw, and the step
length of window is 0.75×Nw. For framing, to ensure every
frame contains the main SK information, let the frame length
be 6000 points, the step length of framingwindow is 0.1 times
of the width of the framing window. Let the dimension of a
MFCC feature vector be 28 and a feature matrix composed
by 28 feature vectors.
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FIGURE 10. Loss function of the proposed method.

In training process, sufficient samples should be provided
to train the network. In this work, 8000 feature maps were
produced for each class according to the length of the original
data. In the testing phase, to simulate the real detecting con-
dition, feature vectors should be arranged in time sequence.
And 10-fold cross validation is applied in the experiments.
The batch size is set to 100. The loss function of the training
phase in 10-fold cross validation, MSE, is shown in Fig. 10.
In the process of 10-fold cross validation, the proportion of
training and validation data samples used for training is 9 to 1
in each time validation. According to the result, 150 times
iteration is applied. Since the motor speeds are obviously
different under the condition of different motor load, data
collected from the same position under one kind ofmotor load
are used in each experiment.

The presented architecture of CNNs is shown in Fig. 7,
the Deep-learn Toolbox [37] was applied as the basis to build
the CNN in this paper. The first convolutional layer has two
convolution kernels, each size is 5 × 5. The second convo-
lutional layer has 3 convolution kernels with the same size.
Mean sampling is adopted in every pooling layer, the size of
the sampling kernel is 2× 2.

B. RESULTS
1) SK-BASED FILTERING
This experiment tends to verify the effect of filtering based on
SK. The testing data are 0 motor load drive end bearing fault
BA data with the factory noise, a total of 13 classes fault data.
The outer race defect signals with different fault locations
may relate to different fault causes and equipment operating
conditions in the real case. As a result, the bearing outer race
defect signals are used as different types of bearing fault data
in this work. Meanwhile, in order to highlight the effect of
SK-based filtering and in consideration of delta cepstrum is
the derivative of MFCC, only MFCC was used in this part,
in other word, the CNN has a one-channel-input layer. The
SK curves of base plate data, BA-B021_3, BA-IR021_3, and
BA-OR021_3 with the factory noise are shown in Fig. 11.

The confusion matrixes of classifying the noised and fil-
tered data using one-channel-input CNN of each class are

FIGURE 11. SK curves of bearing data with the factory noise.

FIGURE 12. Confusion matrix of classifying noised signals.

shown in Fig. 12 and Fig. 13. The overall accuracy of classify-
ing noised and filtered data are 44.36% and 78.39%, respec-
tively. The result shows that the filtering method increases the
classification accuracy.

In the confusion matrixes, label 1 to 13 stand for
13 fault types: BA-B007_0, BA-B014_0, BA-B021_0, BA-
IR007_0, BA-IR014_0, BA-IR021_0, BA-OR007@12_0,
BA-OR007@3_0, BA-OR007@6_0, BA-OR014@6_0, BA-
OR021@12_0, BA-OR021@3_0, and BA-OR021@6_0.

2) COMPARE TWO WITH ONE-CHANNEL-INPUT
To compare with two-channel-input, the result of applying
delta cepstrum feature as the single input to one-channel-
input CNN is shown in Fig. 14. The overall accuracy is
28.5605%. The delta cepstrum represent the dynamic charac-
teristic of MFCC, without MFCC, delta cepstrum is not very
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FIGURE 13. Confusion matrix of classifying filtered signals.

FIGURE 14. Confusion matrix of delta cepstrum feature with
one-channel-input CNN.

effective for classification according to the result. In contrast,
MFCC feature and delta cepstrum feature are applied as the
inputs of a two-channel-input CNN, and the confusion matrix
of classifying each class are shown in Fig. 15, the overall
accuracy is 86.0906%. Compare to the result of applying
MFCC and delta cepstrum feature with one-channel-input
respectively, two-channel-input CNN increases the classi-
fication accuracy. And basically, most of the data can be
classified correctly. The fault type 0.007in, 0.021in ball

FIGURE 15. Confusion matrix of applying two-channel-input CNN.

fault and 0.014in outer race fault perform poorly by apply-
ing no-filtering one-input-channel CNN, and get accurate
results with the SK-filtering two-input-channel CNN. The
accuracy of 0.007in outer race fault at the 12 o’clock posi-
tion decreased compare to applying filtering one-channel-
input CNN, and it is higher than applying the no-filtering
approach. Since the two-channel-input CNN get better results
generally, the architecture of the proposed approach is applied
in the rest experiments.

3) COMPARISON OF THE PROPOSED METHOD
WITH PREVIOUS METHODS
In this part, white Gaussian noise was added in bearing data
to evaluate the classification ability of the proposed method
and several previous methods [25]–[32]. The experimental
data are the normal, B007, IR007, and OR007 data of 2hp
load drive end bearing fault DE data. In [25] and [32],
the previous methods have been tested all sidedly, and the
conclusion indicates that the worst case is with−10dB SNR.
Table 3 presents the comparison of the proposed method
with the previous methods at−10dB SNR, and the confusion
matrix of the proposed method is shown in Fig. 16. In the
confusion matrix, number 1 to 4 represent the normal, ball
fault, inner race fault, and outer race fault data respectively.
The result shows that the better fault classification ability of
the proposed method, SK-based CNN, at −10dB SNR level,
all the normal samples are classified accurately and few fault
samples are misclassified.

In addition, the strong white Gaussian noise changes the
SK curve of the bearing data greatly. For instance, the SK
curve, average error, and mean of the SK curve of DE-
IR007_2 with white Gaussian noise at several SNR levels are
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TABLE 3. Comparative performance of the proposed method with
previous methods at SNR=−10dB.

FIGURE 16. Confusion matrix of the proposed method at −10dB SNR.

FIGURE 17. The SK curve and the waveforms of the average error and
mean of SK of DE-IR007_2 with white Gaussian noise.

shown in Fig. 17. The SK curve of the raw signal and at 10dB
level are similar, but changing obviously when the SNR level
is lower than 0dB, which indicates that the effectiveness of
the proposed approach will decline along with the reduction
of SNR.

4) COMPARISON OF THE PROPOSED METHOD
WITH VSI-BASED ANN
In [25], Muhammad Amar presents a novel vibration spec-
trum imaging (VSI) feature enhancement procedure for

low SNR conditions, and used an artificial neural net-
work (ANN) as a fault classifier (VSI-based ANN). In the
paper, VSI-based ANN method was used to classify the
CWRU bearing data that added with white Gaussian noise in
various low SNRs. Comparing to other methods mentioned
in [25], VSI-based ANN method got better performance in
classifying Gaussian white noised bearing data. In this part,
comparison of SK-based CNN with VSI-based ANN are
shown.

FIGURE 18. The input maps correspond to SNR levels of the CNN.

FIGURE 19. The feature maps of −10dB noised data extracted by the CNN.

In the experiment, the bearing data of four classes were
added with 0dB to−15dB SNRwhite Gaussian noise respec-
tively. The corresponding input maps of different SNR levels
are shown in Fig. 18. And the feature maps of−10dB noised
data extracted by the CNN before the last layer are shown
in Fig. 19. The comparison of VSI-based ANN [25] and the
proposed approach on low SNR levels are shown in Fig. 20.
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FIGURE 20. The classification accuracy of VSI-based ANN and SK-based
CNN.

In Fig. 18 and Fig. 19, C1 to C4 represent the 2hp load
drive end bearing DE data of normal, ball fault, inner race
fault, and out race fault of 0.007in, F1 to F3 represent the three
outputs in the last convolutional layer of the CNN, which can
be regarded as the feature extracted by the CNN. As it shown
in Fig. 18, there is a huge difference between input maps
of same fault type at different SNR level, but several main
frequency bands (columns) have been retained, especially
for the delta cepstrum feature maps. Meanwhile, input maps
of different classes at one SNR level are distinguishable.
In Fig. 19, the differences between fault types are even greater
among the feature maps extracted by CNN.

According to the results shown in Fig. 20, the VSI-based
ANN gets high classification accuracy from 0dB to −6dB,
and declined gradually from −6dB to −15dB. The classifi-
cation ability of the proposed method is weaker than VSI at
−4dB to −6dB, but gets better results at lower SNR levels,
from −8dB to −15dB, and the downward trend is more
slower. The result verifying the Gaussian noise resisting and
classifying ability of the proposed method.

5) THE DRIVE AND FAN END BEARING
FAULT CLASSIFICATION
In this part, the drive end and fan end bearing fault data
with real factory noise are classified by the proposed method,
respectively. By contrast, the classification results of one-
channel-input CNN without filtering are presented. The clas-
sification results are shown in Table 4-Table 7. Table 4 and
Table 5 show the results of drive end bearing fault classifi-
cation, the results of fan end bearing fault classification are
shown in Table 6 and Table 7.

TABLE 4. Classification accuracy (%) of no filtering/one-channel-input
(drive end fault).

TABLE 5. Classification accuracy (%) of SK-based
filtering/two-channel-input (drive end fault).

TABLE 6. Classification accuracy (%) of no filtering /one-channel-input
(fan end fault).

TABLE 7. Classification accuracy (%) of SK-based
filtering/two-channel-input (fan end fault).

From the experimental results, the proposed method is
more effective than the contrast method. Meanwhile, most
of the results of classifying FE data are better than others,
whichmatches the conclusion in paper [2] that the FE data are
easier to be diagnosed than other data. Similarly, the results
of classifying BA data perform poorly than other locations.

Based on the results above, whether under the influence
of Gaussian white noise or real factory noise, the proposed
method can classify bearing fault data effectively.

VII. CONCLUSION
This paper proposed a novel and effective bearing fault clas-
sification method by combining SK-based filtering method
and convolutional neural network. In the experiments, data
with real factory noise and white Gaussian noise at low SNR
levels have been taking into account. From the experiment
results delivered above, whether under the influence of low
SNR white Gaussian noise or real factory noise, the pro-
posedmethod can get high classification accuracies. Based on
the accurate classification results, the proposed method can
improve the quality of monitoring rolling element bearings
in noise environment. Based on the findings in this work,
the future direction of the research work includes multi-faults
diagnosis and bearing fault anomaly detection in strong noise
environment, etc.

ACKNOWLEDGMENT
The authors would like to thank the Case Western Reserve
University BearingData Center for providing the bearing data
in this study.

VOLUME 7, 2019 69805



Q. Jiang et al.: Bearing Fault Classification Based on Convolutional Neural Network in Noise Environment

REFERENCES
[1] X. Jin, M. Zhao, T. W. S. Chow, and M. Pecht, ‘‘Motor bearing fault

diagnosis using trace ratio linear discriminant analysis,’’ IEEE Trans. Ind.
Electron., vol. 61, no. 5, pp. 2441–2451, May 2014. doi: 10.1109/TIE.
2013.2273471.

[2] W. A. Smith and R. B. Randall, ‘‘Rolling element bearing diagnostics
using the Case Western Reserve University data: A benchmark study,’’
Mech. Syst. Signal Process., vols. 64–65, pp. 100–131, Dec. 2015.
doi: 10.1016/j.ymssp.2015.04.021.

[3] B. Yao, P. Zhen, L. Wu, and Y. Guan, ‘‘Rolling element bearing fault
diagnosis using improved manifold learning,’’ IEEE Access, vol. 5,
pp. 6027–6035, 2017. doi: 10.1109/ACCESS.2017.2693379.

[4] R. Zhang, H. Tao, L. Wu, and Y. Guan, ‘‘Transfer learning with neural
networks for bearing fault diagnosis in changing working conditions,’’
IEEE Access, vol. 5, pp. 14347–14357, 2017. doi: 10.1109/ACCESS.
2017.2720965.

[5] S. Singh andN. Kumar, ‘‘Detection of bearing faults inmechanical systems
using stator current monitoring,’’ IEEE. Trans. Ind. Informat., vol. 13,
no. 3, pp. 1341–1349, Jun. 2017. doi: 10.1109/TII.2016.2641470.

[6] R. F. Dwyer, ‘‘A technique for improving detection and estimation of
signals contaminated by under ice noise,’’ J. Acoust. Soc. Amer., vol. 74,
no. 1, pp. 124–130, Mar. 1983. doi: 10.1016/j.ymssp.2015.04.021.

[7] J. Antoni, ‘‘The spectral kurtosis: A useful tool for characterising
non-stationary signals,’’ Mech. Syst. Signal Process., vol. 20, no. 2,
pp. 282–307, Feb. 2006. doi: 10.1016/j.ymssp.2004.09.001.

[8] J. Antoni and R. Randall, ‘‘The spectral kurtosis: Application to the
vibratory surveillance and diagnostics of rotating machines,’’ Mech. Syst.
Signal Process., vol. 20, no. 2, pp. 308–331, 2006. doi: 10.1016/j.ymssp.
2004.09.002.

[9] J. Tian, C. Morillo, M. H. Azarian, and M. Pecht, ‘‘Motor bearing
fault detection using spectral kurtosis-based feature extraction
coupled with K-nearest neighbor distance analysis,’’ IEEE
Trans. Ind. Electron., vol. 63, no. 3, pp. 1793–1803, Mar. 2016.
doi: 10.1109/TIE.2015.2509913.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998. doi: 10.1109/5.726791.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), vol. 2012, pp. 1097–1105.

[12] J. C. Rangel, J. Martínez-Gómez, C. Romero-González, I. García-Varea,
and M. Cazorla, ‘‘Semi-supervised 3D object recognition through CNN
labeling,’’ Appl. Soft Comput., vol. 65, no. 3, pp. 603–613, 2018.
doi: 10.1016/j.asoc.2018.02.005.

[13] Q. Mao, M. Dong, Z. Huang, and Y. Zhan, ‘‘Learning salient features
for speech emotion recognition using convolutional neural networks,’’
IEEE Trans. Multimedia, vol. 16, no. 8, pp. 2203–2213, Dec. 2014. doi:
10.1109/TMM.2014.2360798.

[14] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, ‘‘Real-time
motor fault detection by 1-D convolutional neural networks,’’ IEEE
Trans. Ind. Electron., vol. 63, no. 11, pp. 7067–7075, Nov. 2016.
doi: 10.1109/TIE.2016.2582729.

[15] K. J. Piczak, ‘‘Environmental sound classification with convolutional neu-
ral networks,’’ in Proc. IEEE 25th Int. Workshop Mach. Learn. Signal
Process., Sep. 2015, pp. 1–6. doi: 10.1109/MLSP.2015.7324337.

[16] T. Yoshioka, S. Karita, and T. Nakatani, ‘‘Far-field speech recogni-
tion using CNN-DNN-HMM with convolution in time,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., Apr. 2015, pp. 4360–4364.
doi: 10.1109/ICASSP.2015.7178794.

[17] J. Schlüter and S. Böck, ‘‘Improved musical onset detection with convolu-
tional neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2014, pp. 6979–6983. doi: 10.1109/ICASSP.2014.6854953.

[18] L. Wen, L. Gao, X. Li, M. Xie, and G. Li, ‘‘A new data-driven intel-
ligent fault diagnosis by using convolutional neural network,’’ in Proc.
IEEE Int. Conf. Ind. Eng. Eng. Manage. (IEEM), Singapore, Dec. 2017,
pp. 813–817.

[19] D. Peng, Z. Liu, H. Wang, Y. Qin, and L. Jia, ‘‘A novel deeper one-
dimensional CNN with residual learning for fault diagnosis of wheelset
bearings in high-speed trains,’’ IEEE Access, vol. 7, pp. 10278–10293,
2019. doi: 10.1109/ACCESS.2018.2888842.

[20] H.-M. Moon, C. H. Seo, and S. B. Pan, ‘‘A face recognition system based
on convolution neural network usingmultiple distance face,’’ Soft Comput.,
vol. 21, no. 17, pp. 4995–5002, 2017. doi: 10.1007/s00500-016-2095-0.

[21] V. C. M. N. Leite, J. G. B. da Silva, G. F. C. Veloso, L. E. B.
da Silva, G. Lambert-Torres, E. L. Bonaldi, and L. E. L. de
Oliveira, ‘‘Detection of localized bearing faults in induction machines
by spectral kurtosis and envelope analysis of stator current,’’ IEEE
Trans. Ind. Electron., vol. 62, no. 3, pp. 1855–1865, Mar. 2015.
doi: 10.1109/ICASSP.2014.6854953.

[22] S. E. Kucukbay and M. Sert, ‘‘Audio-based event detection in office
live environments using optimized MFCC-SVM approach,’’ in Proc.
IEEE 9th Int. Conf. Semantic Comput., Feb. 2015, pp. 6979–6983.
doi: 10.1109/ICOSC.2015.7050855.

[23] D. Sharma and I. Ali, ‘‘A modified MFCC feature extraction technique for
robust speaker recognition,’’ in Proc. Int. Conf. Adv. Comput., Commun.
Inform., Aug. 2015, pp. 1052–1057. doi: 10.1109/ICACCI.2015.7275749.

[24] B. Yan, G. Q. Qian, F. H. Wang, and S. Chen, ‘‘Noise recogni-
tion of power transformers based on improved MFCC and VQ,’’ in
Proc. IEEE/PES Transmiss. Distrib. Conf. Expo., May 2016, pp. 1–5.
doi: 10.1109/TDC.2016.7519923.

[25] M. Amar, I. Gondal, and C.Wilson, ‘‘Vibration spectrum imaging: A novel
bearing fault classification approach,’’ IEEE Trans. Ind. Electron., vol. 62,
no. 1, pp. 494–502, Jan. 2015. doi: 10.1109/TIE.2014.2327555.

[26] S. K. Goumas, M. E. Zervakis, and G. S. Stavrakakis, ‘‘Classification of
washing machines vibration signals using discrete wavelet analysis for fea-
ture extraction,’’ IEEE Trans. Instrum. Meas., vol. 51, no. 3, pp. 497–508,
Jun. 2002. doi: 10.1109/TIM.2002.1017721.

[27] X. Lou and K. A. Loparo, ‘‘Bearing fault diagnosis based on wavelet
transform and fuzzy inference,’’Mech. Syst. Signal Process., vol. 18, no. 5,
pp. 1077–1095, Sep. 2004. doi: 10.1016/S0888-3270(03)00077-3.

[28] S. Seker and E. Ayaz, ‘‘Feature extraction related to bearing damage in
electric motors by wavelet analysis,’’ J. Franklin Inst., vol. 340, no. 2,
pp. 125–134, 2003. doi: 10.1016/S0016-0032(03)00015-2.

[29] F. Li, G.Meng, L. Ye, and P. Chen, ‘‘Wavelet transform-based higher-order
statistics for fault diagnosis in rolling element bearings,’’ J. Vib. Control,
vol. 14, no. 11, pp. 1691–1709, 2008. doi: 10.1177/1077546308091214.

[30] B. Samanta and K. R. Al-Balushi, ‘‘Artificial neural network based
fault diagnostics of rolling element bearings using time-domain fea-
tures,’’ Mech. Syst. Signal Process., vol. 17, no. 2, pp. 317–328, 2003.
doi: 10.1006/mssp.2001.1462.

[31] A. Malhi and R. X. Gao, ‘‘PCA-based feature selection scheme for
machine defect classification,’’ IEEE Trans. Instrum. Meas., vol. 53, no. 6,
pp. 1517–1525, Dec. 2004. doi: 10.1109/TIM.2004.834070.

[32] M. F. Yaqub, I. Gondal, and J. Kamruzzaman, ‘‘Inchoate fault detection
framework: Adaptive selection of wavelet nodes and cumulant orders,’’
IEEE Trans. Instrum. Meas., vol. 61, no. 3, pp. 685–695, Mar. 2012.
doi: 10.1109/TIM.2004.834070.

[33] Case Western Reserve University Bearing Data Center. Accessed:
Feb. 20, 2019. Seeded Fault Test Data. [Online]. Available:
http://csegroups.case.edu/bearingdatacenter/home

[34] M. Segla, S. Wang, and F. Wang, ‘‘Bearing fault diagnosis with an
improved high frequency resonance technique,’’ in Proc. IEEE 10th Int.
Conf. Ind. Inform., Jul. 2012, pp. 580–585. doi: 10.1109/INDIN.2012.
6301378.

[35] T. W. Rauber, F. de A. Boldt, and F. M. Varejão, ‘‘Heterogeneous feature
models and feature selection applied to bearing fault diagnosis,’’ IEEE
Trans. Ind. Electron., vol. 62, no. 1, pp. 637–646, Jan. 2015. doi: 10.1109/
TIE.2014.2327589.

[36] Freesound. Accessed: Feb. 20, 2019. [Online]. Available: https://
freesound.org/s/249636/

[37] R. B. Palm, ‘‘Prediction as a candidate for learning deep hierarchical
models of data,’’ M.S. thesis, Dept. Inform. Math. Model., Tech. Univ.
Denmark, Kongens Lyngby, Denmark, 2012.

QINYU JIANG received the B.S. degree from
Shandong University, Weihai, China, in 2014.
He is currently pursuing the Ph.D. degree with
the School of Control Science and Engineering,
Shandong University, Jinan, China. His research
interests include fault diagnosis and classification,
pattern recognition, and intelligent systems.

69806 VOLUME 7, 2019

http://dx.doi.org/10.1109/TIE.2013.2273471
http://dx.doi.org/10.1109/TIE.2013.2273471
http://dx.doi.org/10.1016/j.ymssp.2015.04.021
http://dx.doi.org/10.1109/ACCESS.2017.2693379
http://dx.doi.org/10.1109/ACCESS.2017.2720965
http://dx.doi.org/10.1109/ACCESS.2017.2720965
http://dx.doi.org/10.1109/TII.2016.2641470
http://dx.doi.org/10.1016/j.ymssp.2015.04.021
http://dx.doi.org/10.1016/j.ymssp.2004.09.001
http://dx.doi.org/10.1016/j.ymssp.2004.09.002
http://dx.doi.org/10.1016/j.ymssp.2004.09.002
http://dx.doi.org/10.1109/TIE.2015.2509913
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.asoc.2018.02.005
http://dx.doi.org/10.1109/TMM.2014.2360798
http://dx.doi.org/10.1109/TIE.2016.2582729
http://dx.doi.org/10.1109/MLSP.2015.7324337
http://dx.doi.org/10.1109/ICASSP.2015.7178794
http://dx.doi.org/10.1109/ICASSP.2014.6854953
http://dx.doi.org/10.1109/ACCESS.2018.2888842
http://dx.doi.org/10.1007/s00500-016-2095-0
http://dx.doi.org/10.1109/ICASSP.2014.6854953
http://dx.doi.org/10.1109/ICOSC.2015.7050855
http://dx.doi.org/10.1109/ICACCI.2015.7275749
http://dx.doi.org/10.1109/TDC.2016.7519923
http://dx.doi.org/10.1109/TIE.2014.2327555
http://dx.doi.org/10.1109/TIM.2002.1017721
http://dx.doi.org/10.1016/S0888-3270(03)00077-3
http://dx.doi.org/10.1016/S0016-0032(03)00015-2
http://dx.doi.org/10.1177/1077546308091214
http://dx.doi.org/10.1006/mssp.2001.1462
http://dx.doi.org/10.1109/TIM.2004.834070
http://dx.doi.org/10.1109/TIM.2004.834070
http://dx.doi.org/10.1109/INDIN.2012.6301378
http://dx.doi.org/10.1109/INDIN.2012.6301378
http://dx.doi.org/10.1109/TIE.2014.2327589
http://dx.doi.org/10.1109/TIE.2014.2327589


Q. Jiang et al.: Bearing Fault Classification Based on Convolutional Neural Network in Noise Environment

FALIANG CHANG received the B.S. and M.S.
degrees from Shandong Polytechnic University,
Jinan, China, in 1986 and 1989, respectively, and
the Ph.D. degree in pattern recognition and intel-
ligence systems from Shandong University, Jinan,
in 2003.

He has been a Professor of pattern recogni-
tion and machine intelligence with the School of
Control Science and Engineering, Shandong Uni-
versity, since 2003. His research interests include

computer vision, image processing, intelligent transportation systems, and
multi-camera tracking methodology.

BOWEN SHENG received the B.S. degree from
the Inner Mongolia University of Technology,
Hohhot, China, in 2017. He is currently pursu-
ing the M.S. degree with the School of Control
Science and Engineering, Shandong University,
Jinan, China. His research interests include fault
diagnosis and classification, pattern recognition,
and intelligent systems.

VOLUME 7, 2019 69807


	INTRODUCTION
	FRAMEWORK OF BEARING FAULT CLASSIFICATION METHOD
	FILTERING BASED ON SPECTRAL KURTOSIS
	SPECTRAL KURTOSIS
	FILTERING METHOD

	MEL-FREQUENCY CEPSTRAL COEFFICIENTS FEATURE
	MEL-FREQUENCY CEPSTRAL COEFFICIENTS
	FEATURE EXTRACTION
	FRAMING, WINDOWING, AND DISCRETE FOURIER TRANSFORMATION (DFT)
	MEL-FREQUENCY FILTERING
	LOGARITHMIC TRANSFORMATION AND DISCRETE COSINE TRANSFORMATION (DCT)
	DELTA CEPSTRUM OF MFCC


	FEATURE ARRANGEMENT AND CNN ARCHITECTURE
	FEATURE ARRANGEMENT
	NETWORK ARCHITECTURE

	EXPERIMENT
	EXPERIMENTAL SETUP
	RESULTS
	SK-BASED FILTERING
	COMPARE TWO WITH ONE-CHANNEL-INPUT
	COMPARISON OF THE PROPOSED METHOD WITH PREVIOUS METHODS
	COMPARISON OF THE PROPOSED METHOD WITH VSI-BASED ANN
	THE DRIVE AND FAN END BEARING FAULT CLASSIFICATION


	CONCLUSION
	REFERENCES
	Biographies
	QINYU JIANG
	FALIANG CHANG
	BOWEN SHENG


