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ABSTRACT Intuitionistic fuzzy sets (IFSs) are essential in the multi-criteria decision making (MCDM)
under uncertain environment. However, how to reasonably aggregate them with considering the uncertainty
contained in the IFSs is still an open issue. In this paper, a new method is proposed to solve such a problem
based on the Dempster–Shafer evidence theory, belief entropy, and the weighted ordered weighted averag-
ing (WOWA) operator. One of the advantages of the presented model is that the uncertainty contained in the
IFSs is effectively modeled based on belief entropy and the conversion from the IFS to Dempster–Shafer
evidence theory. In the framework of evidence theory, the uncertain information contained in the IFSs can be
embodied effectively. Then, the belief entropy is calculated to determine the certainty weights for each IFS.
With the various definitions of the regular increasing monotone (RIM) quantifier Q function, the preference
relationship of a decision maker is considered. A numerical example is shown to illustrate the feasibility and
effectiveness of the proposed method.

INDEX TERMS Intuitionistic fuzzy sets, multi-criteria decision making, Dempster-Shafer evidence theory,
belief entropy, weighted ordered weighted averaging operator, preference.

I. INTRODUCTION
Multi-criteria decision making (MCDM) problems under
uncertain environment have been attracted by many
researchers [1]–[4]. Due to its practical features, it has
been widely applied in many fields, such as risk
assessment [5]–[7], supply selection [8]–[10], failure mode
and effects analysis [11]–[13] and so on [14], [15]. In many
cases, we need to obtain the evaluation results for each
criterion with different alternatives to deal with the MCDM
problems. Thus, it’s essential to represent the uncertain infor-
mation by using some technologies such as fuzzy sets to
handle the uncertain better. One of the pioneering work is
made by Bellman and Zadeh who use fuzzy set methods
for dealing with multi-criteria decision problems [16]. In this
application, a criterion is represented as a fuzzy set over the
space of alternative solutions. With the development of fuzzy
theory in recent years, many non-standard fuzzy set, such
as intuitionistic fuzzy set (IFS) [17]–[19], interval-valued
intuitionistic fuzzy set (IVIFS) [20]–[23] and hesitant fuzzy
set (HFS) [24]–[26], have been caused widespread concern
and been applied in dealing with MCDM problems.
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Since the process of making relevant decisions need to for-
mulate the overall decision function, the aggregation method
of those technologies have been widely discussed [27]–[29].
Numerous operators have been proposed for the aggrega-
tion of fuzzy sets [30]. Traditionally, one commonly used
method is the ordered weighted averaging (OWA) aggre-
gation operator, which has the ability to model linguisti-
cally expressed imperatives for the aggregation of fuzzy
sets [31]. Though classical fuzzy set can make the evaluation
results more objective, it still has some limitations in express-
ing uncertainty [32], [33]. Recently, more and more schol-
ars have focused their research on aggregating non-standard
fuzzy sets, particularly those which allow for a representation
of uncertainty in the membership grade [34]. One common
example is the intuitionistic fuzzy set. Since its practical and
intuitive feature compared with traditional fuzzy sets, IFS has
been paid great attentions in recent years [35]–[37].

In the previous related research, many technologies are
introduced to aggregate IFSs such as Choquet integral aggre-
gation (CIA), Sugeno integral aggregation (SIA) opera-
tors and so on [38], [39]. However, such methods require
the corresponding fuzzy measure, which is not objective
enough [40]. Namely, the aggregated results using suchmeth-
ods are mainly depended on the selected fuzzy measure.
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Based on it, some other effective aggregation methods
are introduced such as ordered weighted averaging (OWA)
operator [41]. Although the OWA operator has a certain
degree of objectivity, it does not well consider the uncertainty
contained in IFSs obtained in specific MCDM problems.
Thus, traditional OWAoperator is also not effective enough to
deal with such an issue. In addition, some researchers utilize
the basic operational properties to complete the aggregation
process such as intuitionistic aggregation aggregation (IFA)
operator [42], arithmetic mean operator [43], intuitionistic
fuzzy ordered weighted averaging operator [44] and so on.
Nevertheless, IFA operator cannot deal with the situation that
the numerical values of IFSs have significant difference. And
the mean operator is lack of consideration for uncertain infor-
mation contained in IFSs. Furthermore, Xu and Yager intro-
duced some operators for intuitionistic fuzzy information,
such as the intuitionistic fuzzy weighted geometric (IFWG)
operator, the intuitionistic fuzzy ordered weighted geomet-
ric (IFOWG) operator, and the intuitionistic fuzzy hybrid
geometric (IFHG) operator [45]. Yu proposed the intuition-
istic fuzzy geometric Heronian mean (IFGHM) operator
and the intuitionistic fuzzy geometric weighed Heronian
mean (IFGWHM) operator to deal with such an issue [46].
And Xu proposed the intuitionistic fuzzy power aggrega-
tion (IFPA) operators to make use of the advantaged of power
aggregation (PA) operator [47].

To address this issue, in this paper, a novel evidential
aggregationmethod of intuitionistic fuzzy sets based on belief
entropy is proposed. Due to the importance of uncertain
information implicit in IFS, we need to handle it by using
some technologies. One of the most effective method is
Dempster-Shafer evidence theory, which is widely used in
many applications [48]–[51]. Considering the specific mean-
ing of membership, non-membership and hesitancy degree,
those variables can be regarded as three mutually exclu-
sive and exhaustive hypotheses. Moreover in the framework
of Dempster-Shafer evidence theory, the basic probability
assignments (BPAs) can be used to handle the relative uncer-
tain information of IFSs. Then we need to consider the mea-
surement of uncertainty. Based on it, the concept of entropy
derived from physics is introduced in this paper. One of
the most common technology is Shannon entropy, which is
widely adopted to measure the uncertainty of a probability
distribution [52]. However, Shannon entropy cannot work
effectively to deal with the case of BPAs [53]. Thus, we intro-
duce belief entropy to solve such an issue. After a series of
calculation process, the certainty weights can be obtained for
each IFS. Moreover, the weighted ordered weighted averag-
ing (WOWA) operator is introduced to complete the polymer-
ization process [54]. With the sundry determination of RIM
quantifier Q function, the preference relationship of decision
maker is also considered.

The rest of this paper is organized as follows. In Section II,
we briefly introduce some basic definitions about the
Dempster-Shafer evidence theory, intuitionistic fuzzy set,
ordered weighted averaging operator, belief entropy and so

on. In Section III, a novel evidential aggregation method of
intuitionistic fuzzy sets based on belief entropy is proposed.
In Section IV, a numerical example and its computational
process are shown to illustrate the effectiveness and practi-
cality of our proposed method. Moreover, the comparisons
and discussion have been also mentioned. In Section V, some
conclusions of the proposed method are given.

II. PRELIMINARIES
A. DEMPSTER-SHAFER EVIDENCE THEORY
Handling uncertainty is inevitable in real engineering
[55]–[58]. Dempster-Shafer evidence theory is also called
as evidence theory [59], [60]. Due to its good performance
on dealing with uncertain information, it has been widely
used in many fields, such as target recognition [61], deci-
sion making [62]–[64], conflict management [65], [66], fault
diagnosis [67] and information fusion [68], [69]. Here are
some of the basic definitions.

Let Ω be a set of N elements called the frame of
discernment which denotes a finite nonempty set of mutu-
ally exclusive and exhaustive hypotheses that Ω =

{H1,H2,H3, . . . ,Hn}. The power set of Ω , which was
denoted with P(Ω), contains all the possible subsets of it.
And it is composed of 2N elements of Ω . Each element of
2N represents a proposition.
Definition 1: A basic probability assignment (BPA) is a

function, which is defined by [59], [60]

m : P(Ω)→ [0, 1], A 7→ m(A) (1)

where ∑
A∈P(Ω)

m(A) = 1, m(∅) = 0 (2)

BPA is the base of evidence theory withmany operations such
as negation [70], correlation [71] and divergence [72], [73].
Definition 2: Given a BPA m, for a proposition A ⊆ Ω ,

the belief function Bel: 2Ω → [0,1] is defined as

Bel(A) =
∑
B⊆A

m(B) (3)

The plausibility function Pl: 2�→ [0,1] is defined as

Pl(A) = 1− Bel(Ā) =
∑

B
⋂
A 6=∅

m(B) (4)

where Ā = Ω -A. Bel(A) can be seen as ameasure of people’s
belief that the hypothesis A is true and is viewed as a lower
limit function on the probability of A. The plausibility Pl(A)
can be interpreted as the degree that we absolutely believe
in A and is seen as an upper limit function on the probability
of A.

B. THE ORDERED WEIGHTED AVERAGING OPERATOR
The OWA operators, which is firstly introduced by Yager, has
been paid more and more attention in recent years. Here we
briefly introduce some basic concepts.
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1) QUANTIFIER-BASED ORDERED WEIGHTED
AVERAGING OPERATOR
Definition 3: An OWA operator of dimension n is a map-
ping F : Rn 7→ R with an associated group of weights
W = [w1,w2, . . . ,wn] which satisfies the condition that

wj ∈ [0, 1] and
n∑
j=1

wj = 1. The OWA operator is determined

as

F(a1, a2, . . . an) =
n∑
j=1

wjaind(j) (5)

where aind(j) ∈ [0, 1] and aind(j) is the jth largest of the aj.
And W = [w1,w2, . . . ,wj, . . . ,wn] is called as the OWA
weighting vector.
Definition 4: Let Ŵ = wn−j+1 and let āi be the negation,

āi = 1 − ai. The OWA aggregation of the āi under Ŵ ,
FŴ (â1, â2, . . . , ân). Because of the limit of the indexing,
assume that âi ≤ âk if i < k . Thus

FŴ (ā1, ā2, . . . , ān) =
n∑
j=1

_
wjān−j+1 = 1−

n∑
i=1

wiai (6)

Definition 5: The weighting vector W for all i = 1, . . . , n
is called quantifier-based OWA weights. And Q : [0, 1] →
[0, 1] is called a Regular Increasing Monotone (RIM) quan-
tifier if it satisfies that Q(0) = 0, Q(1) = 1 and Q(a) ≤ Q(b)
whenever a < b. With a RIM quantifier Q, the weight wi
allocated to the ith variable bi is defined as [74]

wi = Q(
i
n
)− Q(

i− 1
n

) (7)

where i = (1, 2, .., n) with wi ∈ [0, 1],
n∑
i=1

wi = 1 and n

represents the total number of criteria.
It’s obviously to see that the specific value of wi varies

with the different RIMquantifier.Many scholars have defined
lots of different Q to express the decision preference better in
different situations.

2) THE ORNESS OF RIM QUANTIFIER
To better analyze the preference relationship of the RIM
quantifier Q, Yager introduced the concept of orness.
Definition 6: Given a RIM quantifier Q, its orness degree

is generated as [75]

orness(Q) = lim
n→∞

n∑
i=1

n− i
n− 1

[
Q
(
i
n

)
− Q

(
i− 1
n

)]

= lim
n→∞

1
n− 1

n−1∑
i=1

Q
(
i
n

)
=

∫ 1

0
Q(x)dx. (8)

For any RIM quantifier Q, it can be considered to have
the ability to express the preference relationship. For exam-
ple, if any RIM quantifier Q is concave, then generally the
larger numerical satisfaction of criterion Ci will carry more
numerical weight. Moreover, due to the character of non-
decreasing, continuity and defined on the closed unit interval

[0,1], such the conditional function Q is Riemann integrable
that the Eq. 8 is always effective.

3) WEIGHTED ORDERED WEIGHTED AVERAGING OPERATOR
In many cases, the precise values which needed to be aggre-
gated always have its ownweights. Since the quantifier-based
OWA operator satisfies is commutativity, it stands for the
equal importance of each argument. Thus, the reliability fac-
tor of all the information sources is frequently ignored in
this way. Based on it, Torra proposed the weighted ordered
weighted averaging (WOWA) operator [54] , which combines
the advantages of the OWA operator and the weighted mean.
Here we simply introduce some of the concepts.
Definition 7: Given a sequence of n variables {a1, a2, a3,

. . . , an} and let p and w be weighting vectors of dimension n

such that pj ∈ [0, 1] ,
n∑
j=1

pj = 1 and wj ∈ [0, 1] ,
n∑
j=1

wj = 1

where pj and wj individually represents the corresponding
weight information obtained by evaluating the reliability of
each data source and the weights calculation.

The weighted OWA operator is a mapping FWOWA :
Rn 7→ R, which is defined as

FWOWA(a1, a2, . . . an) =
n∑
j=1

wjaind(j) (9)

where aind(j) ∈ [0, 1] and aind(j) is the jth largest of the aj. And
the weight for each argument is defined as

wi = Q(
i∑

k=1

pk )− Q(
i−1∑
k=1

pk ) (10)

where Q is a RIM quantifier function, which can embody the
preference relationship in many cases.

C. INTUITIONISTIC FUZZY SETS
In classical fuzzy sets theory, for any elements in the domain
of discourse, the relationship between each set is only Belong
to or Not Belong to [17]. To express the mathematical model
of the uncertain information better, intuitionistic fuzzy sets
was introduced by Atanassov [76]. In recent years, IFS has
been applied in many applications [77], [78]. Here are some
basic definitions.
Definition 8: An IFS A on the space X is defined by two

functions, A =< µA(x), νA(x) >,µA(x) could be represented
by the degree of membership of x in A and νA(x) could be rep-
resented by the degree of nonmembership of x in A. What’s
more, it satisfies the condition that 0 ≤ µA(x) + νA(x) ≤ 1,
where µA(x) ∈ [0, 1] and νA(x) ∈ [0, 1]. The degree of
hesitancy of x is defined as [76]

πA(x) = 1− (µA(x)+ νA(x)). (11)

Note that for the standard fuzzy sets, νA(x) = 1− µA(x).

D. IFS IN THE FRAMEWORK OF EVIDENCE THEORY
The relationship between evidence theory and IFS is dis-
cussed in [79].
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Definition 9: Assume that there is an IFS A = {<

x, µA(x), νA(x) > |x ∈ X}. In this case above, the rela-
tionship between IFS and evidence theory by mathematical
modeling could be found, which could be expressed that [79]

m({Yes}) = µA(x)

m({No}) = νA(x)

m({Yes,No}) = πA(x) (12)

Recalling the evidence theory, the IFS A can also be
expressed as another form

A = {< x,BIA(x) > |x ∈ X} (13)

where

BIA(x) = [BelA(x),PlA(x)] (14)

BelA(x) = m({Yes}) = µA(x) (15)

PlA(x) = m({Yes})+ m({Yes,No})

= µA(x)+ πA(x)

= 1− υA(x) (16)

Thus, the belief function and plausibility function for any
IFS after the conversion process can be obtained. In the
framework of evidence theory, the uncertain information con-
tained in IFSs can be effectively modeled. Based on the trans-
formation equation mentioned above, IFSs can be converted
into several BPAs, which are also seen as the mass function
in evidence theory.

E. BELIEF ENTROPY
As the development of information science, Shannon entropy
has played more and more important role in measuring the
uncertainty [80]. Here are some of the basic definitions.
Definition 10: Shannon entropy is defined as [52]

H = −
N∑
i=1

pilogbpi (17)

where N is the number of basic states, pi denotes the proba-

bility of state i, and pi satisfies
N∑
i=1

pi = 1.

If the unit information is bit, then b = 2, Shannon entropy
is expressed as

H = −
N∑
i=1

pilog2pi (18)

Since Dempster-Shafer evidence theory has been widely
used in many fields, the method to measure the uncertainty
in evidence theory is still an issue worth exploring [81], [82].
Based on Shannon entropy, a belief entropy, named as Deng
entropy, is presented to deal with uncertainty measure of
BPAs.
Definition 11: In frame of discernment X , the belief

entropy is defined as [53]

Ed (m) = −
∑
A⊆X

m(A)log2
m(A)

2|A| − 1
(19)

where |A| is the cardinality of the proposition A. Specially,
the belief entropy can definitely degenerate to the Shannon
entropy, if the belief is only assigned to single elements.
In recent years, the belief entropy has attracted more and
more people’s attention due to the superiority in measuring
uncertain information [83], [84].

III. THE PROPOSED METHOD
Since IFS is an effective technology to express uncertainty,
the amount of uncertainty contained in it should be modeled
effectively in the aggregation process. In this section, an evi-
dential method based on evidence theory, belief entropy and
weighted OWA is proposed, which is shown in the following.

A. METHOD ILLUSTRATION
Assume that there are n alternatives with m criteria, which
are denoted as {A1,A2, . . . ,An} and {C1,C2, . . . ,Cm}. For
any criterion, there are corresponding n IFSs indicating sat-
isfaction based on alternative A1 to An, respectively. The task
is to aggregate a collection of IFSs under different criteria
for each alternative. Here we note that for the convenience
of the following explanation and discussion process, we use
x to represent one of the criteria Ck . The details of proposed
method are shown as follows.
Step 1: Obtain the three variables of each IFS separately

and convert the IFSs into BPAs. To measure the uncertainty
contained in IFSs better, we can transform the membership
degree, non-membership degree and hesitancy degree of IFSs
in the framework of evidence theory. The specific conversion
process is shown in Eq. 12.
Step 2: Calculate the certainty weights based on belief

entropy. The belief entropy is an effective method to mea-
sure the uncertainty. Hence, we then can calculate the belief
entropy for each IFS. Here the variables are regarded as three
mutually exclusive elements. Based on Eq. 19, the calculation
results can be obtained. Take criteria x for instance, the spe-
cific calculation is shown in Eq. 20.

Note that Y denotes Yes and N denotes No.
Then the maximum value of belief entropy in this situation

Edmax can be calculated. Based on the three variables of IFS
in evidence theory’s framework, it can be shown in Fig. 1,
which is 2.2925. The certainty weights can be calculated as

U (Ai(x)) = Edmax − Ed (Ai(x)) (21)

Step 3: Order the IFSs based on corresponding numerical
value of membership degree and non-membership degree.
Hereµ75Aind(i)(x) represents the alternativewith the ith largest
membership degree and νAind(i)(x) represents the alternative
with the ith largest membership degree.
Step 4: Obtain the RIM quantifier Q function. The specific

definition of Q function can embody the preference relation-
ship (See in Definition 6). Thus, we need to determine the
expression of Q function.
Step 5: Calculate the RIM quantifier Q̂ function. To aggre-

gate the non-membership in the following, here we first
calculate Q̂, which is the dual of Q function. Suppose that the
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FIGURE 1. The schematic diagram of belief entropy of IFS model in the
framework of evidence theory.

Q function with independent variable x is denoted as Q(t),
then Q̂ is calculated as

Q̂(t) = 1− Q(1− t). (22)

Step 6: Compute the weighting vectors W based on the
order results of belief entropy and the given RIM quantifier
Q function. Take the criteria x for example, the calculation
expression is defined as

wi(x) = Q
(
Si
Sn

(x)
)
− Q

(
Si−1
Sn

(x)
)

(23)

where

Si(x) =
i∑

k=1

U (Aind(k)(x))

Sn(x) =
n∑

k=1

U (Aind(k)(x)). (24)

It’s obviously to see that for any i ∈ {1, 2, . . . , n}, SiSn (x) ∈
[0, 1] is always established. Moreover, it satisfies the bound-
ary conditions that when i = 1, Si

Sn
(x) = 0 and Si

Sn
(x) = 1

when i = n.
Step 7: Obtain the dual of weighting vector Ŵ based on

the same order results of belief entropy and calculated Q̂. The
specific calculation process is expressed as

ŵi(x) = Q̂
(
Ŝi
Ŝn

(x)
)
− Q̂

(
Ŝi−1
Ŝn

(x)
)
. (25)

where

Ŝi(x) =
i∑

k=1

U (Aînd(k)(x))

Ŝn(x) =
n∑

k=1

U (Aînd(k)(x)). (26)

Note that înd(k) is also an index function which is the dual
of ind(k). Moreover, U (Aînd(k)(x)) can be defined as

U (Aînd(k)(x)) = U (Aind(n−k+1)(x)) (27)

Step 8: Respectively calculate the aggregation results for
membership and non-membership of IFSs. Based on the
calculated weighting vector W and Ŵ , the aggregated IFS
A(x) =< µA(x), νA(x) > for criterion x can be computed
as

µA(x) = FW (µAind(1) (x), µAind(2) (x), . . . , µAind(n) (x))

=

n∑
k=1

wkµAind(k) (x) (28)

νA(x) = FŴ (νAind(k) (x), νAind(k) (x), . . . , νAind(k) (x)

=

n∑
k=1

ŵkνAind(k) (x). (29)

Step 9: Obtain the aggregated IFSs for each criterion. For
criterion x, the aggregated result is denoted as A(x) =<
µA(x), νA(x) >. And for other criteria, the same method
shown above can be used to calculate its aggregation result.

B. PROOF
Here we give the specific demonstration to show that the
aggregated result is always effective. Namely, the aggregation
result A(x) =< µA(x), νA(x) > is always a valid IFS.
Moreover, Si

Sn
(x) is expressed as si(x) and the corresponding

certainty weights are normalized as ui(x) where
n∑

k=1
uk = 1.

Note that for simplicity, the membership of any IFS µAi (x)
is expressed as ai. Moreover, we assume that all of them have
been indexed that µ1(x) ≥ µ2(x) ≥ . . . ≥ µn(x).
Firstly, the aggregation result of membership can be repre-

sented as

µA(x) = FW ((µ1(x), u1(x)), . . . , (µn(x), un(x)))

=

∑
wj(x)µj(x)

where wj = Q(si(x))− Q(sj−1(x)).

Ed (Ai(x)) = −mAi(x)({Y })log2
mAi(x)({Y })
2|{Y }| − 1

− mAi(x)(N )log2
mAi(x)({N })
2|{N }| − 1

− mAi(x)({Y ,N })log2
mAi(x)({Y ,N })
2|{Y ,N }| − 1

= −mAi(x)({Y })log2mAi(x)({Y })− mAi(x)(N )log2mAi(x)({N })− mAi(x)({Y ,N })log2
mAi(x)({Y ,N })

3
(20)
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Based on Eq. 24 and 26, the aggregation result of
non-membership can be represented as

νA(x) = FŴ ((ν1(x), u1(x)), . . . , (νn(x), un(x)))

Since µi(x)+ νi(x) ≤ 1, we must have νi(x) ≤ 1− µi(x).
Due to the monotonicity of WOWA operator [54], νA(x) can
be embodied as

νA(x) ≤ FŴ ((1− µ1(x), u1(x)), . . . , (1− µn(x), un(x)).

Note that 1− µi(x) is denoted as di(x) for simplicity that

νA(x) ≤ FŴ ((d1(x), u1(x)), . . . , (dn(x), un(x))).

According to the ordering of µi(x), it’s obviously to see
that di(x) should be ordered inversely where d1(x) ≤ d2(x) ≤
. . . ≤ dn(x). Thus we have

νA(x) ≤
n∑

k=1

ŵk (x)dn−j+1(x)

where ŵj(x) = Q̂(̂sj(x)) − Q̂(̂sj−1(x)) and ŝj(x) =
n∑

k=1
un−j+1(x).

And we have
n∑

k=1
ŵk (x) = 1 and dk (x) = 1 − µk (x),

the following inequality can be obtained that

νA(x) ≤ 1−
n∑
j=1

ŵj(x)µn−j+1(x).

Based on Eq. 22, we can find that

ŵj(x) = Q̂(̂sj(x))− Q̂(̂sj−1(x))

= Q(1− sj−1(x))− Q(1− sj(x)).

According to Eq. 26 and 27, we can obtain that

1− ŝj(x) =
n∑

i=j+1

un−i+1(x)

= u1(x)+ u2(x)+ . . .+ un−j(x) =
n−j∑
i=1

ui(x).

Since 1− ŝj(x) = sj(x) and 1− ŝj−1(x) = sn−j+1(x), then

ŵj(x) = Q(sn−j+1(x))− Q(sn−j(x)) = wn−j+1(x).

and
n∑
j=1

ŵj(x)µn−j+1(x) =
n∑
j=1

wn−j+1(x)µn−j+1(x)

=

n∑
j=1

wj(x)µj(x) = µA.

Thus we can observe that

νA(x) ≤ 1−
n∑
j=1

ŵj(x)µn−j+1(x) ≤ 1− µA(x).

Thus µA(x) + νA(x) ≤ 1 is always established. Namely,
A(x) is always a valid IFS.

IV. NUMERICAL EXAMPLE
In this section, a numerical example is performed to show the
whole procedures of our proposed method. Note that to show
the whole process intuitively, there are two criteria and four
alternatives.

A. THE IMPLEMENTATION OF THE PROPOSED APPROACH
Let X = {x, y}, assume that there are four IFSs

A1(x) = < 0.6, 0.2 > A1(y) = < 1.0, 0.0 >

A2(x) = < 0.5, 0.3 > A2(y) = < 0.4, 0.4 >

A3(x) = < 0.9, 0.0 > A3(y) = < 0.3, 0.5 >

A4(x) = < 0.2, 0.7 > A4(y) = < 0.8, 0.1 >

The aim is to consider the aggregation result for criteria x
and y with four alternatives A1, A2, A3 and A4. Here we note
that the aggregation result is respectively denoted as

A(x) = < µA(x), νA(x) >

A(y) = < µA(y), νA(y) >

Step 1: Obtain the three variables of each IFS respectively
and convert the IFSs into BPAs. It’s simple to find that

µA1 (x) = 0.6, νA1 (x) = 0.2, πA1 (x) = 0.2

µA2 (x) = 0.5, νA2 (x) = 0.3, πA2 (x) = 0.2

µA3 (x) = 0.9, νA3 (x) = 0.0, πA3 (x) = 0.1

µA4 (x) = 0.2, νA4 (x) = 0.7, πA4 (x) = 0.1

Similarly,

µA1 (y) = 1.0, νA1 (y) = 0.0, πA1 (y) = 0.0

µA2 (y) = 0.4, νA2 (y) = 0.4, πA2 (y) = 0.2

µA3 (y) = 0.3, νA3 (y) = 0.5, πA3 (y) = 0.2

µA4 (y) = 0.8, νA4 (y) = 0.1, πA4 (y) = 0.1

The result of the criteria x and y as shown in Table 1.
Step 2: Calculate the certainty weights based on belief

entropy. Based on Eq. 20, the belief entropy for each alter-
native can be shown in Table 2.
Step 3: Order the IFSs based on corresponding numerical

value of membership degree and non-membership degree.
Take criterion x for an instance, here we use µAind(k) (x) to
express the alternative k th largest membership degree of IFSs
with criterion x. After the process of comparison, the order
result of criteria x and y is shown in Table 3.
Step 4: Obtain the RIM quantifier Q function. Here

we assume that Q function is defined as Q(x) =

1 − (1− x)2 for all criteria, where orness(Q) =∫ 1
0 Q(x)dx =

∫ 1
0 1− (1− x)2dx = 2

3 .
Step 5: Calculate the RIM quantifier Q̂ function. Based on

the determined Q before, the Q̂ can be calculated as

Q̂(x) = 1− [1− (1− (1− x)2)] = x2.

Step 6: Compute the weighting vectors W for criteria x
and y respectively. Based on the calculated Q function and
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TABLE 1. The result of conversion process from IFS to BPA for the criteria
x and y .

TABLE 2. The result of belief entropy and associated certainty weights for
each alternative.

TABLE 3. The order result of criterion x and y .

entropy-based order Sk for k ∈ {1, 2, 3, 4} can be calculated,
which is shown as follows

S1
Sn

(x) =

1∑
i=1

U (Aind(i)(x))

4∑
k=1

U (Aind(k)(x))

=
1.8235
4.6877

= 0.3890

S2
Sn

(x) =

2∑
i=1

U (Aind(i)(x))

4∑
k=1

U (Aind(k)(x))

=
2.7450
4.6877

= 0.5856

S3
Sn

(x) =

3∑
i=1

U (Aind(i)(x))

4∑
k=1

U (Aind(k)(x))

=
3.5520
4.6877

= 0.7577

S4
Sn

(x) =

4∑
i=1

U (Aind(i)(x))

4∑
k=1

U (Aind(k)(x))

=
4.6877
4.6877

= 1.0000

S1
Sn

(y) =

1∑
i=1

U (Aind(i)(y))

4∑
k=1

U (Aind(k)(y))

=
2.2925
5.2427

= 0.4373

S2
Sn

(y) =

2∑
i=1

U (Aind(i)(y))

4∑
k=1

U (Aind(k)(y))

=
3.6631
5.2427

= 0.6987

S3
Sn

(y) =

3∑
i=1

U (Aind(i)(y))

4∑
k=1

U (Aind(k)(y))

=
4.4357
5.2427

= 0.8461

S4
Sn

(y) =

4∑
i=1

U (Aind(i)(y))

4∑
k=1

U (Aind(k)(y))

=
5.2427
5.2427

= 1.0000.

where S0
Sn
(x) = 0 and S0

Sn
(y) = 0.

Then the weighting vector W for criteria x and y can be
computed as follows.

Step 7 : Obtain the dual of weighting vector Ŵ . Based on
the calculatedQ function and entropy-based order, Ŝk for k ∈
{1, 2, 3, 4} can be calculated, which is shown as

Ŝ1
Ŝn

(x) =

1∑
i=1

U (Aînd(i)(x))

4∑
k=1

U (Aînd(k)(x))

=
1.1357
4.6877

= 0.2423

Ŝ2
Ŝn

(x) =

2∑
i=1

U (Aînd(i)(x))

4∑
k=1

U (Aînd(k)(x))

=
1.9427
4.6877

= 0.4144

Ŝ3
Ŝn

(x) =

3∑
i=1

U (Aînd(i)(x))

4∑
k=1

U (Aînd(k)(x))

=
2.8642
4.6877

= 0.6110
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w1(x) = Q
(
S1
Sn

(x)
)
− Q

(
S0
Sn

(x)
)
= Q (0.3890)− Q (0.0000) = 0.6267− 0.0000 = 0.6267

w2(x) = Q
(
S2
Sn

(x)
)
− Q

(
S1
Sn

(x)
)
= Q (0.5856)− Q (0.3890) = 0.8283− 0.6267 = 0.2015

w3(x) = Q
(
S3
Sn

(x)
)
− Q

(
S2
Sn

(x)
)
= Q (0.7577)− Q (0.5856) = 0.9413− 0.8283 = 0.1131

w4(x) = Q
(
S4
Sn

(x)
)
− Q

(
S3
Sn

(x)
)
= Q (1.0000)− Q (0.7577) = 1.0000− 0.9413 = 0.0587

w1(y) = Q
(
S1
Sn

(y)
)
− Q

(
S0
Sn

(y)
)
= Q (0.4373)− Q (0.0000) = 0.6833− 0.0000 = 0.6833

w2(y) = Q
(
S2
Sn

(y)
)
− Q

(
S1
Sn

(y)
)
= Q (0.6987)− Q (0.4373) = 0.9092− 0.6833 = 0.2259

w3(y) = Q
(
S3
Sn

(y)
)
− Q

(
S2
Sn

(y)
)
= Q (0.8461)− Q (0.6987) = 0.9763− 0.9092 = 0.0671

w4(y) = Q
(
S4
Sn

(y)
)
− Q

(
S3
Sn

(y)
)
= Q (1.0000)− Q (0.8461) = 1.0000− 0.9763 = 0.0237.

Ŝ4
Ŝn

(x) =

4∑
i=1

U (Aînd(i)(x))

4∑
k=1

U (Aînd(k)(x))

=
4.6877
4.6877

= 1.0000

Ŝ1
Ŝn

(y) =

1∑
i=1

U (Aînd(i)(y))

4∑
k=1

U (Aînd(k)(y))

=
0.8070
5.2427

= 0.1539

Ŝ2
Ŝn

(y) =

2∑
i=1

U (Aînd(i)(y))

4∑
k=1

U (Aînd(k)(y))

=
1.5796
5.2427

= 0.3012

Ŝ3
Ŝn

(y) =

3∑
i=1

U (Aînd(i)(y))

4∑
k=1

U (Aînd(k)(y))

=
2.9502
5.2427

= 0.5627

Ŝ4
Ŝn

(y) =

4∑
i=1

U (Aînd(i)(y))

4∑
k=1

U (Aînd(k)(y))

=
5.2427
5.2427

= 1.0000.

where Ŝ0
Ŝn
(x) = 0 and Ŝ0

Ŝn
(y) = 0.

Similarly, the weighting vector Ŵ can be computed as
follows.
Step 8: Respectively calculate the aggregation results for

membership and non-membership of IFSs. Based on the cal-
culated weighting vector W and Ŵ , the two aggregated IFSs

A(x) =< µA(x), νA(x) > and A(y) =< µA(y), νA(y) > can
be computed as

µA(x)

= FW (µAind(1) (x), µAind(2) (x), . . . , µAind(n) (x)

=

n∑
k=1

wk (x) ∗ µAind(k) (x)

= 0.6267 ∗ 0.9+0.2016 ∗ 0.6+0.1131 ∗ 0.5+0.0587 ∗ 0.2

= 0.7533

νA(x)

= FŴ (νAînd(1) (x), νAînd(2) (x), . . . , νAînd(n) (x)

=

n∑
k=1

ŵk (x) ∗ νAînd(k) (x)

= 0.0587 ∗ 0.7+0.1130 ∗ 0.3+0.2016 ∗ 0.2+0.6267 ∗ 0.0

= 0.1153

µA(y)

= FW (µAind(1) (x), µAind(2) (x), . . . , µAind(n) (x)

=

n∑
k=1

wk (x) ∗ µAind(k) (y)

= 0.6833 ∗ 1.0+0.2259 ∗ 0.8+0.0671 ∗ 0.4+0.0237 ∗ 0.3

= 0.8978

νA(y)

= FŴ (νAînd(1) (y), νAînd(2) (y), . . . , νAînd(n) (y)

=

n∑
k=1

ŵk (y) ∗ νAînd(k) (y)

68912 VOLUME 7, 2019



Z. Liu, F. Xiao: Evidential Aggregation Method of IFSs Based on Belief Entropy

ŵ1(x) = Q̂
(
Ŝ1
Ŝn

(x)
)
− Q̂

(
Ŝ0
Ŝn

(x)
)
= Q̂ (0.2423)− Q̂ (0.0000) = 0.0587− 0.0000 = 0.0587

ŵ2(x) = Q̂
(
Ŝ2
Ŝn

(x)
)
− Q̂

(
Ŝ1
Ŝn

(x)
)
= Q̂ (0.4144)− Q̂ (0.2423) = 0.1717− 0.0587 = 0.1130

ŵ3(x) = Q̂
(
Ŝ3
Ŝn

(x)
)
− Q̂

(
Ŝ2
Ŝn

(x)
)
= Q̂ (0.6110)− Q̂ (0.4144) = 0.3733− 0.1717 = 0.2016

ŵ4(x) = Q̂
(
Ŝ4
Ŝn

(x)
)
− Q̂

(
Ŝ3
Ŝn

(x)
)
= Q̂ (1.0000)− Q̂ (0.6110) = 1.0000− 0.3733 = 0.6267

ŵ1(y) = Q̂
(
Ŝ1
Ŝn

(y)
)
− Q̂

(
Ŝ0
Ŝn

(y)
)
= Q̂ (0.1539)− Q̂ (0.0000) = 0.0237− 0.0000 = 0.0237

ŵ2(y) = Q̂
(
Ŝ2
Ŝn

(y)
)
− Q̂

(
Ŝ1
Ŝn

(y)
)
= Q̂ (0.3013)− Q̂ (0.1549) = 0.0907− 0.0237 = 0.0671

ŵ3(y) = Q̂
(
Ŝ3
Ŝn

(y)
)
− Q̂

(
Ŝ2
Ŝn

(y)
)
= Q̂ (0.5627)− Q̂ (0.3013) = 0.3167− 0.0907 = 0.2259

ŵ4(y) = Q̂
(
Ŝ4
Ŝn

(y)
)
− Q̂

(
Ŝ3
Ŝn

(y)
)
= Q̂ (1.0000)− Q̂ (0.5627) = 1.0000− 0.3167 = 0.6833

= 0.0237 ∗ 0.5+0.0671 ∗ 0.4+0.2259 ∗ 0.1+0.6833 ∗ 0.0

= 0.0613

Step 9: Obtain the aggregated IFSs for each criterion.
Based on the calculation result shown above, the aggregated
IFS A(x) and A(y) can be obtained, which are

A(x) = < µA(x), νA(x) >=< 0.7533, 0.1153 >

A(y) = < µA(y), νA(y) >=< 0.8978, 0.0613 >

B. DISCUSSION
In the previous related research, the aggregation of IFS has
caused extensive discussion among many scholars. Many
technologies are introduced to solve such a question such as
Choquet integral aggregation (CIA), Sugeno integral aggre-
gation (SIA) operators, OWA operator and so on. However,
such methods have some limitations to be applied in real
decision-making environment. For example, Choquet integral
aggregation (CIA) and Sugeno integral aggregation (SIA)
operators require the corresponding fuzzy measure, which
are not objective enough. Moreover, although the ordered
weighted averaging (OWA) operator has a certain degree of
objectivity, it does not consider the uncertain information
contained in the IFSs.

In some specific applications such as MCDM problems,
the amount of uncertainty contained in IFSs given by differ-
ent experts are different. For instance, there may exist the
situation that some of the experts are not familiar with the
target objects, which makes them give the evaluation results
contained many uncertain information. Hence, if we want to
aggregate the IFSs to make a synthesized assessment, the IFS
which have less uncertainty should be allocated more weights
compared with others. Moreover, decision makers are more

willing to obtain the certain result than the uncertain one
because we can get more accurate information from it.

According to the previous articles, entropy is particularly
effective in measuring uncertain information. If entropy is
introduced to define weights, the results can be obtainedmore
scientifically and effectively. Thus, in the proposed method,
we introduce the belief entropy to measure and analyze the
uncertainty contained in IFSs which need to be aggregated.
Since IFS is an effective technique to express uncertainty,
the amount of uncertain information should bemodeled effec-
tively. Moreover, considering the ingenious connection of
intuitionistic fuzzy sets and evidence theory, the membership
degree, non-membership degree and hesitancy degree is con-
verted to BPAs. Then we introduce belief entropy to measure
the uncertainty, which allows decision makers to weight the
uncertainty factor. Note that the obtained uncertainty weights
based on the calculation results of belief entropy can well
embody the uncertainty contained in associated IFSs.

Furthermore, the preference relationship of decision mak-
ers is also modeled by using RIM quantifier Q function. For
example, in Section IV-A, the Q function for membership
degree is determined as Q(x) = 1 − (1 − x)2. After the
calculation process, the Q̂ for non-membership degree is
calculated as Q(x) = x2, which is regard as the dual of
Q function. The schematic diagram of Q and Q̂ function is
shown in Fig. 2.

Here we note that the red line represents Q(x) = x,
which means decision makers do not consider the impact of
personal preferences. Furthermore, the blue line represents
the selected Q function in Section IV and the yellow line rep-
resents the dual of Q function Q̂. As shown in Fig. 2, we take
two coordinates (0.4, 0.64) and (0.4, 0.16) for instance. With
the same independent variable, the values obtained after theQ
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FIGURE 2. The schematic diagram of Q and Q̂ function.

and Q̂ function operation are different. Moreover, the weights
allocated to the preceding arguments are not the same due to
the difference in the nature of the function. For theQ function,
To be specific, the higher the weight of the sorted values,
the higher the weight allocated to the arguments. And the
case of Q̂ is opposite. Thus, the selection of Q function can
effectively embody the preference relationship for decision
makers.

As shown in the results, it expresses the decision maker
prefers the more certain evaluation. Note that the specific
definition of Q function is sundry such as linguistic method,
etc. And the aggregated IFS has been proved to be valid at all
times. Thus, it’s obviously to see the practical significance of
the new method.

The calculation results for some of other relative
approaches are shown in Table 4. Note that the mean operator
and IFA operator are completely data driven which do not
need decision makers to offer subjectively weights. More-
over, for IFOWA operator, we assume that the RIM Q func-
tion for membership degree is Q(x) = 1− (1− x)2, which is
consistent with the Q function used in Section IV.

TABLE 4. The calculation results for several relative approaches.

It’s obviously to see that the aggregation result for IFA
method is counterintuitive, which is not effective to deal
with the cases that the values of IFSs have significant
difference [42]. As for the arithmetic mean operator [43],
it cannot respond well to the willingness of decision makers’
preference relationship and does not take into account the
uncertainty of experts, which is plain and not flexible enough.
For the IFOWA operator [44], it mainly consider the size
relationship of numerical values and do not make use of the
amount of uncertain information contained in IFSs. There-
fore, even if the aggregated results of such approaches can
express the difference between the criterion x and y, they still
have some limitations compared with the proposed method.

V. CONCLUSION
In this paper, a new method to aggregate IFSs is proposed to
handle MCDM problems. The main contribution is to con-
sider the uncertain information contained in associated IFSs
to make the aggregation more considerate and effective. The
belief entropy and evidence theory are introduced to measure
the uncertainty. Furthermore, the preference relationship is
also premeditated based on various definitions of quantifierQ
function in WOWA operator.

It should be pointed that there are some limitations of
the proposed method. For example, when the data sets have
their own induced value, the proposed method is not efficient
enough, which is one of our ongoing works.
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