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ABSTRACT The two-stream convolutional network (ConvNet) plays a vital role in the development of the
deep learning network for activity recognition. Recently, there are many studies about activity recognition
using the two-stream network as a powerful feature extractor. The combination of two-stream ConvNet
and fully connected long short-term memory (FC-LSTM) and the combination of two-stream ConvNet
and temporal segment LSTM had achieved the best performance for activity recognition. In this paper,
we are motivated to explore the performance’s limit of networks that combine two-stream and recurrent
neural network, so we highlight the necessity of maintaining spatial structure throughout the deep learning
networks when the sequential data show correlations in space and stress the importance of appropriate fusion
method when integrating feature maps and we demonstrate with experiments that these methods work well.
Three main contributions can be concluded from our work. First, we propose to combine convolutional
LSTM (ConvLSTM) networks with a two-stream ConvNet based on RGB streams and optical streams first.
The spatiotemporal features are extracted by a two-stream ConvNet which is pre-trained on the dataset of
ImageNet, and then the fused sequential three-dimensional feature maps are classified by the ConvLSTM.
Second, we explored the effect of fusing the feature maps of the two-stream network at different layers
with different fusing strategy and conclude that appropriate fusing location and fusing method can improve
our model to the state-of-art performance. Third, we demonstrated that better overall performance can be
achieved, given proper care to the ConvLSTM. Our analysis shows that our proposed network structure can
achieve the state-of-art 69.4% accuracy on HMDB51 and 93.9 % accuracy on UCF101 among the methods
composed by the ConvNets with the recurrent neural network without pre-training on Kinetics dataset.

INDEX TERMS Activity recognition, convolutional long short-termmemory networks, convolutional neural
network, two-stream.

I. INTRODUCTION
Activity recognition has been studied for many years as a
challenging research task in the field of computer vision.
Since two-stream ConvNet (convolutional network) was pro-
posed by Donahue et al. [1], many studies have been
carried on with this method. Simonyan and Zissermanused
two independent convolutional networks to extract the fea-
ture maps of RGB images and multi-frame optical flow
images. These feature maps not only contain spatial infor-
mation but also temporal information. Their final prediction

The associate editor coordinating the review of this manuscript and
approving it for publication was Mu-Yen Chen.

of their networks are the fusion of two-stream networks’
output scores. Ma et al. [2] pointed out that two-stream
ConvNets are unable to exploit the most critical component
in action recognition because they ignore the intrinsic spa-
tiotemporal links across spatial and temporal streams. For
this reason, a series of network structures [2]–[4] that utilize
two-streamConvNet + RNN (recurrent neural network) have
been prospered.

Most of the two-stream ConvNet+RNN structures [2], [5]
fuse the output of the fully connected layer of ConvNets and
then feed them into RNN part. However, the operation of
feeding the RNN part with the output of the fully connected
layer of ConvNets will turn the 3D (three-dimensional)
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FIGURE 1. Overview of the proposed framework.

feature maps into one-dimensional vectors. Although the
number of parameters of the feature map is largely
diminished, the damaging of the spatial information is
inevitably brought about due to this operation [6]. Besides,
Xingjian et al. [7] extended LSTM to 3D and proposed
ConvLSTM, a structure that has been proved to be better in
the real-time precipitation prediction task than the FC-LSTM
in their paper. Therefore, aiming to cope with this problem
and to see how far two-stream network can go, we combine
two-stream ConvNets and ConvLSTM and feed the fused
output of the convolution layer ahead of the fully connected
layer to ConvLSTM, which means when we extract features
with two-stream ConvNet, the spatial structure of feature
maps is kept as well. In this way, the spatial correlation
information in RNN forward propagation is retained as much
as possible.

In this paper, we propose a model based on two-stream
ConvNet and ConvLSTM for activity recognition, as illus-
trated in Fig 1. First, we feed RGB images and stacked optical
flow images into spatial-stream network and temporal-stream
network respectively to fine-tune this two ConvNets that
have been pre-trained on ImageNet. Subsequently, the feature
maps output by the spatial-stream network and temporal-
stream network are fused in their channel dimension. Finally,
ConvLSTM is deployed to learn long-term spatiotemporal
dependencies further.

The rest of the article is organized as follows: A brief
review about the relevant work of activity recognition is
provided in section 2. The proposed network architecture for
dealing with the concerned problem is discussed in section 3.
Section 4 presents the obtained experimental results and the
conclusions and discussion are given in section 5.

II. RELATED WORK
Although the hand-crafted feature such as the IDT
(Improved Dense Trajectories) [8] descriptor, SIFT-3D

(three-dimensional scale-invariant feature transform) [9] et al.
is elaborately constructed and can get good performance
for activity recognition, but with the growing capacity of
CNN to express general problems, deep learning networks
for activity recognition are gradually occupying the domi-
nant position in this field. The two-stream method based on
RGB stream and optical stream performs very well in many
motion recognition solutions. In recent years, many studies
have introduced optical stream to be a complement of raw
RGB frames and have achieved considerable improvement in
performance.

The optical flow usually plays a ‘‘black box’’ role to help
activity recognition methods get state-of-art performance,
and we can conclude that Optical Flow can help deep learning
architecture improve performance with many experimental
instances such as TSN (Temporal Segment Networks) [4],
Two-Stream I3D (Inflated 3D ConvNet) [10], Convolutional
Two-stream+ IDT [11], However, there is no clear answer to
the question that why optical flow is so useful in these studies.
Many researchers intuitively considered that the temporal
information hidding in optical flow is responsible for the
success of optical flow until Laura et al. [12] demonstrates
with a large number of experiments that it is the invariance to
appearance of the representation that entitles the optical flow
such prevalence in the task of activity recognition.

In order to better capture the spatiotemporal features,
Ji et al. [13] proposed 3D convolutional network to stack
2D convolutional feature maps from consecutive frames into
3D expecting to capture spatiotemporal information hiding in
videos. Karpathy et al. [14] exploited a two-stream network
base on Raw RGB stream and fovea stream which named as
Multiresolution CNN architecture. Karpathy et al. also show
that different kinds of ways to fuse features can affect the
accuracy and the number of parameters to be learned. Instead
of using 2D convolutional kernels and stacking feature maps
as Karpathy et al. [14] and Ji et al. [13], Tran et al. [15] invited
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FIGURE 2. Basic block diagram showing the proposed method.

a new structure C3D (3D Convolutional Networks) which
based on 3D convolutional kernels to help them boost the per-
formance. Furthermore, Carreira and Zisserman [10] devel-
oped Two-Stream I3D, and achieve the best performance in
the field of 3D ConvNets, using the ConvNets pre-trained on
the dataset of Kinetics and ImageNet.

Another branch to handle this task is ConvNets with RNN.
Considering the capability to encode state and capture tem-
poral ordering, RNN can better satisfy the need of activ-
ity recognition, and especially the LSTM structure are able
to capture long and short range dependencies from input
data comparing 3D ConvNet which is considered more suit-
able for learning short-term spatiotemporal dependencies.
Donahue et al. [16] and Srivastava et al. [17] use an architec-
ture consisting of a single CNN and a FC-LSTM for activity
recognition. Inspired by the research of Wang et al. [4],
Ma et al. [2] adapt the temporal segment method and deploy
it on LSTM layer, which achieved considerable improvement
comparing traditional structure of ConvNet with LSTM.

As mentioned in Section 1, ConvLSTM can suit applica-
tions related to spatiotemporal data such as videos because
the fully-connected gates in LSTM are replaced with con-
volutional gates in ConvLSTM. Xingjian et al. [7] proposed
ConvLSTM to address the issue of precipitation nowcasting
prediction from radar images. After that, many studies includ-
ing video autoencoding [18] and anomaly detection [19].
Kim et al. [20] also demonstrate ConvLSTM is a good choice
to deal with tasks that spatial and temporal information both
matter.

For these reasons above, we propose to use ConvLSTM as
one of the important blocks in the proposed model as shown
in the Fig 1 for activity recognition.

III. METHODOLOGY
Fig.1 and Fig.2 illustrate the basic structure of our proposed
approach. The proposed deep architecture is composed
of four main steps: input preprocessing, two-stream CNN
propagation, feature map fusion, and ConvLSTM
propagation.

A. PREPROCESSING
Before being fed into the temporal network, the optical flow
will be calculated from the raw RGB frames. After the

calculation, the spatial stream network accepts raw video
frames while the temporal stream network gets optical flow
frames as input. There are two common kinds of algo-
rithm for optical flow extracting—Brox [21] and TV-L1(total
variation-L1) [22]. We follow the study of Ma et al. [2],
which shows the TV-L1 algorithms is slightly better than
Brox. We use the same method like [1], [2], [5], [10], and
stack ten two-channels optical flow images into a new frame
with 20 channels using the TV-L1 method. Besides, we use
a linear transformation to rescale the horizontal and vertical
components of the optical flow to the range [0, 255] which
is the same as the value range of RGB data. The reason
we do so is that the extracted feature maps from temporal
and spatial networks will be fused. Without doing this step,
severe overfitting would be introduced. In order to get data
with timing information from optical flow frames and RGB
frames, we sample each video at the same intervals, with
sampling 25 frames.

B. TWO-STREAM CNN PROPAGATION
As mentioned above, two-stream CNN is composed of
two individual spatial-stream and temporal-streamConvNets.
Therefore, we used ResNet-101 that has bigger model capac-
ity than relatively shallow ConvNet such as VGG-16 [23]
and GoogLeNet [24] to extract high-dimensional feature
maps. The output feature maps at time step tfrom the spatial-
stream and temporal-stream ConvNets can be represented as
f st ∈ RwS×hS×cS and f Tt ∈ RwT×hT×cT respectively. Note
that wS × hS × cS and wT × hT × cT are both dimension
of 7×7×2048. Using pre-trained models is an effective way
to help ConvNet be equipped with the capability to learn and
extract basic image features, which works well on dataset that
does not have enough training samples. For the spatial-stream
ConvNet, the ConvNet is pre-trained on ImageNet and fine-
tuned on RGB images extracted from UCF101 dataset with
classification loss for predicting activities. For the temporal-
stream ConvNet, since we have discretized the optical flow
fields into the interval from 0 to 255 by a linear transforma-
tion as mentioned in Section 1, it makes sense that we use
optical flow frames to fine-tune the temporal-streamConvNet
whose initial parameters exactly the same as the spatial-
stream ConvNet except the first convolutional layer.

It is worth mentioning that the main difference between
the structure of temporal-stream ConvNet and the structure
of spatial-stream ConvNet is in their first convolutional layer
because for spatial-stream ConvNet, the input is RGB images
which have 3 channels, but for temporal-stream ConvNet,
the input is 10-stacked optical flow images. Based on this
ground, we follow the procedure ofWang et al. [4] where they
average the weights across the RGB channels and replicate
this averaged weights to every channel of the first convolu-
tional layer of temporal network.

C. FEATURE MAP FUSION
Feichtenhofer et al. [11] demonstrated that different methods
to fuse the feature maps from two stream networks and the
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TABLE 1. Performance comparison on the split 1 of HMDB51 for Fusion layers in the ResNet101.

place of the fusion layer can affect the accuracy of the predic-
tion. There are 4 kinds of methods to fuse the feature maps,
including Sum fusion,Max fusion, Concatenation fusion, and
conv fusion, whose formulas are shown below.

For time t , we fuse two feature mapsXat ,X
b
t to an output yt ,

where Xat ,X
b
t ∈ RH×W×C and yt ∈ RH

′
×W ′×C ′ . Note

that H, W, C represent the width, height and number of
channels of the respective feature maps.
Sum fusion. ysum = f sum

(
Xa,Xb

)
computes the sum of the

value of two point at the same location i, j, and c in spatial and
temporal feature map. The new value at point (i, j, c):

ysumi,j,d = Xai,j,c + X
b
i,j,c, (1)

where 1 ≤ i ≤ H , 1 ≤ j ≤ W , 1 ≤ c ≤ C and Xat ,X
b
t ,

yt ∈ RH×W×C .
Max fusion. 1 ≤ i ≤ H , 1 ≤ j ≤ W , 1 ≤ c ≤ C takes the

maximum of the two feature map:

ymax
i,j,c = max

{
Xai,j,c,X

b
i,j,c

}
, (2)

where 1 ≤ i ≤ H , 1 ≤ j ≤ W , 1 ≤ c ≤ C and Xat ,X
b
t ,

yt ∈ RH×W×C .
Concatenation fusion. ycat = f cat

(
Xa,Xb

)
stacks two

feature maps across the feature channels c:{
ycati,j,2c = Xai,j,c
ycati,j,2c−1 = Xbi,j,c

(3)

or, {
ycati,j,1:c = Xai,j,1:c
ycati,j,c+1:2c = Xbi,j,1:c,

(4)

where 1 ≤ i ≤ H , 1 ≤ j ≤ W , 1 ≤ c ≤ C , Xat ,
Xbt ∈ R

H×W×C and yt ∈ RH×W×2 C .
Conv fusion. yonv = f covv

(
Xa,Xb

)
first stacks two feature

maps across the feature channels c as Concatenation fusion
and then convolves the stacked data with a bank of filters
f ∈ R1×1×2 C×C and add biases b ∈ Rc:

yconv = ycat ∗ f + b, (5)

where yt ∈ RH×W×C .
Feichtenhofer et al. [11] shows that Conv fusion has the

best performance while the Max fusion has the worst per-
formance on UCF101. We adopt the Sum fusion in that this
strategy has less parameters to compute and the performance
is nearly as good as the Conv fusion strategy in our exper-
iment. We argue that the score fusion or the late fusion
undermines the spatial information hiding in the 3D spatial
structure. Therefore, we propose to fuse the feature maps at
several Conv layers ahead of fully connected layer rather than
fusing the output of fully connected layer. Experimentally,
we compare the difference on accuracy results from fusing
different layers with different fusion strategies in Table 1 in
Section 4.

D. ConvLSTM PROPAGATION
Convolutional long short-term memory (ConvLSTM) is a
variant of traditional long short-term memory (LSTM).
Fully-connected gates of the LSTM module are replaced
by convolutional gates, which means ConvLSTM replaces
matrix multiplication with convolution operation at each gate.
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The equations of gates in ConvLSTM are:

it = σ (Wxi ∗ Xt+Whi ∗ Ht−1 + bi)
ft = σ (Wxf ∗ Xt+Whf ∗ Ht−1 + bf )
ot = σ (Wxo ∗ Xt+Who ∗ Ht−1 + bo)
Ct= f ◦ Ct−1+it ◦ tanh(Wxc ∗ Xt+Whc ∗ Ht−1+bc)
Ht = ot ◦ tanh(Ct )

(6)

where it , ft , ot are the input, forget, and output gate of
ConvLSTM. σ is the sigmoid function, X1, . . . ,Xt are
inputs, C1, . . . ,Ct are the cell states, H1, . . . ,Ht are the
hidden states, and Wx∼, Wh∼ are the 2D convolutional
kernels. Meanwhile, ‘∗’ represents the convolution opera-
tor and ‘5× 10−6’ represents the Hadamard product. Note
that the inputs, the cell states, the hidden states, and
the gates of ConvLSTM are all 3D (5 × 10−6) tensors
thereby the spatiotemporal relationships will be mostly
retained throughout our network. In practice, inspired by
Xingjian et al. [7], we built both single layer ConvLSTM and
2-layers ConvLSTM to verify if it is useful that utilize deeper
network. We also explore the strategy—using larger state-
to-state kernels for capturing spatiotemporal correlations—
in our experiment, which is demonstrated to be useful by
Xingjian et al. [7]. We set the size of all 2D convolu-
tional kernels (input-to-state and state-to-state) to 5 × 5 and
3 × 3 for comparison, and the size of all output states
is 7× 7× 300. Besides, we pad the boundary points of
hidden states using zero padding. Once the feature maps
finish to propagate in ConvLSTM, a global average pooling
is performed on the output state of the ConvLSTM and is
applied to the softmax layer.

E. IMPLEMENTATION DETAILS
Since the temporal-stream ConvNet is transformed by the
spatial-stream ConvNet, we initially set the learning rate of
the spatial-stream ConvNet to 5 × 10−6 and set the learning
rate of the temporal -streamConvNet to 5×103 in that the dis-
tribution of optical flow frames is not close to RGB data and
we found that if we set learning rate of the temporal -stream
ConvNet same as spatial-stream ConvNet the tuning process
would be quite slow. For two stream ConvNets, the learning
rate will be divided by 10 when the accuracy is saturated.
The weight decay in our training process for ConvNets is
set to be 1 × 10−4, and momentum is set to 0.9 to prevent
overfitting. For ConvLSTM, we adopt ADAM optimizer to
help train ConvLSTM. Meanwhile, we set the learning rate
to 5× 10−5 for ConvLSTM.
We use several data augmentation methods to prevent

overfitting in that our training dataset is not large enough.
In the proposed approach, first, we use Random Crop to crop
sub-image with size 256 × 256. Second, randomly scale the
cropped image to the size of 3/4 to 4/3 of its original size
and then the randomly scaled images and cropped images are
scaled to 224× 224 again. Finally, color jittering is used for
temporal-stream ConvNet.

FIGURE 3. Illustration of the location of different fusion layers in
ResNet101.

FIGURE 4. Saliency maps of feature maps of different convolutional
layers: (a),(d):Conv5_x. (b),(c):Conv4_x. (c),(f): Conv3_x.

IV. EVALUATION
A. DATASETS
We evaluate our approach on two popular activity recognition
benchmarks datasets: UCF101 and HMDB51, which consist
of 13320 action videos in 101 categories and 6766 action
videos in 51 categories respectively.We split the UCF101 and
HMDB51 into three splits as the official instruction of these
two datasets for training and validating our proposed models.
And the results we calculated is the average results over three
splits.

B. FUSION STRATEGY
The location of Fusion layers in ResNet101 in Table 1 can be
illustrated in Fig3. (∗), (+), (&): denote Conv Fusion, Sum
Fusion, and Concatenation Fusion respectively. FC: denotes
fully-connected layer and we use LSTM to learn the infor-
mation in the feature map of FC. #Parameters: denotes the
parameters numbers needed for representing a video.

The output of every convolutional layer is a feature map
that maintains the spatial structure. To identify where is the
most suitable location of the layer that can best express spatial
information, we explored the impact on the accuracywhenwe
choose different fusion layers. And the result in Table 1 indi-
cates that (1) Even though the numbers of parameters of latter
Conv layers and the former Conv layers are on the same order
of magnitude, it is demonstrated that using feature maps in
later location in a specific ConvNet instead of the former ones
can help us achieve better accuracy.

This is because the spatial attribution of a feature map
(i.e, how the neurons in feature maps affect the CovNet’s
output) tends to be more meaningful in later layers. To give
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FIGURE 5. (a)Learning curve of ConvLSTM of 1 layer on HMDB-51. (b) Learning curve of ConvLSTM of 1 layer on
UCF-101. (c) Learning curve of ConvLSTM of 2 layers on HMDB-51. (d) Learning curve of ConvLSTM of 2 layer on
UCF-101.Note that all the kernel size of figures above is 5 × 5 whose accuracy is higher than smaller 3 × 3 kernel by
0.5-1% depending on different datasets and different models.

more visual explanation for this, we depict a series of saliency
maps—simple heatmaps that highlights pixels of the input
image that most caused the output classification— on the
frame pictures of HMDB51 when we fine-tune the spatial-
stream to fit the specified class of HMDB51. We follow the
work of Zhou et al. [33] and Selvarajuet al. [34] and overlay
these saliency maps on activation grids to provide informa-
tion track such as pictures in Fig 4. The orange patches
in Fig.4 represent how much impact this area have on clas-
sification results when the model do inference. The patches
that aremore orange represent greater contribution of this part
will contribute to the classification result. The saliency maps
of Fig.4 (a) and Fig.4 (d) are heatmaps of the last convolu-
tional layers, and the orange patches in these maps are more
integral and intensive. And we can find that feature maps that
are more farther away from the fully connected layer have
more disperse heatmaps, which means the contribution of
these layers to the classification result will be much smaller.
(2) Using feature maps that are outputs of inside layers in
the ResNet blocks instead of feature maps that are output of
last layer will lead to significantly worse performance since it
attenuates the effectiveness of Shortcut Connection.(3) Sum
Fusion and Conv Fusion can achieve similar performance on
accuracy but less computational cost is needed when using
Conv Fusion. These experiments lead us to conclude that the

TABLE 2. Complete comparison of each component in ConvLSTM
onUCF101 and HMDB51 split 1.

classification can be leveraged if the location and method of
fusing can be carefully selected.

C. RESULTS
The proposed network are implemented based on the
Torch7 [25] framework and we have released our code on
Github1. We trained the proposed model with optimization

1https://github.com/yww211/two_stream_and _convLSTm#two_stream_
and_convlstm
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TABLE 3. Accuracy of action recognition techniques.

meansmentioned in the Section 3.5.We implemented random
shuffling to every iteration among all 60 epochs in RNN
part, and it takes about 30 hours to learn on every split
of HMDB51 with a NVIDIA GTX1060(6G) GPU. As is
mentioned in Section 3.4, we built three ConvLSTM whose
number of staking ConvLSTM layers varies form single layer
to three in order to verify if it is useful that utilize deeper
ConvLSTM network and we also explore the strategy using
different size of kernel in the ConvLSTM. Fig.5 shows the
learning curves by two models that one is single layer and
another is 2-layer on split 1 of HMDB51 and UCF101. The
black curve denotes Negative Likelihood Loss (NLL) on
training set and the red curve denotes validating error trend
on testing set.

Result from Fig 4 shows that the 5 × 5 kernel can
help the lowest point of validating error hit lower place
than 3 × 3 kernel no matter which dataset is used for
testing or how deep the layer of ConvLSTM is. Besides,
we argue that slightly deeper layers in ConvLSTM can help
us achieve better performance but much deeper structure does
not necessarily help in achieving better action recognition
performance. Furthermore, the complete result of comparison
of each component in ConvLSTM is shown in the Table 2
below.

D. FINAL PERFORMANCE
Finally, we compare against the state-of-the-art over all three
splits of UCF101 and HMDB51 in Table 3.

The column Type indicates which method in purely
Deep-net Based (D), Representation Based (R) or Fused
Solution (F) is used.

While Two-Stream I3D [10] achieved significant break-
through on activity recognition with pre-training on Kinetics
dataset, we can still find our state of art position among
the methods using Deep-net without pre-training on Kinetics
dataset. To be specific, comparing other deep learning meth-
ods, our best result 93.9% accuracy on UCF-101 and 69.3%
accuracy on HMDB-51, outperforms the model [2] using
two-stream and RNN by 0.3% on HMDB51 dataset, TSN
(2 modalities) [4] by 0.8% on HMDB51 and ST-ResNet [30]
by 0.5% on UCF101 dataset. Besides, our experiment shows
that our proposed model also achieves better performance
than some top-tier fused solutions which can be termed
as concrete manifestations of ensemble learning. The result
outperforms Convolutional Two-stream +IDT [11] by 0.1%
on HMDB51 and C3D+IDT [15] by 3.5% on UCF101.
On the other hand, we also compare our proposed two-stream
model with one-stream models in last three rows in Table 3,
which indicates no matter spatial information or temporal
information should not been neglected. The performance of
our methods demonstrates the effectiveness of Two-stream
+ConvLSTM and justifies the significance of integrality of
spatial information when the sequential data show correla-
tions in space. We can say the spatiotemporal correlation
information is kept through the whole feature map learning
process. Therefore, we argue that it is the introduction and
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fine adjustment of ConvLSTM in two-stream network that
bring about the better performance comparing those networks
that did not consider the necessity of maintaining spatial
structure.

V. CONCLUSION & DISCUSSION
Generally, ConvNets with Two-stream of the optical flow
and original RGB have been widely used in activity recogni-
tion. The method of Two-stream ConvNets + RNN has been
proved to be competitive in dealing with video understanding
problems. However, these works use the one-dimensional
hypercompressed vector as spatiotemporal feature, where the
spatial structure of a video is largely damaged and the models
are prone to be overfitting. In this paper, we explored the
method of ConvLSTM to retain the spatial structure when
samples passing through the ConvLSTM. First, we used
TV-L1 algorithm to extract the optical flow and we rescaled
the horizontal and vertical components’ value range to make
sure our Two-stream ConvNets works well. Second, we ana-
lyzed why ConvLSTM suit our task. Third, we studied the
impact brought about by different fusion strategies and we
demonstrated that, by appropriately integrating spatial and
temporal feature maps and retaining the 3D structure in RNN
part, the proposed method achieved state-of-the-art accu-
racy on both UCF101 and HMDB51 in terms of Deep-net
without using Kinetics to pre-train our model. And we gained
the result just by using common optimization method and
manually searching the heperparameters for our ConvNets.
On the other hand, as the significant improvement shown by
Kinetics from the Two-Stream I3D method, the significance
of the existence of extremely huge pre-training dataset is
highlighted again in wrestling with the dilemma of improving
generalization capability of deep learning models. Besides,
the performance improvement brought by fused solutions
should not be neglected as well, and representation based
solutions is ought to be termed as complements of Deep-nets
to achieve better overall performance. We also need to see
the limitations in our work. The relatively large memory
and GPU cost is needed in this work and the proposed net-
work is still a two-stage network. And this network may not
work well on those dataset whose length of video sequences
largely varies. But there is still room for improvement in
this work. For instance, method of sampling with variable
intervals can be deployed like [31] to satisfy variable-length
video sequences datasets, and method of reducing parameters
number can be tried like [32] to speed up learning process.
Besides, in the future, we also plan to pre-train our models on
Kinetics with the capability of hardware enhanced, and try to
use multiple models like [4] or fused solutions like [11], [30]
to achieve better performance. Last but not least, in order to
achieve better performance we can also deploy FPN(Feature
Pyramid Networks)mentioned in the work of Lin et al. [35] in
that the activities occupy different size of regions in the video
dataset. In this way can we actually capture the activities’
spatial information on different scales to improve model’s
performance.
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