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ABSTRACT This paper investigates the self-triggeredmodel predictive control for networked linear systems.
The self-triggered mechanism is designed based on switched cost functions, which can be used to enhance
systems performance and are more appropriate for complex industrial requirements in contrast with a
single cost function approach. The model predictive controller is designed by solving an optimization
problem and the self-triggered condition is designed. With the proposed self-triggered mechanism, much
network computation and communication burden are reduced and Zeno behavior can be excluded.Moreover,
asymptotic stability of the networked systems with model predictive control strategy is shown via average
dwell-time technique. Finally, the numerical simulation example is given to illustrate the effectiveness of the
proposed methods.

INDEX TERMS Model predictive control, networked system, self-triggered, switched cost functions.

I. INTRODUCTION
In recent years, event-triggered control of networked con-
trol systems has attracted considerable attention due to its
extensive applications [1]–[4]. In contrast with time-triggered
control, there exist some advantages on event-triggered con-
trol in networked control systems, such as reduction of
excessive-usage of communication resources and energy sav-
ing of sensors as well as controllers [5]. In particular, energy
saving is important when wireless networks are taken into
consideration [6], [7]. Event-triggered output tracking con-
trol is used in wireless networked control systems with
communication delays and data dropouts to reduce energy
consumption [8]. There are two main approaches on event-
triggered control, i.e., event-based control and self-triggered
control. A main characteristic of event-based control is that
when to transmit information is determined by predefined
event-triggering conditions. Specifically for networked con-
trol systems, states are measured at each sampling instant
with event-based control approach. For self-triggered con-
trol, inputs are pre-determined based on the prediction of
networked control systems. Though both data transmission
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and energy consumption are reduced by event-triggered
control, system performance decreases in a certain degree for
limited data. To address this issue, the event-triggered model
predictive control (MPC) has been proposed in [9], [10].
Moreover, in [11], an event-triggered MPC is proposed for
a continuous-time nonlinear systems subject to bounded dis-
turbances. Though event-triggered MPC can improve system
performance, there still exists room for enhancing system
performance in networked linear continuous-time systems.

In practice, in order to improve overall system perfor-
mance, it is desirable that multiple performance criteria are
considered [12]. Usually, both response speed and energy
consumption are taken into consideration by using related
cost functions [13]. When disturbances or faults occur,
quick react to the disturbances or faults is important for
systems [14]. Therefore, corresponding weights of states and
inputs are necessary in the related cost functions. To deal
with different performances, switching controllers that cor-
responds to the different criteria were applied according to
given switching rules [15]. In [16], a switched MPC was
studied for a class of discrete-time switched linear systems
with mode-dependent dwell time. A stage dwell-time was
proposed to guarantee the persistent feasibility of MPC.
In [17], a MPC algorithm under average dwell-time

67726
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-9218-071X


G. Zhao, S. Yang: Self-Triggered MPC for Linear Systems With Switched Cost Functions

switching signals was proposed to guarantee recursive feasi-
bility and asymptotic stability of a closed-loop switched sys-
tem. In addition, switching functions has also been studied to
enhance system performances. A time-dependent switching
signal occurred in switching cost functions is designed for
MPC of a nonlinear system [18], therefore, performance of
the nonlinear system is improved by considering two perfor-
mance criteria.

Motivated by the above discussion, a self-triggered MPC
strategy based on switched cost functions is proposed for net-
worked linear systems in this paper. For the networked linear
systems, there exist switching cost functions and a continuous
input trajectory that is obtained by solving an optimization
problem corresponding to one of the cost functions. Then,
the input trajectory is sampled into several discrete inputs by
the designed self-triggered algorithm.

The main contributions of this paper are summarized as
follows.

i A self-triggered MPC is proposed for networked linear
systems.

ii The proposed self-triggered MPC is designed based
on switched cost functions, which can adapt to chang-
ing environment parameters of the networked linear
systems, and the switching signal satisfies average
dwell-time.

iii With the proposed self-triggered MPC scheme, both
recursive feasibility and asymptotic stability can be
guaranteed while saving network resources.

The rest of this paper is organized as follows. In Section II,
the problem statement and some preliminaries are given.
In Section III, the main results including a self-triggered
MPC scheme, a complete self-triggered switched MPC algo-
rithm and a theorem to illustrate the asymptotic stability
of the networked linear continuous-time systems and recur-
sive feasibility of the proposed MPC optimization problem
are presented. A numerical example is presented to illus-
trate the validity of the proposed self-triggered switched
MPC algorithm in Section IV. Section V concludes this
paper.
Notations: In the sequel, if not explicitly stated, matrices

are assumed to have compatible dimensions. R is the set
of real numbers and R+0 is the set of the nonnegative reals,
respectively. For any a ∈ R, |a| denotes the absolute value of
a. Rn denotes the n-dimensional Euclidean space. Z denotes
the set of positive integer. For any vector x ∈ Rn, let ‖x‖
the Euclidean norm of vector or the induced two-norm of
the matrix. For any matrix A, AT denotes the transpose of
matrix A, A−1 denotes the inverse of matrix A. I is the identity
matrix of appropriate dimension. ‖x‖2P denotes xTPx. For
a function α(·) : R+0 → R+0 denotes that function α(·)
is a K function. Moreover, function α(·) is called a K∞
function when function α(·) is a K function with characters
that it satisfies α(0) = 0, continuous strictly increasing and
α(s)→∞ as s→∞.

FIGURE 1. Structure of the networked system.

II. PROBLEM STATEMENT AND PRELIMINARIES
In this paper, we consider self-triggered model predictive
control for networked linear systems, and the control struc-
ture is shown in Fig.1.

A. PLANT MODEL
Consider linear time-invariant systems described as

ẋ(t) = Ax(t)+ Bu(t) (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the input. The
matrices A, B have appropriate dimensions.

B. OPTIMIZATION PROBLEM
Denote the predicted state and control input as x̂(s; tk ) and
û(s; tk ), s ∈ [tk , tk + T ], respectively, where T denotes the
prediction horizon. The cost function at time tk is defined as

J (x(tk ))=
∫ tk+T

tk
(‖x̂(s; tk )‖2Q+‖û(s; t

k )‖2R)ds+‖x̂(t
k
+T )‖2P

(2)

where Q > 0, R > 0 and P > 0. The sequence {tk}, k ∈ N
are denoted the time instants when the optimization problem
is solved. For simplicity, define H (x̂, û) = ‖x̂(s; tk )‖2Q +
‖û(s; tk )‖2R, F(x̂) = ‖x̂(t

k
+ T ; tk )‖2P. According to the cost

function (2), the optimal control input can be computed by
solving the following optimization problem.

Problem OP: At time instant tk , calculate the optimal
control û∗(s; tk ), s ∈ [tk , tk + T ] via cost function (2) based
on x(tk )

û∗(s; tk ) = argmin J (x(tk )) (3)

subject to: ˙̂x(s; tk ) = Ax̂(s; tk )+ Bû(s; tk ),

∀s ∈ [tk , tk + T ]

û(s; tk ) ∈ U , ∀s ∈ [tk , tk + T ]

x̂(s; tk ) ∈ X , ∀s ∈ [tk , tk + T ]

x̂(tk + T ) ∈ X f . (4)

where X ∈ Rn denotes the state constraint set. The input
constraint set U is given as

U = {u(s) ∈ Rm : ‖u(s)‖ ≤ umax , ‖u̇(s)‖ ≤ Ku} (5)

where umax and Ku are predefined constant parameters. The
terminal constraint set X f

∈ X is a compact set with the
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origin in its interior. The following assumptions are needed
in this paper.
Assumption 1: H (x̂(·), û(·)) and F(x̂(·)) are Lipschitz con-

tinuous with Lipschitz constants LH > 0 and LF > 0.
Moreover, there exists K∞ function β satisfying H (x̂(·),
û(·)) ≥ β(‖x‖).
Assumption 2: There exists an auxiliary local controller

u = κ loc(x) ∈ U such that
∂F
∂x

(Ax + Bκ loc(x)) ≤ −H (x, κ loc(x))

holds for all x ∈ X f .

C. MPC CONTROLLER
In this paper, the controller is designed as

u(s) =

{
û∗(s), for tk ≤ s < tk + T
κ loc(x(s)), for s ≥ tk + T

where the controller u(s) = κ loc(x(s)) satisfies the following
constraint condition

Ku ≥ max
x∈X f
{‖
∂κ loc(x)
∂x

· (Ax + Bκ loc(x))‖}

where Ku is computed off-line.

D. SELF-TRIGGERED CONDITION AND
SAMPLING INSTANTS CHOOSING
Suppose that at time tk + δ, δ ∈ (0,T ], the optimal state
and practical state are denoted x̂∗(tk + δ) and x(tk + δ),
respectively. A feasible control input ũ(s; tk + δ), s ∈ [tk +
δ, tk + δ + T ] is applied

ũ(s; tk + δ) =

{
û∗(s; tk ), s ∈ [tk + δ, tk + T ]
ũ(s; tk + T ), s ∈ (tk + T , tk + δ + T ].

If x(tk + δ) = x̂∗(tk + δ), derived from [19], then with
the feasible control input ũ(tk + δ) the corresponding cost
function at tk + δ has the following form

J̃ (x̂∗(tk + δ))

=

∫ tk+δ+T

tk+δ
(‖x̃(s; tk + δ)‖2Q + ‖ũ(s; t

k
+ δ)‖2R)ds

+‖x̃(tk + δ + T ; tk + δ)‖2P

≤ J∗(x(tk ))−
∫ tk+δ

tk
(‖x̂∗‖2Q + ‖û

∗(s; tk )‖2R)ds.

Note that J̃ (x̂∗(tk + δ)) ≥ J∗(x̂∗(tk + δ)), where J∗(x̂∗(tk +
δ)) is the optimal cost function at tk + δ, and the following
condition holds.

J∗(x(tk+δ))−J∗(x(tk )) ≤ J∗(x(tk+δ))−J∗(x̂∗(tk+δ))−01
(6)

where J∗(x(tk + δ)) is the optimal cost function if the current
state is x(tk + δ), 01 =

∫ tk+δ
tk (‖x̂∗(s; tk )‖2Q+‖û

∗(s; tk )‖2R)ds.
Then, if

J∗(x(tk + δ))− J∗(x̂∗(tk + δ))− 01 < 0 (7)

holds, we have J∗(x(tk+δ))−J∗(x(tk )) < 0, and the value δ∗

which violates (7) determines the next triggering time instant
tk+1 = tk + δ∗.
Remark 1: In order to avoid the occurrence of the Zeno

phenomenon, the value of δ cannot be taken as 0. And,
in order to ensure that the system can be triggered, we artifi-
cially design an upper limit T of the triggered interval. If there
is no triggered between the current time instant tk and the
triggered upper time instant tk + T , the system forces the
trigger at the triggered upper time tk + T .

E. SWITCHED MODEL PREDICTIVE CONTROL STRATEGY
In this subsection, a switched MPC strategy is proposed to
enhance performance of responding to more complex envi-
ronmental requirements. Suppose that, the networked linear
system has h cost functions and only one cost function is
active in a period of time. Let V , {1, 2, . . . , h}, ν ∈ V .
Then the cost function (2) can be rewritten as

Jν(x̂(tk )) =
∫ tk+T

tk
Hν(x̂(s; tk ), û(s; tk ))ds+ Fν(x̂(tk + T )).

(8)

Note that switches occur at some instants tk when the con-
troller receives the state x(tk ). Take σ (t) be an associated
switched signal, where σ (t) : [0,∞) → ν is a right contin-
uous function. Moreover, σ (tk ) indicates that a cost function
is active at instant tk .
According to [20], there exists an average dwell-time τa

for the switched signal σ (t) if there exist N0 > 0 and τa > 0
such that

Nσ (T , t) ≤ N0 +
T − t
τa

, ∀ 0 ≤ t ≤ T

where Nσ (T , t) represents the number of switches during the
time interval (t,T ] [22], and, it is possible to let some fast
switches happen, which is characterized by the constant N0.

Let τ1, τ2, . . . , τNσ (t,0) be the switched time instants in the
time interval (t,T ]. The active index of cost function (8) in
the interval [τi, τi+1) is denoted as νi. In this paper, switched
time instants τi is the design parameter which coincide with
some instants tk , i.e., τi = tk for all i ∈ {0, 1, . . .} and some
k ∈ {0, 1, . . .}.
The control object is to asymptotically stabilize the system

(1) by designing a self-triggered model predictive control
strategy based on switched cost function, while minimizing
the switched cost function.

III. MAIN RESULTS
In this section, self-triggeredMPC scheme is firstly proposed,
and an algorithm is given for implementing the proposed self-
triggeredMPC scheme. Then, we show that both the recursive
feasibility of the optimization problem and asymptotic sta-
bility of the networked linear system (1) can be guaranteed
with the proposed MPC scheme. Before presenting the main
results, we assume that the following assumptions hold.
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Assumption 3 [18]: For all ν ∈ V , there exist functions
Wν,1 and Wν,2 with a mapping rule X T

→ R+0 , where
X T
∈ X is a set depending on the prediction horizon T .

Furthermore, there exist constants βν,1, βν,2, υν,1, υν,2 > 0
such that: (i) One has that Hν(x(·), u(·)) ≥ υν,1Wν,1(x(·)) and
Hν(x(·), u(·)) ≥ υν,2Wν,2(x(·)) hold for all x(·) ∈ X T and
u(·) ∈ U . (ii) For a feasible input û(s) with corresponding
state trajectory x̂(tk ) = x(tk ) such that Hν(x̂(s), û(s)) ≤
βν,1Wν,1(x(tk )) for all tk ≤ s ≤ tk + T and Fν(x̂(tk + T )) ≤
βν,2Wν,2(x(tk )).
Assumption 4 The initial state belongs to the feasible set,

i.e. x(t0) ∈ ∅.
Remark 2 Assumption 4 is standard. It is pointed out that

feasible set is a set in which the optimization problem (3)
has feasible solutions at initial time. If there is at least one
initial state such that the optimization problem is solvable,
then there must be a feasible set.
Remark 3 In this paper, self-triggered mechanism and

switched model predictive control are designed based on
switched cost functions, in particular, the optimal control tra-
jectory can be computed by solving an optimization problem
with respect to a specific cost function, then, the obtained
control input is sent to the actuator via network.
The next theorem presents how to construct the self-triggered
MPC scheme.
Theorem 1 Suppose that Assumptions 1-2 hold and the

optimization problem (3) has a solution at time tk . If there
exist % ∈ (0, 1) and δ ∈ (0,T ] such that

LJ ē(δ) < %01. (9)

Then, the next triggering time tk+1 is determined by

tk+1 = tk +min{ inf
δ∗>δ
{LJ ē(δ∗)− %01 = 0},T } (10)

where LJ = TLH , ē(δ) =
Ku
2 ‖B‖δ

2e‖A‖δ . At tk+1, the opti-
mization problem (3) is solved, and û∗(tk+1) is applied to the
system.
Remark 4 Although the form of the self-triggered condi-

tion is complex, based on the case of the specific system,
T , LH and Ku in (10) are calculated offline in advance.
Therefore, the calculation of the self-triggered mechanism is
not large, and the self-triggered mechanism can be applied to
the real system.
Remark 5 Compared with the event triggered mechanism

[23], [24], the outstanding advantage of the self-triggered
mechanism is that the self-triggered mechanism can calcu-
late the next triggered instant in advance, therefore, during
the time from the current time instant to the next triggered
time instant, the self-triggered mechanism does not calcu-
late. Therefore, compared with the event triggered mecha-
nism, the computing resources of the computer are greatly
saved.

To prove the theorem, the following lemma is needed
Lemma 1 Under Assumption 1, the cost function

(2) is Lipschiz continuous with Lipschitz constant LJ .

Moreover, the following inequality holds.

J∗(x(tk + δ))− J∗(x̂∗(tk + δ)) ≤ LJ ē(δ) (11)

where LJ and ē(δ) are defined in Theorem 1.
Proof of Lemma 1: Without loss of generality, the time

instant tk can be viewed as the initial time instant, e.g. tk = 0.
Consider the cost functions J∗(x1(0)) and J∗(x2(0)), where
x1(0) and x2(0) are different initial states. Suppose that x1∗(s),
x2∗(s), u1∗(s), u2∗(s), s ∈ (0,T ] are corresponding optimal
state trajectories and control inputs, respectively. With the
initial state x1(0), the optimal control u1∗(s) is replaced by
a feasible control input ũ1(s) = u2∗(s), then we have

x̃1(s) = x1(0)+
∫ s

0
[Ax(τ )+ Bu2∗(τ )]dτ

x2∗(s) = x2(0)+
∫ s

0
[Ax(τ )+ Bu2∗(τ )]dτ.

Substituting the initial state x1(0) and x2(0) into the cost
function, we have

J∗(x1(0))− J∗(x2(0))

≤ J̃ (x1(0))− J∗(x2(0))

≤

∫ T

0
LH‖x̃1(s)− x2∗(s)‖ds+ LF‖x̃1(T )− x2∗(T )‖

≤ (
∫ T

0
LHds)‖x1(0)− x2(0)‖

= LJ‖x1(0)− x2(0)‖. (12)

At time tk , suppose that the state is x(tk ). The practical control
input û∗(tk ) and optimal control input û∗(s; tk ) are applied to
the system, respectively, then the practical and optimal states
at tk + δ are obtained as follows

x(tk + δ) = x(tk )+
∫ tk+δ

tk
[Ax(s)+ Bû∗(tk ))]ds

x̂∗(tk + δ) = x(tk )+
∫ tk+δ

tk
[Ax̂∗(s)+ Bû∗(s; tk )]ds.

By means of triangle inequality and consider the control
constraint (5), we obtain

‖x(tk + δ)− x̂∗(tk + δ)‖

= ‖

∫ tk+δ

tk
[A(x(s)− x̂∗(s))+ B(û∗(tk )− û∗(s; tk ))]ds‖

≤ ‖A‖
∫ tk+δ

tk
‖x(s)− x̂∗(s)‖ds+

κ

2
‖B‖δ2. (13)

Applying the Gronwall-Bellman inequality to (13), we obtain

‖x(tk + δ)− x̂∗(tk + δ)‖ ≤
Ku
2
‖B‖δ2e‖A‖δ = ē(δ). (14)

Let x1(0) = x(tk + δ) and x2(0) = x̂∗(tk + δ). According
to (12) and (14), we obtain J∗(x(tk + δ)) − J∗(x̂(tk + δ)) ≤
LJ ē(δ). The proof is complete.
Base on lemma 1,the proof of Theorem 1 is presented as

follows.
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Proof of Theorem 1: The critical value δ∗ can be deter-
mined by (10), where (9) is always satisfied for δ < δ∗. Let
the current triggered time be tk , then the next triggering time
is determined as tk+1 = tk + δ∗. According to Lemma 1,
one has J∗(x(tk+1)) − J∗(x̂∗(tk+1)) ≤ LJ ē(δ∗). Combining
with (9), J∗(x(tk+1)) − J∗(x̂∗(tk+1)) ≤ ε01 holds. Substi-
tuting it into (6) and with ε ∈ (0, 1), J∗(x(tk+1)) − J∗(x̂∗

(tk+1)) ≤ 0 can be obtained, which indicates that the
Lyapunov-like function decreases at triggered time instants
all the time. This completes the proof.

In the following, an algorithm is presented to implement
the proposed self-triggered switched MPC scheme.

Algorithm 1 Self-Triggered Switched MPC
Step 1 Set i = k = 0 and τ0 = t0 = 0.
Step 2 Measure the state x(tk ) at time instant tk .
Step 3 Choose a proper cost function to be optimized. If the
cost function chosen at instant tk is different to the one used
at instant tk−1, set i = i+ 1 and τi = tk .
Step 4 Solve the optimization problem (8) with ν. Then cal-
culate the next triggering time tk+1 according to Theorem 1.
Step 5 Send the first part of the computed optimal control
input u(s) = û∗(s; tk ), tk ≤ s ≤ tk+1 to the actuator and
apply them to the networked linear system (1) in the interval
[tk , tk+1] with τi ≤ tk < τi+1 in a sample-and-hold fashion.
Step 6 Return to Step 2.

Before presenting the asymptotic stability of the networked
linear system (1) and recursive feasibility of the proposed
MPC optimization problem, the following lemma is given.
Lemma 2 [18] For linear system (1) with multiple Lya-

punov functions, the ratio of a new cost function to an old
one at the switched times is bounded by µ, i.e.,

Jν(x(s)) ≤ µJι(x(s)), ν, ι ∈ V, ν 6= ι, µ ≥ 1.

Denote the optimal value of the cost function Jν by Vν =
Jν(x, ū∗ν), and the set for all the states (with feasible solutions
of optimization problem (8) byX T

⊆ X , where the subscript
T indicates the dependence on the prediction horizon T .
According to Lemma 2 and Assumption 3, the following
theorem is given to prove both recursive feasibility of the opti-
mization problem and asymptotic stability of the networked
linear system (1).
Theorem 2 If there exists an initial feasible solution of

optimization problem (8) for x(0) ∈ X T with an local con-
troller u(s) = κ locν (x(s)) for all ν ∈ V , then the optimization
problem (8) is feasible in Step 4 of Algorithm 1 for all t ≥ 0.
Moreover, there exist µ and λ0 such that

Vν(x(tk+1))− Vν(x(tk )) ≤ −λ0
∫ tk+1

tk
Vν(x(s))ds

∀τi ≤ tk ≤ tk+1 < τi+1, ∀i = 0, 1, · · · (15)

holds for all x ∈ X T . Moreover, the networked linear system
(1) is asymptotically stable, if σ (t) is a switched signal with

average dwell-time satisfying

τa >
lnµ
λ0

. (16)

Remark 6 Not that condition (15) only holds for ν whose
associated cost functional Jν is active during the time interval
[τi, τi+1). As for all other ν ∈ V , Vν also can increase in this
time interval.
Proof of Theorem 2: Note that û(s) = u∗ν(s; tk ) is a feasible

solution during the time interval [tk , tk +T ] for ν ∈ V , where
u∗ν(s; tk ) represents an input computed at instant tk . Then

û(s) =

{
u∗ν(s; tk ) s ∈ [tk+1, tk + T ]
κ locν (x(s; tk+1)) s ∈ (tk + T , tk+1 + T ]

is a feasible solution in the time interval [tk , tk + T ] [19].
The recursive feasibility of the proposed MPC algorithm is
established.

Let the optimal cost J∗ν (x(·), u
∗(·)) = J∗ν (x

∗(·)) be denoted
as Vν(x(·)) = J∗ν (x

∗(·)). If Assumption 3 holds, there exists

Vν(x(tk ))
= J∗ν (x(tk ), u

∗(·))

≤ Jν(x(tk ), û(·))

=

∫ tk+T

tk
Hν(x̂(s), û(s))ds+ Fν(x̂(tk + T ))

≤ βν,1TWν,1(x(tk ))+ βν,2Wν,2(x(tk ))

≤

(
βν,1T
υν,1

+
βν,2

υν,2

)
Hν(x(tk ), u(tk ))

=
1
λ0,ν

Hν(x(tk ), u(tk ))

where
βν,1T
υν,1

+
βν,2

υν,2
=

1
λ0,ν

.

Obviously, it follows that

Hν(x(tk ), u(tk )) ≥ λ0,νVν(x(tk )). (17)

Combining (17) with the following inequality

J∗ν (x
∗(tk+1))− J∗ν (x

∗(tk )) < −
∫ tk+1

tk
Hν(x∗(s), u∗(s))ds

∀ τi ≤ tk < tk+1 < τi+1

one has that

J∗ν (x
∗(tk+1))− J∗ν (x

∗(tk )) ≤ −λ0

∫ tk+1

tk
Vν(x(s))ds

with

λ0 = min
ν
λ0,ν (18)

for all ν ∈ V . That is,

Vν(x(tk+1))− Vν(x(tk )) ≤ −λ0
∫ tk+1

tk
Vν(x(s))ds.

By the comparison principle [21], it is obtained that

Vν(x(τi+1)) ≤ e−λ0(τi+1−τi)Vν(x(τi)) (19)
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with τi ≤ tk < tk+1 < τi+1. From Lemma 2 and (19), one
has that

Vσ (τi+1)(x(τi+1))
≤ µVσ (τi)(x(τi+1))
≤ µe−λ0(τi+1−τi)Vσ (τi)(x(τi)) (20)

for any two switched instants τi and τi+1. By iterating (20)
from i = 0 to i = Nσ (t, 0), it follows that

Vσ (t)(x(t))
≤ µNσ (t,0)e−λ0tVσ (0)(x(0))
= eNσ (t,0) ln(µ)−λ0tVσ (0)(x(0))
≤ µN0e(ln(µ)/τa−λ0)tVσ (0)(x(0))
≤ µN0e−λtVσ (0)(x(0)) (21)

for τa > ln(µ)/λ0 and λ ∈ (0, λ0). Because Hν(x(tk ), u(tk ))
is continuous and positive definite by Assumption 1, there
exists Hν(x(tk ), u(tk )) ≥ αν(‖x(tk )‖), where αν(·) is a K∞
function for all ν ∈ V , x ∈ X T and u ∈ U . There exists aK∞
function ᾱ(·) such that Vν(x(tk )) ≥ ᾱ(tk ) holds for all ν ∈ V
and x ∈ X T . Thus, (21) is rewritten as

‖x(t)‖ ≤ ᾱ−1(µN0e−λtVσ (0)(x(0))).

Obviously, ᾱ−1(·) is also aK∞ function, which indicates that
x(t) asymptotically converges to the origin. This completes
the proof.
Remark 7 In this paper, a Lyapunov-like function is

applied. The Lyapunov-like function is a kind of energy func-
tion. Because the system is a linear system and there is a self-
triggered upper limit T , although the Lyapunov-like function
at the triggered interval may rise or fall, it cannot rise or fall
to infinity, it will always have a certain limit. Through the
proof of theorem 2, it can be seen that with the increasing
of k , the Lyapunov-like function decreases strictly to zero.
At the same time, the stability of the close-loop system can
be guaranteed.
Remark 8 Based on the obtained results, since the pro-

posed self-trigged MPC scheme is designed based on
switched cost functions, which can not only save network
resources, but also meet the requirements of more complex
industrial systems compared with the MPC algorithm using
single cost function. Therefore, the proposed self-triggered
MPC scheme is more practical.

IV. NUMERICAL EXAMPLE
In this section, a simulation example of pneumatic artificial
muscle platform is provided to show the effectiveness of the
proposed method.

The pneumatic artificial muscle platform is considered as
θ̇ (t) = kuθ (t)+ kuL0u

θ̈ (t) = −
4bv
mr2

θ̇ (t)+
8h0u0(2ι1ψ0 + ι2)L

−1
0

m
θ (t)

+
8hoku(ι1ψ2

0 + ι2ψ0 + ι3)

mr
u(t)

where θ (t) is a tilt angle of the upper platform, u(t) is a voltage
controlling two pneumatic valves, bv is a damping factor, r is
a radius of the disc,m is weight of a load, h0 is a coefficient to
control a proportion of pressure and voltage, ι1−ι3 and ku are
given parameters of the pneumatic artificial muscle platform,
ψ0 is an initial length of the pneumatic artificial muscle, and
u0 is an early warning voltage.
Define x1(t) = θ (t), x2(t) = θ̇ (t), therefore, we can get the

state space equation as following

ẋ1(t) = kux1(t)+ kuL0u(t)

ẋ2(t) = b1x1(t)+ b2x2(t)+ b0u(t)

where b0 =
8hoku(ι1ψ2

0+ι2ψ0+ι3)
mr , b1 =

8h0u0(2ι1ψ0+ι2)L
−1
0

m and
b2 = −

4bv
mr2

. Define

x(t) =
[
x1(t)
x2(t)

]
, A =

[
ku 0
b1 b2

]
, B =

[
kuL0
b0

]
,

therefore, there exists

ẋ(t) = Ax(t)+ Bu(t) (22)

with

A =
[

0.57 0
−14.3 −0.4

]
, B =

[
479.8
11.5

]
gotten by selecting appropriate parameters. The constraint
sets of the linear system (22) are given as follows

u(t) ∈ U , {u(t) : |u(t)| ≤ 60}

x(t) ∈ X , {x(t) : |x1(t)| ≤ 10, |x2(t)| ≤ 10}.

Note that x1(t) and x2(t) represent the first state and the sec-
ond state of the linear system(22), respectively. Two cost
functions are considered for the linear system (22) and the
stage cost and terminal cost are chosen as

Hν(x(t), u(t)) = xT (t)Qνx(t)+ uT (t)Rνu(t)

Fν(x(t), u(t)) = xT (t)Pνx(t)

with ν ∈ {1, 2}. The weighting matrices are chosen as

Q1 =

[
1 0
0 10

]
, R1 = 1

Q2 =

[
1 0
0 8

]
, R2 = 1.5.

The initial state of the linear system (22) is chosen as

x(0) = [3 3]T .

The prediction horizon is T = 8. The local controller for the
linear system (22) is designed as

u(t) = κ loc(x(t)) = −2.0246x1(t)+ 19.2570x2(t)

which is calculated as the solution of the linear quadratic
regulator problem for the linear system (22) with weighting
matrices Q1 and R1. The terminal region of the linear system
(22) is obtained as

X f
= {x(t) : xT (t)Px(t) ≤ αf }
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with

P =
[
4.877 1.494
1.494 5.088

]
and αf = 7.62 is calculated according to Remark 2 in [18].
The parameter Ku is given as Ku = 0.3, and ε is chosen
according to % = 0.8. Besides, parameters µ = 10 and
τa = 25.1 are obtained using the method in [18]. Then the
switching signal σ (t) is chosen such that the switching occurs
in the two cost functions every 30 time units which is satisfied
with the condition (16).

We first compute the value of λ0 and design v1 = v2 = 1,
β1,1 = 4.16 × 103, β2,1 = 1.04 × 104, and β1,2 = β2,2 =

10.15. Using Remark 9 in [18], we obtain that

λ0,1 = 0.1052

λ0,2 = 0.1013

thus, according to (18)

λ0 = min
ν∈{1,2}

λ0,ν = 0.1013.

Furthermore, according to [18], we obtain µ = 10, which
according to (16) finally leads to

τa >
lnµ
λ0
= 25.1. (23)

The average run time of a self-triggered program in a
simulation program is 0.020104 seconds, therefore, the self-
triggered condition is applicable for real control systems.
As shown in Fig. 2, we can see that about 50% bandwidth
resources are saved, until the system (22) is stabilized. The
state response of the linear system (22) is shown in Fig. 3.

FIGURE 2. Triggering times of system with self-triggered MPC scheme.

Fig. 3 shows that the convergence rate of state is fast and
the stability of the linear system (22) is achieved, although,
there exist periodic changes of state which is induced by the
switched cost function. The input of the linear system (22) is
shown in Fig. 4.

From Fig. 3 and Fig. 4, it is obvious that the constrains on
both state and input of the linear system (22) are satisfied. Due
to the existence of switched cost functions in Algorithm 1,
there are periodic fluctuations in Fig. 3 and Fig. 4.

For comparison, the cost values with different single cost
functions and switched cost functions are shown in Fig.5.

In Fig. 5, the red dot line represents the cost of the lin-
ear system (22) by applying Algorithm 1, the blue solid
line and the green dashed line represent costs of the linear

FIGURE 3. State response of the linear system.

FIGURE 4. Input of the linear system.

FIGURE 5. Cost.

system (22)with cost J1 and cost J2, respectively. FromFig. 5,
we can see that the cost with Algorithm 1 (based on switching
cost functions) is between the costs by using separate cost
functions. However, because the switched cost functions are
used in the proposed algorithm, it can achieve more complex
specifications in practical industrial systems compared with
the MPC scheme based on single cost function.

V. CONCLUSION
In this paper, a self-triggeredMPC scheme based on switched
cost functions has been proposed for networked linear
systems. The optimization problem is solved when the
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self-triggered condition is satisfied. The proposed scheme
reduces the computing burden and communication load.
The proposed self-triggered MPC is designed based on
switched cost functions, hence, more complex specifications
can be met compared to strategies with single cost function.
Moreover, by using the proposed algorithm, both recursive
feasibility and asymptotically stability can be guaranteed.
In the end, a numerical example is given to show the effec-
tiveness of the proposed method.
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