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ABSTRACT Clustering is one of the most important topics in data mining andmachine learning. The density
peaks clustering (DPC) algorithm is a well-known density-based clustering method that can efficiently and
effectively deal with non-spherical clusters. However, the computational methods of the local density and
the distance measure are simple and easily ignore the correlation and the similarity between samples, and
the manual setting of parameters has a great influence on the clustering results; therefore, the clustering
performance of DPC is poor on the high-dimensional datasets. To address these issues, this paper presents
an adaptive DPC algorithm with Fisher linear discriminant for the clustering of complex datasets, called
ADPC-FLD. First, the kernel density estimation function is introduced to calculate the local density of
the sample points. Pearson correlation coefficient between samples as weight is employed to construct a
weighted Euclidean distance function to measure the distance between samples. This considers both the
spatial structure and the correlation of the samples. Then, a novel density estimation entropy is proposed,
and based on theminimization of density estimation entropy, the density estimation parameters are adaptively
selected according to the distribution characteristics of the data, which can efficiently eliminate the influence
of manual setting. Third, an adaptive strategy of cluster center selection is designed to avoid the error
caused by the noise data as the cluster centers and the uncertainty of manually selecting the cluster centers.
Finally, Fisher linear discriminant algorithm is used to eliminate the irrelevant information and reduce the
dimensionality of high-dimensional data, following on which an adaptive DPC method is implemented on
six synthetic datasets, thirteen UCI datasets and seven gene expression datasets for comparing with other
related algorithms. The experimental results on 26 datasets show that the proposed algorithm significantly
outperforms several outstanding clustering approaches in terms of clustering accuracy and efficiency.

INDEX TERMS Density peaks clustering, Kernel density estimation function, density estimation entropy,
Fisher linear discriminant, reduction.

I. INTRODUCTION
Recently, with the development of artificial intelligence (AI),
the AI-driven big data processing technologies in many
fields of pattern recognition, machine learning and deep
learning, still face many challenges in the efficient clus-
tering analysis for the large-scale heterogeneous complex
datasets [1]. Clustering is a fundamental technique of uti-
lizing information from the dataset or additional constraints
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to separate the objects into several groups in the real-world
[2]. So it has been developed and widely applied to data
mining, text analysis, information retrieval, image segmenta-
tion, biomedicine, and gene engineering [3]–[8]. Clustering
methods divide a set of instances into several groups with-
out any prior knowledge using the similarity of objects in
which patterns in the same group have more similarities to
each other [9]. In other words, the task of clustering is to
find a set of groups that the similar objects are in the same
group and the different objects are separated into different
groups [10], [11].
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In the last few years, a great many clustering methods
have been proposed, which can be roughly categorized
into the following several categories: hierarchical, par-
titioning, density/neighborhood-based, and soft-computing
methods [12]. Zheng et al. [13] proposed a hierarchical co-
clustering approach to simultaneously group links and entity
classes. Gullo et al. [14] presented a hierarchical clustering
of uncertain objects by revising the key notions of cluster
merging criterion and distance between uncertain cluster pro-
totypes. The partitioning-based clustering methods are repre-
sented by k-modes and c-means [4]. Li et al. [15] adopted
an interval kernel distance to calculate the distance of inter-
val data and cluster prototypes for fuzzy c-means clustering
incomplete datasets. Note that some density-based clustering
methods are alike to the hierarchical-based clustering meth-
ods, the differences between them lie in the linkage criterion.
Gallego et al. [16] used approximated similarity search as
initial point to improve the efficiency issues at the expense
of typically lowering the performance of k-nearest neighbor
classifier. Ding and Song [17] developed the EM algorithm
based on Gaussian copula models for the imputation of miss-
ing values. Fan and Chow [18] proposed sparse representa-
tion with missing entries and matrix completion method to
deal with incomplete data subspace clustering and high-rank
matrix completion. However, some of these methods usually
measure the quality and diversity based on the cluster labels
of base clusters while missing the information of the original
data. To handle this drawback, Zhao et al. [19] presented a
clustering ensemble selection algorithm for categorical data.
Until now, there is no any clustering algorithm that performs
the best for all types of data. Namely, for a given dataset,
different clustering algorithms have their own strength and
weakness, and cannot discover all types of cluster structures
in the data. Therefore, it is difficult for users to decide which
clustering algorithm would be an appropriate alternative for a
given dataset [19]. Neither do these methods need the number
of clusters using as input parameters, nor do they make
assumptions about the underlying density or the variance
within the groups whichmight exist in the datasets [7]. On the
basis of the above analysis, our clustering algorithm is based
on density method to efficiently and effectively address the
issues of the complex dataset classification.

The density-based clustering approaches have gained pop-
ularity among researchers [3], [5], [7], [10], [11], [20]–[24]
over the years. Density-based clustering is a nonparametric
approach assuming that the points belonging to each cluster
are drawn from a specific probability distribution [23]. The
clusters of arbitrary shape can be discovered by the density-
based methods, where the clusters are considered to be high
density areas and separated from each other by contiguous
regions with low density of objects [10]. Ester et al. [23]
proposed density-based spatial clustering of applications
with noise (DBSCAN), which discovers arbitrary shapes of
clusters utilizing minimum domain knowledge about data.
Points are classified as core objects or outliers with the
density thresholds and the core objects are assigned to

a cluster if they are closely packed together [10]. However,
choosing an appropriate threshold can be nontrivial, and it
is not fully deterministic for border points and could not
perform well in overlapping densities [20]. Bai et al. [22]
investigated a fast density clustering technique based on
k-means algorithm. Rodriguez and Laio [5] developed a
density peaks clustering (DPC) algorithm, which can fig-
ure out the cluster centers according to the decision graph and
detect non-spherical clusters without specifying the number
of clusters. Up to now, a large number of existing cluster-
ing algorithms and their variations have concerned density
peaks [3], [5], [7], [10], [11], [25]–[29]. Du et al. [25] studied
a DPC algorithm by using a similarity criterion to deal with
the numerical, categorical, or mixed data. Liu et al. [10]
proposed an adaptive clustering algorithm by introducing
k-nearest neighbors to compute the global parameter and
the local density of each point. However, most of all the
above-mentioned algorithms are sensitive to initialization.
Ding et al. [26] developed an entropy-based DPC algo-
rithm for mixed type data by employing fuzzy neighbor-
hood. Du et al. [27] presented density peaks clustering based
on k-nearest neighbors and principal component analysis.
Xu et al. [28] constructed an improved DPC algorithm with
fast finding cluster centers, which improves the efficiency of
DPC algorithm by screening points with higher local density.
Jiang et al. [29] presented a DPC based on logistic distri-
bution and gravitation to detect outliers and processed some
datasets of varying densities and irregular shapes. However,
some of the above models still have some shortcomings
as follows. Euclidean distance is usually employed in the
original DPC method and the extended DPC algorithms to
calculate the distance between sample points; nevertheless,
the Euclidean distance only considers the spatial structure
of samples and does not take into account the correlation
and the similarity between samples. The cutoff distance is
often chosen by the minimum of 1% to 2% of the distance
between all the sample points. It has a great influence on the
calculation of local density. An appropriate parameter can
be nontrivial and significantly effects on selecting the clus-
ter centers and achieving the clustering results. In addition,
the cluster centers are selected based on the two-dimensional
decision graphs, which has certain subjective factors and
causes the random error. In especial, when tackling the high-
dimensional datasets, these DPC-based methods cannot yield
the effective clustering results. Thus, this paper focuses on
creating such a solution.

To solve these problems above, a novel adaptive DPC
algorithm is investigated. First, a new local density of sample
points is presented to calculate by using the Gaussian kernel
density estimation function. Since the Euclidean distance
easily ignores the correlation of the samples, a weighted
Euclidean distance is proposed to measure the distance
between samples, where the weight is the reciprocal of
the absolute value of the Pearson correlation coefficient.
It follows that the spatial structure of the samples and the
correlation between samples are considered simultaneously.
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Second, a density estimation entropy is defined to improve
the density estimation parameter. The density estimation
parameter is adaptively selected by minimizing the density
estimation entropy, which avoids the influence of manual
setting. Third, an adaptive strategy of cluster center selection
is proposed to avoid the impact of manual selection and
setting of parameters. Finally, to efficiently extract relevant
and significant features from high-dimensional datasets and
rapidly provide satisfactory clustering results, the Fisher lin-
ear discriminant (FLD) algorithm is introduced to reduce the
dimensionality of the original high-dimensional datasets, and
then an adaptive DPC algorithm with FLD (ADPC-FLD) is
constructed to perform on many public standard datasets for
obtaining the great clustering results.

The rest of this paper is structured as follows. Section II
briefly reviews the basic work of the DPC algorithm.
In Section III, the local density based on kernel density
estimation function, the density estimation entropy and the
adaptive strategy of cluster center selection are proposed, and
then the ADPC-FLD algorithm is designed. The experimental
results and analysis are described in Section IV. Finally,
Section V summarizes this paper.

II. RELATED WORK
In 2014, clustering by fast search and find of density peaks
is a new clustering method that was reported in Science [5].
It is a main density-based clustering method which is based
on an assumption: The density of the cluster center is higher
than the density of its neighbor sample points, and the cluster
centers are generally far from each other. By calculating the
distance from the nearest larger density point, the cluster
centers are obtained, and the remaining points are sorted and
divided into the categories according to the local density [28].
Obviously, the cluster center is a point that both the local
density and the distance from the nearest larger density point
are large, and then the number of cluster centers can be
intuitively selected.

For each sample point, its two variables, the local density
ρi and the distance from the nearest larger density point δi, are
first calculated, and then for each sample point xi ∈ X = {x1,
x2, · · · , xn}, the local density ρi can be described as

ρi =
∑
i6=j

χ (dij − dc), (1)

where dij is the distance between the samples xi and xj, and
dc is the cutoff distance. When dij− dc ≤ 0, χ (dij− dc) = 1;
otherwise χ (dij − dc) = 0.
The high-density point nearest neighbor distance δi is

expressed as

δi = min
j:ρj>ρi

(dij). (2)

Obviously, there is no high-density nearest neighbor for
sample points with high local or global density, and the
distance from the nearest larger density point is simply

described by

δi = max
j
(dij). (3)

From Eqs.(1) and (3), the cluster center is often a sample
point which the local density ρi is large and the distance
from the nearest larger density point δi is also large. Then,
the DPC algorithm constructs the decision graphs by the ρi
of the sample and the δi, selects both the larger local density
ρ and the larger distance from the nearest larger density point
δ of samples as the cluster centers, and identifies the other
sample points into the nearest cluster centers.

III. ADAPTIVE DENSITY PEAKS CLUSTERING ALGORITHM
WITH FISHER LINEAR DISCRIMINANT
For the complex and high-dimensional datasets, most of the
traditional DPC algorithms are inefficient [3]. Therefore, it is
very necessary to improve the DPC algorithm, with which
the dimension reduction algorithm is combined to achieve the
great clustering results. In this section, a new adaptive DPC
algorithm with FLD is constructed well.

A. LOCAL DENSITY BASED ON KERNEL
DENSITY ESTIMATION FUNCTION
The traditional DPC algorithm uses the cutoff distance to
define the local density of sample points, which is only
applicable to the discrete data points. For the continuous
datasets, the local structural characteristics of the data are not
always considered. Aiming at this problem, we introduce the
Gaussian kernel density estimation function [30] to calculate
the local density of each sample point, which can consider
the local structural characteristics of the continuous datasets.
Since the correlation of samples is easily neglected, a new
weighted Euclidean distance is defined to solve this issue.
Definition 1: Based on the Gaussian kernel density esti-

mation function, the local density formula of sample points is
defined in [25] as

ρi =
∑
i6=j

e
−

( dij
dc

)2
, (4)

where dij is the distance between the samples xi and xj, usually
calculating with the Euclidean distance, and dc denotes the
density estimation parameter and is equal to the window
width of the kernel function.

The Pearson correlation coefficient [31] is a common cri-
terion of the correlation between variables, and its formula is
expressed as

rxy =

∑
(xi − x̄)

∑
(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
, (5)

where x and y represent two sample points, x̄ = 1
n

∑n
i=1 xi

denotes the mean of all the feature values of the sample x,
ȳ = 1

n

∑n
i=1 yi describes the mean of all the feature values of

the sample y, and n represents the number of all the features
of the sample.
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From Eq. (5), the value of rxy is between −1 and 1, and
then one has 0 ≤ |rxy| ≤ 1. When |rxy| = 1, the sample x
is related to the sample y, and when |rxy| = 0, the samples x
and y are irrelevant. That is, the larger the absolute value of the
correlation coefficient between the two samples is, the more
relevant the two samples are, and the smaller the distance
between the samples is; otherwise the less the relevance is,
the greater the distance is.
Definition 2: The reciprocal of the absolute value of the

Pearson correlation coefficient as the weight is introduced
to redefine the distance between the two samples. Then,
a weighted Euclidean distance function is defined as

dij =
1
|rij|

∑
(xi − xj)2, (6)

where xi and xj represent the features of sample data, i,
j = 1, 2, · · · , n denote the number of the samples, and rij
represents the Pearson correlation coefficient between the
two samples.
Definition 3: Since the distance between the samples is

calculated by the weighted Euclidean distance function,
the formula of the local density of samples is described as

ρi =
∑
i6=j

e
−

1
|rij|

∑
(xi−xj)

2

dc2 , (7)

where i, j = 1, 2, · · · , n represent the number of all the
features of the samples x and y respectively, rij denotes the
Pearson correlation coefficient between the two samples, and
dc is the density estimation parameter.
Definition 4: The distance from the nearest larger density

point δi is defined as

δi = min
j:ρj>ρi

(dij). (8)

When the local density ρi of a sample point is the largest,
δi = max

j
(dij).

B. DENSITY ESTIMATION ENTROPY
In the traditional DPC algorithm, the cutoff distance dc is
often chosen by the minimum of 1% to 2% of the distance
of all the sample points; however, in the practical experi-
ments, it can be found that the value of the density estimation
parameter dc has a great influence on the clustering results.
In order to more intuitively demonstrate the influence of dc
on the clustering results, the DPC algorithm is performed
on two synthetic datasets (Spiral and Aggregation). The
datasets are depicted in Fig. 1, where the Spiral dataset has
312 points around 3 clusters, and the Aggregation dataset
includes 788 points around 7 clusters. Then, the clustering
results of DPC on the two test datasets using the different
dc are shown in Figs. 2 and 3, respectively. Each sub-figure
contains the two-dimensional decision graph and the clus-
tering result graph. In the two-dimensional decision graphs,
the abscissa is the value of ρ, and the ordinate is the distance
from δ.

Fig. 2 shows that when dc takes the minimum distance
of 0.5% on the Spiral dataset, there are many sample points

FIGURE 1. Description of the two synthetic datasets. (a) Spiral.
(b) Aggregation.

with the small local density but the far distance from the near-
est larger density point in two-dimensional decision graphs.
This phenomenon leads to misclassification. Although the dc
takes the minimum distance of 2.3%, the appropriate cluster
centers are displayed in Fig. 2 and they are far from the other
points. Thus, the clustering effect is seriously poor, and it
indicates that the dc is seriously significant for the clustering
result of the Spiral dataset. When the dc takes the minimum
distance of 1% to 2%, the correct clustering result can be
obtained. The above results illustrate that the DPC method
can get the results when the dc is set to an appropriate value.
Fig. 3 shows that on the Aggregation dataset, when the

dc takes the minimum distance of 0.5%, it is difficult to
determine the cluster centers from the two-dimensional deci-
sion graphs. When the dc increases to the distance of 1%,
the cluster centers can be determined well and the correct
clustering result can be achieved. As the percentage of mini-
mum distance of dc increases, the clustering effect gradually
decreases, and thenmany sample points are misclassified into
noise. Hence, the experiments demonstrate that the traditional
DPC algorithm cannot get the correct clustering results on the
Aggregation dataset, and it further verifies that the dc has a
great influence on the clustering results of the Aggregation
dataset. In summary, it is a challenge to set the optimal dc for
the different datasets.

To overcome this abovementioned drawback that the clus-
tering result is very sensitive to dc, an adaptive parameter
optimization method based on the minimization of density
estimation entropy is presented, and it can select an appro-
priate density estimation parameter dc according to the dis-
tribution characteristics of the data and eliminates the errors
of manual setting. It is well known that information entropy
in information theory can effectively measure the uncertainty
of random variables [32]. Inspired by the idea of information
entropy, a concept of density estimation entropy is developed
to optimize the density estimation parameter, and then the
minimization method of density estimation entropy is used
to adaptively select the density estimation parameter of the
DPC algorithm.
Definition 5: Suppose that the local density of n sample

points be ρ1, ρ2, · · · , ρn, and the density estimation entropy
is defined as

E =
n∑
i=1

ρi

U
log2(

1
ρi
+ 1), (9)
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FIGURE 2. The clustering results for the different dc on the spiral dataset. (a) dc = 0.9394(0.5%). (b) dc = 1.7443(1.2%).
(c) dc = 3.7014(2.3%).

FIGURE 3. The clustering results for the different dc on the aggregation dataset. (a) dc = 0.3202(0.5%). (b) dc = 0.5099(1%).
(c) dc = 0.7018(1.6%).

where ρi is the local density, i = 1, 2, · · · , n, n denotes the

number of all the sample points, and U =
n∑
i=1
ρi represents

the sum of the local density of all the sample points.
According to the distribution characteristics of the data,

the local density estimation values of each sample point
are different. If the local density values of each sample
point are the same, it would be difficult to cluster. That

is, the greater the uncertainty of the data distribution is,
the larger the density estimation entropy is. When the local
density of each sample point is different, the cluster cen-
ters are determined by the sample point with the high local
density and then the other sample points are divided by the
cluster centers. The more accurate the distribution is, the
smaller the uncertainty is, and the less the density estimation
entropy is.
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Property 1: A range of the density estimation entropy is 0
≤ E ≤ log2(n).
Proof: The density estimation parameter dc is changed

from 0 to+∞. FromEqs. (7) and (9), when dc→ 0,E is close
to log2(n); as dc increases, E decreases until reaching the
minimum, and then gradually increases. When dc → +∞,
E is close to the maximum log2(n). Thus, 0 ≤ E ≤ log2(n)
can be obtained.
Definition 6: To optimize the density estimation parameter

dc, the density estimation entropy is minimized by adjusting
the dc. Then, the minimization of density estimation entropy
is described as

minE
dc
=

n∑
i=1

ρi

U
log2(

1
ρi
+ 1). (10)

From Definition 6 and Property 1, by using the adaptive
parameter optimization method based on Eq. (10), the opti-
mal value of the dc can be adaptively selected according to
the distribution characteristics of the data.

C. ADAPTIVE STRATEGY OF CLUSTER CENTER SELECTION
For the DPC algorithm, the cluster centers are manually
selected according to the two-dimensional decision graphs.
The sample points with the large local density and distance
from the nearest larger density point are selected as the
cluster centers, but it has certain difficulties and subjectivity
in practical application. Note that there are multiple density
peaks points in a cluster. When the distribution of these
points is similar, it is difficult to select the suitable number
of cluster centers. This phenomenon can be easily observed
from Fig. 3(a). To eliminate the error and the difficulty of
selecting cluster centers manually, an adaptive strategy of
cluster center selection based on the distribution of the data
and the local density is developed.

Since the cluster centers should reflect the distribution of
all data and contain useful information as much as possible,
according to the local density and the distance from the
nearest larger density point, the optimized adaptive strategy
of cluster center selection is described as follows. On the
one hand, the standard deviation of the distance from the
nearest larger density point of all data is calculated, which
is used as a measure of the statistical distribution and reflects
the dispersion degree of the data to some extent. Then, it is
considered to select sample as a cluster center, whose distance
from the nearest larger density point is greater than or equal
to the weighted standard deviation. On the other hand, in
some cases, the DPC algorithm discovers the noises with
the large distance from the nearest larger density point but
small local density, which needs to be excluded from the
cluster centers. Thus, the data points that the local density
is greater than the mean of the local density of all data are
considered as the cluster centers. By combining the above
two steps, the conditions for selecting the cluster centers are
described as

EC = δi ≥ λσ (δi), (11)

RC = EC(ρi) ≥ µ(ρi), (12)

where EC represents the expected cluster centers, δi is the
distance from the nearest larger density point, σ (δi) is the
standard deviation of the distance from the nearest larger
density point of all data, λ is the weight, RC denotes the
cluster centers after removing noises, ρi is the local density
of each sample points, EC(ρi) describes the local density of
the expected cluster centers, and µ(ρi) is the mean of all the
local densities.

The cluster centers selected by the two conditions above
simultaneously ensure the large distance from the nearest
larger density point and the large local density, which can
avoid the errors caused by selecting the noises as cluster
centers and guarantee the objectivity of clustering results.

D. DESCRIPTION OF ADPC-FLD ALGORITHM
To solve the problem that the DPC algorithm is difficult
to deal with the large-scale and high-dimensional datasets,
the dimension reduction method needs to be firstly employed
to reduce the dimensionality of high-dimensional data.
In recent years, the dimension reduction methods roughly
include linear mapping and nonlinear mapping methods.
The Fisher linear discriminant (FLD) method [33] is widely
used in dimension reduction, which processes data by lin-
ear function values. Its basic idea is to project the sample
onto a straight line by transforming the sample so that the
projection of the sample can be best divided. Thus, FLD
can select the features with the information classified, effec-
tively eliminates the irrelevant and redundant features, and
achieves the reduced dimensionality for high-dimensional
datasets [34].

In what follows, the FLD is used to reduce the dimension-
ality of the high-dimensional datasets, and then an adaptive
density peaks clustering (ADPC) algorithm is performed.
For convenience of description, the ADPC algorithm with
the FLD method (ADPC-FLD) is divided into two sub-
algorithms: the dimension reduction algorithm based on FLD
(Algorithm 1) and the ADPC algorithm (Algorithm 2). The
special procedures of the ADPC-FLD algorithm are illus-
trated in Fig. 4.

The specific steps of the ADPC-FLD algorithm are
described as Algorithms 1 and 2.

Suppose that the dataset has n sample points, and the num-
ber of cluster centers ism. For implementing the ADPC-FLD
algorithm, the computational process of the distance matrix
largely affects the time complexity and the space complex-
ity of our cluster algorithm. Since the space complexity of
the distance matrix is O(n2) [10], the time complexity of
adjusting the density estimation parameter is O(n), the com-
plexity of calculating the local density is O(n2) and that of
the distance from the nearest larger density point is O(n2),
the overall time complexity of ADPC-FLD is O(n2), which
mainly depends on calculating the distance matrix and is the
same as that of DPC. Furthermore, the space complexity of
ADPC-FLD is O(n2).
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FIGURE 4. The flow chart of the ADPC-FLD algorithm.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENT PREPARATION
To verify the clustering performance of the proposed ADPC-
FLD algorithm, the experiment is divided into the following
three parts: The effectiveness of the improved ADPC algo-
rithm is validated on six synthetic datasets in terms of two-
dimensional decision graph and three indices. Then, the clus-
tering results of the ADPC-FLD algorithm are compared with
those of the other related clustering algorithms on thirteen
standard UCI datasets in terms of two-dimensional decision
graph and seven indices. For the final part, the testing accu-
racy of the ADPC-FLD algorithm is evaluated on seven gene
expression datasets in terms of two-dimensional decision
graph and three indices. All the numerical experiments are
implemented on a personal computer running Windows 7
with an Intel(R) Core(TM) i5-3470CPUoperating at 3.2GHz
and 8 GB of memory.

To effectively evaluate the clustering results of all the con-
trast algorithms, eleven kinds of evaluation indices [35]–[37],
including the cluster number (CN), the silhouette index (Sil),
the adjusted mutual information (AMI), the precision (P),

Algorithm 1
Input: A dataset X = {x1, x2, · · · , xn}
Output: The reduced dataset Y
Step 1: Calculate the class mean vector of each class by

µi =
1
Ni

∑
xj∈Xi

xj,

and then obtain the within-class scatter matrix in the sam-
ple space of the original dataset as follows:

Si =
∑
xj∈Xi

(xj − µi)(xj − µi)T ,

where i = 1, 2, · · · ,m.
Step 2: Calculate the within-class scatter matrix by

SW =
m∑
i=1

∑
xj∈Xi

(xj − µi)(xj − µi)T ,

and compute the between-class scatter matrix by

SB =
m∑
i=1

ni(µi − µ)(µi − µ)T .

Step 3: Calculate the maximized Fisher criterion func-
tion by

max JF (ω) =
ωT Sbω
ωT SWω

,

and use the Lagrange multiplier to solve the unconstrained
extreme problem of the Lagrangian function. Then, one can
obtain the optimal projection based on the Fisher discrim-
inant criterion.
Step 4: Calculate Y = ωTX to get the reduced dataset Y .

the recall (R), the specificity (S), the accuracy (AC), the Jac-
card coefficient (JC), the Fowlkes-Mallows index (FMI),
the F-measure index (FM) and the adjusted rand index (ARI),
are introduced to illustrate the effectiveness and efficiency of
our algorithm. These indices are described as follows.

The Sil is denoted as

Sil(t) =
[b(t)− a(t)]

max{a(t), b(t)}
, (13)

where t denotes the number of all the samples of a dataset,
t = 1, 2, · · · , n, a(t) is the average dissimilarity of t to all the
other samples in a cluster Ci, b(t) = min{d(t , Ci)}, d(t , Ci) is
the average dissimilarity of t in Cj to all samples in another
Ci, and i, j = 1, 2, · · · , k with i 6= j.
Suppose that U = {U1, U2, · · · , UR} and V = {V1,

V2, · · · , VC} denote the true division and the division of
the clustering result on a dataset X = {x1, x2, · · · , xn},
respectively. Then, the AMI is expressed as

AMI (U ,V ) =
MI (U ,V )− E{MI (U ,V )}

max{H (U ),H (V )} − E{MI (U ,V )}
, (14)
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Algorithm 2
Input: The reduced dataset Y using Algorithm 1
Output: The clustering results
Step 1: Calculate the distance matrix D = {dij} of each

sample in Y with Eq. (6), where i, j = 1, 2, · · · , n.
Step 2: Adjust the density estimation parameter dc with

Eq. (10).
Step 3: Calculate the local density ρi of each sample

according to the D and the dc in Eq. (7).
Step 4: Calculate the distance from the nearest larger

density point δi of each sample according to the ρi
in Eq. (8).
Step 5: Construct a two-dimensional decision graph by

using the ρi and the distance from the δi.
Step 6: Select the cluster centers with Eqs. (11) and (12).
Step 7: Calculate the minimum distance of the other

sample points and the cluster centers, and assign the other
sample points into the nearest cluster center.

where H (U ) is the entropy of the original partition, H (V ) is
the entropy of the partition of clustering results, MI(U , V ) is
the mutual information between U and V , and E{MI (U ,V )}
is the expected mutual information between U and V .

Suppose that a denotes the number of samples in the same
class of U and V simultaneously; b represents the same class
in U , but the different class in V ; c denotes the different class
in U , but the same class in V ; and d denotes the number of
samples in the different classes ofU and V . Then, the indices
are expressed as follows.

P =
a

a+ b
, (15)

R =
a

a+ c
, (16)

S =
d

b+ d
, (17)

AC =
a+ d

a+ b+ c+ d
, (18)

JC =
a

a+ b+ c
, (19)

FMI =

√
a2

(a+ b)(a+ c)
, (20)

FM =
2PR
P+ R

, (21)

ARI =
2(ad − bc)

(a+ b)(b+ d)+ (a+ c)(c+ d)
. (22)

B. COMPARISONS OF CLUSTERING RESULTS
ON SYNTHETIC DATASETS
In this subsection, our proposed ADPC algorithm is com-
pared with the traditional DPC method [5] and the DBSCAN
algorithm [23] on the six synthetic datasets selected from
[5], [7], [11], which are widely used in the clustering algo-
rithms. The description of the six synthetic datasets is shown
in Table 1. The distributions of the sample points for each
synthetic dataset are shown in Fig. 5.

TABLE 1. Description of the six synthetic datasets.

To determine the optimal parameters of the compared algo-
rithms and obtain the more accurate performance, the follow-
ing several experiments are performed on the six synthetic
datasets. For the ADPC algorithm, the optimal dc under the
proposed density estimation entropy is adaptively selected.
The density estimation parameter dc of the traditional DPC
algorithm is set to the minimum of 1% to 2% of the distance
of all sample points. The DBSCAN has two parameters eps
and minpts, where the eps is looped from 0.01 to 1 with a
step size of 0.01, and the minpts is looped from 1 to 50. The
optimal parameters involved in the compared algorithms are
described in Table 2. The two-dimensional decision graphs
of the ADPC algorithm on the six synthetic datasets are
illustrated in Fig. 6, and the graphs of clustering with the
three algorithms on the six synthetic datasets are shown in
Figs. 7 to 12, respectively.

TABLE 2. The adjusted parameters for the three algorithms on the six
synthetic datasets.

It can be seen from Fig. 6 that the ADPC algorithm can
select the appropriate cluster centers and the accurate number
of clusters on the six synthetic datasets. From Figs. 7 to 12,
on the Spiral and 4k2_far datasets, all the three compared
algorithms can obtain the correct number of clusters and the
good performance. On the R15 and Aggregation datasets,
ADPC can obtain the correct number of clusters, but both
DPC and DBSCAN cannot, which may lead to misclassi-
fication. On the D31 and S1 datasets, the ADPC algorithm
still performs the great performance and obtains the cor-
rect number of clusters. Although the DPC algorithm can
obtains the correct number of clusters, some sample points are
misclassified to the other clusters. The DBSCAN algorithm
mistakenly divides some sample points into noises, resulting
in the poor clustering effect. In order to further illustrate the
clustering performance of ADPC, the three indices (AC, JC,
and FMI) of clustering results are employed to test the
clustering performance. To ensure the objectivity of the clus-
tering results and reduce the random errors, each method is
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FIGURE 5. Distributions of the sample points for the six synthetic datasets. (a) Spiral. (b) 4k2_far. (c) R15. (d) Aggregation. (e) D31. (f) S1.

FIGURE 6. The two-dimensional decision graphs of the ADPC algorithm on the six synthetic datasets. (a) Spiral. (b) 4k2_far. (c) R15.
(d) Aggregation. (e) D31. (f) S1.

run 10 times, and the results are themean of the 10 evaluations
of the cluster indices. The experimental results are illustrated
in Table 3.

Table 3 shows the evaluated clustering results of the three
compared algorithms on the six synthetic datasets. As can
be seen from Table 3, the Spiral and 4k2_far datasets have
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FIGURE 7. The graphs of clustering with the three algorithms on the Spiral dataset. (a) ADPC. (b) DPC. (c) DBSCAN.

FIGURE 8. The graphs of clustering with the three algorithms on the 4k2_far dataset. (a) ADPC. (b) DPC. (c) DBSCAN.

FIGURE 9. The graphs of clustering with the three algorithms on the R15 dataset. (a) ADPC. (b) DPC. (c) DBSCAN.

FIGURE 10. The graphs of clustering with the three algorithms on the Aggregation dataset. (a) ADPC. (b) DPC. (c) DBSCAN.

the characteristics of the small in-cluster distance and the
large between-cluster distance, and the three index values
of the three algorithms on the two datasets are all equal
to 1, which indicates that all the three algorithms perform

well. On the R15 dataset, the three evaluation indices of
ADPC is 1, but due to the misclassification, the three indices
of DPC and DBSCAN are smaller than that of ADPC. So, the
results demonstrate that ADPC performs better than the other
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FIGURE 11. The graphs of clustering with the three algorithms on the D31 dataset. (a) ADPC. (b) DPC. (c) DBSCAN.

FIGURE 12. The graphs of clustering with the three algorithms on the S1 dataset. (a) ADPC. (b) DPC. (c) DBSCAN.

TABLE 3. The clustering results of the three algorithms on the six synthetic datasets.

two methods. On the Aggregation, D31 and S1 datasets, all
the indices of ADPC are close to 1 and higher than those
of DPC and DBSCAN. Therefore, it can be concluded that
our proposed ADPC algorithm has better effectiveness and
accuracy on all the two-dimensional synthetic datasets.

C. COMPARISONS OF CLUSTERING RESULTS
ON STANDARD UCI DATASETS
This portion of the experiments is to test the feasibility and
efficiency of ADPC-FLD on low dimensional UCI datasets.
As we know, the experiment results on the real-world datasets
with low-dimensionality for practical problems that are usu-
ally employed to evaluate the clustering performances of
the clustering algorithms [38]. Then, to make the exper-
iments more adequate, thirteen standard UCI datasets are
downloaded from the UCI repository of machine learning
databases (http://www.ics.uci.edu), and divided into two cate-
gories including ten general UCI datasets and three real-world
imbalanced UCI datasets. The description of the ten general
UCI datasets is shown in Table 4.

TABLE 4. Description of the ten UCI datasets.

The first part of this experiment is to verify the clustering
results of ADPC-FLD in terms of the two-dimensional deci-
sion graphs on the six UCI datasets selected fromTable 4. The
two-dimensional decision graphs of ADPC-FLD on the six
UCI are shown in Fig. 13. It can be seen from Fig. 13(a)-(e)
that the ADPC-FLD algorithm can accurately select the
cluster centers and the cluster number on the five datasets
(Iris, Seeds, Ecoil, Wine and Dermatology), except for the
Segmentation dataset. Since it is difficult to distinguish the
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FIGURE 13. The two-dimensional decision graphs of the ADPC-FLD algorithm on the six UCI datasets. (a) Iris. (b) Seeds. (c) Ecoil.
(d) Wine. (e) Dermatology. (f) Segmentation.

cluster centers and the other sample points from the two-
dimensional decision graphs on the Segmentation dataset,
ADPC-FLD shows the poor performance; however, our pro-
posed algorithm can still select the correct number of clusters.
In summary, the proposed ADPC-FLD algorithm has a good
effect on selecting the cluster centers and the number of
clusters.

The following part of this experiment continues testing the
ADPC-FLD algorithm on the same six standard UCI datasets
in terms of the three indices (FMI, AMI and ARI). ADPC-
FLD is compared with five state-of-the-art clustering algo-
rithms, which include: (1) the shared nearest neighbor-based
clustering by fast search and find of density peaks algorithm
(SNN-DPC) [39], (2) the fuzzy weighted k-nearest neigh-
bors density peaks clustering algorithm (FKNN-DPC) [3],
(3) the DPC algorithm [5], (4) the DBSCAN algorithm [23],
and (5) the ordering points to identify the clustering struc-
ture algorithm (OPTICS) [21]. To ensure the objective of
clustering results, the numerous experiments are performed to
select the optimal parameters of all the compared algorithms.
For the ADPC-FLD algorithm, the optimal dc is adaptively
selected by the proposed density estimation entropy. For the
SNN-DPC and FKNN-DPC algorithms, the parameters are
designed by Liu et al. [39]. For the traditional DPC algorithm,
the value of the density estimation parameter dc is set to
the minimum of 1% to 2% of the distance of all sample
points. For the DBSCAN and OPTICS algorithms, the eps is
looped from 0.01 to 1 with a step size of 0.01, and the minpts

is looped from 1 to 50. The optimal parameters involved
in each compared algorithms are described in Table 5 in
detail. Similar to this previous subsection, the six methods
are executed 10 times, and the results of FMI, AMI and ARI
are the mean of 10 clustering operations. The experimental
results are shown in Tables 6 to 8.

Table 6 shows the FMI index of the six tested algo-
rithms on the six general UCI datasets. As can be seen from
Table 6, the ADPC-FLD algorithm obtains the best clustering
accuracy than the other five algorithms on the Iris, Seeds,
Ecoil, Wine and Dermatology datasets, where the FMI val-
ues are 1 on the Iris and Wine datasets. On the Iris and
Seeds datasets, the performances of the three DPC algorithms
(SNN-DPC, FKNN-DPC and DPC) are similar, and their
clustering accuracies are higher than those of the DBSCAN
and OPTICS algorithms. Compared with the other five clus-
tering algorithms, the FMI index of DPC is the smallest on
the Ecoil dataset, which indicates that the algorithm has the
worst performance. The FMI values of the six algorithms
on the Wine and Dermatology datasets further demonstrate
that the four DPC algorithms (ADPC-FLD, SNN-DPC,
FKNN-DPC and DPC) are superior to the two density-based
clustering algorithms (DBSCAN andOPTICS). Since the dif-
ference of data categories is not obvious on the Segmentation
dataset, the clustering accuracies of the six algorithms are
slightly bad. Nevertheless, the ADPC-FLD algorithm still has
the largest FMI value. In summary, the comparisons of the
FMI index indicate that ADPC-FLD has the great clustering
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TABLE 5. The adjusted parameters for the six algorithms on the six UCI datasets.

TABLE 6. The FMI index for the six algorithms on the six UCI datasets.

TABLE 7. The AMI index for the six algorithms on the six UCI datasets.

TABLE 8. The ARI index for the six algorithms on the six UCI datasets.

performance on the six general UCI datasets than the other
five clustering algorithms.

Table 7 shows the AMI index of the six tested algorithms
for the six UCI datasets. As can be seen from Table 7, the four
DPC algorithms (ADPC-FLD, SNN-DPC, ADPC-KNN, and
DPC) perform generally better than the two density-based
clustering algorithms (DBSCAN and OPTICS), especially
our proposed ADPC-FLD algorithm. The values of the AMI
index of ADPC-FLD are much larger than those of the other
five methods on the six UCI datasets. Taking the traditional
DPC algorithm as an example, the AMI values of ADPC-FLD
on the six datasets are 0.14, 0.21, 0.42, 0.29, 0.18, and 0.11
higher than those of DPC, respectively. On the Iris and
Wine datasets, the ADPC-FLD algorithm shows the highest
AMI value, which indicates that ADPC-FLD has the best
clustering effect on the two datasets. For the Seeds, Ecoil
and Dermatology datasets, the proposed algorithm has the
better clustering performance, and its AMI values are 0.93,
0.92 and 0.96, respectively. The OPTICS algorithm has the
worst performance, because the AMI values are only 0.38,

0.43 and 0.29. The six algorithms have the smallerAMI values
on the Segmentation dataset, but ADPC-FLD still shows the
highest clustering accuracy. Therefore, all the AMI values
demonstrate that ADPC-FLD has the better clustering perfor-
mance on the six UCI datasets than the other five clustering
algorithms.

Table 8 shows the ARI values of the six compared algo-
rithms for the six UCI datasets. It can be observed from
Table 8 that the ARI values of ADPC-FLD are signifi-
cantly larger than those of the other five methods on the six
UCI datasets. On the Iris and Seeds datasets, the clustering
results of ADPC-FLD, SNN-DPC, FKNN-DPC and DPC are
superior to DBSCAN and OPTICS. Meanwhile, the SNN-
DPC, FKNN-DPC and DPC algorithms have the similar ARI
on the Seeds dataset. However, for the Ecoil dataset, the
FKNN-DPC, DPC and DBSCAN algorithms have the similar
and poor performance in the ARI index, and the SNN-DPC
and OPTICS algorithms demonstrate the better performance
than the above three algorithms. The ADPC-FLD algorithm
performs better than the other five clustering algorithms, and
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TABLE 9. The adjusted parameters for the six algorithms on the four UCI datasets.

FIGURE 14. The two-dimensional decision graphs of the ADPC-FLD
algorithm on the four UCI datasets. (a) Zoo. (b) Pima. (c) Chess.
(d) Spambase.

its ARI values are much larger than those of the other five
algorithms. On the Wine and Dermatology datasets, the ARI
index of ADPC-FLD and SNN-DPC are significantly larger
than the other four methods, and the performance of OPTICS
is the worst. The performance of the six algorithms on the
Segmentation dataset is still bad, but the clustering accuracy
of ADPC-FLD is the highest, and reaches 0.7143. In general,
the ARI values certify the validity and the clustering accuracy
of our ADPC-FLD algorithm on all the six UCI datasets.

The third part of this experiment is to further evalu-
ate the ADPC-FLD algorithm on the four general UCI
datasets (Zoo, Pima, Chess and Spambase) selected from
Table 4. The five state-of-the-art algorithms include: (1) the
adaptive density peak clustering based on k-nearest neigh-
bors algorithm (ADPC-KNN) [10], (2) the DPC algorithm
[5], (3) the DBSCAN algorithm [23], (4) the K -Means++
algorithm [40], and (5) the Single-link algorithm [41].
In order to ensure the objective results and illustrate the
best performance of all the compared algorithms, the param-
eters of each algorithm should be adjusted. The same as
this previous portion, the optimal dc of ADPC-FLD is adap-
tively selected by the proposed density estimation entropy,
and then the two-dimensional decision graphs of the four
UCI datasets, which is determined based on dc, is shown
in Fig. 14. For the ADPC-KNN and DBSCAN algorithms,
the selection of parameters is designed by Liu et al. [10]. For
the K -Means++ and Single-link algorithms, the parameter
K is set as the real cluster number of each dataset. The

optimal adjusted parameters of all the compared algorithms
are denoted in Table 9. To verify the clustering effects of
the six algorithms on the four UCI datasets, the experiments
use the two indices (CN and FM ) to evaluate the clustering
results. Similarly, the results are also the mean of 10 eval-
uations of clustering accuracy to ensure the objectivity of
the experimental results. The experimental results are shown
in Table 10.

Fig. 14 shows the two-dimensional decision graphs of
the ADPC-FLD algorithm on the four UCI datasets (Zoo,
Pima, Chess and Spambase), where the color markers are the
selected cluster centers. Table 10 states the comparisons of
CN and FM with the six algorithms on the four UCI datasets.
It can be seen from Fig. 14 and Table 10 that ADPC-FLD can
select the cluster centers and determine the correct number
of clusters. From Table 10, the ADPC-FLD, ADPC-KNN,
DPC and DBSCAN algorithms obtains the number of correct
clusters, but the cluster number of K -Means++ and Single-
link algorithms is set as the real cluster number in advance.
Although all algorithms can correctly identify the number of
clusters, there are major differences in clustering accuracy.
From the overall perspective, the clustering accuracies of the
six algorithms on the Zoo dataset are higher than those on the
other three datasets, where the accuracies of the ADPC-FLD
and ADPC-KNN algorithms on the Zoo dataset are similar
and higher than those of the other four algorithms. For the
Pima dataset, the ADPC-FLD algorithm compared with the
other five algorithms achieves the highest accuracy, and its
FM value is 0.7. The ADPC-KNN performs as poorly as
the Single-link. For the Chess dataset, the FM values of
ADPC-FLD and Single-link are the same and higher than
those of the other four algorithms. Thus, this shows that
the clustering performance of ADPC-FLD and Single-link
is better than the others, where the K -Means++ performs
the worst result. For the Spambase dataset, the clustering
accuracies of the six algorithms are flat. The FM values of
the four algorithms (ADPC-KNN, DBSCAN, K -Means++
and Single-link) are the same and slightly lower than that of
ADPC-FLD, and slightly higher than that of DPC. Hence, it is
obvious that ADPC-FLD is effective. In summary, the results
of the CN and FM indices on the four UCI datasets demon-
strate that our ADPC-FLD algorithm outperforms the other
five algorithms in most cases.

The fourth part of this experiment is to give more jus-
tifications of our ADPC-FLD algorithm in terms of the
three indices (CN, Sil, and FM) by testing the Iris, Wine
and Seeds datasets, selected from Table 4. The ADPC-FLD
algorithm is compared with four state-of-the-art methods,
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TABLE 10. The clustering results for the six algorithms on the four UCI datasets.

which include: (1) the affinity propagation clustering algo-
rithm using hybrid kernel function with locally linear embed-
ding (HKAP-LLE) [38], (2) the adaptive semi-supervised
affinity propagation clustering algorithm based on struc-
tural similarity (SAAP-SS) [42], (3) the fireworks explo-
sion optimization-based semi-supervised affinity propagation
algorithm (FEO-SAP) [43], and (4) the affinity propagation
(AP) algorithm [44]. In order to obtain the objective compar-
ison, the optimal dc of ADPC-FLD still is adaptively selected
by the density estimation entropy, and the parameters of the
other four algorithms are set by following the techniques
designed by Sun et al. [38]. Here, alike to the above calculated
results, all the comparedmethods need to be run 10 times, and
then the clustering results are the mean of the 10 evaluations.
The experimental results are shown in Table 11.

TABLE 11. The clustering results for the five algorithms on the three UCI
datasets.

Table 11 shows the CN, Sil and FM values of the five
clustering algorithms on the Iris, Wine and Seeds datasets.
It can be observed from Table 11 that the ADPC-FLD,
HKAP-LLE, SAAP-SS and FEO-SAP algorithms perform
better in the number of clusters, but the CN values of the AP
algorithm are far more than the real cluster number of the
datasets, which leads to the poor accuracy. The Sil values of
the five compared algorithms decrease on the three datasets
in turn, where ADPC-FLD achieves the largest Sil value, but
AP yields the smallest result. It indicates that the clustering
performance of ADPC-FLD is the best, and AP has the worst
performance. For the FM index, the ADPC-FLD algorithm
has the largest values on the three UCI datasets, and these
values of HKAP-LLE and SAAP-SS are similar and slightly
lower than ADPC-FLD. The AP algorithm still performs the
worst in terms of FM. In summary, the ADPC-FLD algorithm
shows the great performance than the other four algorithms on
the three general UCI datasets.

The last part of this experiment is to verify the effectiveness
of the proposed ADPC-FLD algorithm on real-world imbal-

TABLE 12. Description of the three imbalanced datasets.

anced UCI datasets. Note that in many practical applications,
imbalance occurs when a negative class contains many more
patterns than dose a positive class [45]. The ADPC-FLD
algorithm is applied to three imbalanced datasets, including
Ecoli (im & others), Yeast (ME2 & others) and Pima-indians
(1 & 0). The descriptions of the three imbalance datasets
are shown in Table 12. Among them, the Ecoli dataset has
8 different categories, where the im class is used as the
positive class, the other 7 classes are used as the negative
class, and the imbalanced ratio is 23:77. The Yeast dataset
includes 10 different categories, where theME2 is used as the
positive class, the other 9 categories are used as the negative
class, and the imbalanced ratio is 3:97. There are two types
of Pima-indians dataset, and its imbalanced ratio is 35:65.

On the three imbalanced UCI datasets, the ADPC-FLD
algorithm is compared with six state-of-the-art algorithms,
including (1) the HKAP-LLE algorithm [38], (2) the hybrid
support vectormachine algorithm (HSVM) [46], (3) the adap-
tive synthetic sampling with different error costs algorithm
(ADASYN+DEC) [46], (4) the random under-sampling
algorithm (RAMU) [47], (5) the adaptive synthetic sam-
pling algorithm (ADASYN) [48], and (6) the different error
costs algorithm (DEC) [49]. Following the experimental
techniques designed by Liu et al. [46], we adjust the param-
eters of the six compared algorithms. The density estima-
tion entropy of ADPC-FLD adaptively yields the optimal dc,
based on which, the two-dimensional decision graphs of three
UCI datasets are illustrated in Fig. 15. To efficiently evaluate
the clustering performance of the three imbalanced datasets,
the G-mean index [46] is used and described as

G−mean =
√
R× S

=

√
ad

(a+ c)(b+ d)
. (23)

So do we all experiments running 10 times to reduce the
random errors, and then their mean of the clustering accuracy
are obtained. The experimental results are shown in Table 13.

Fig. 15 shows the two-dimensional decision graphs of
ADPC-FLD on the three imbalanced datasets in Table 12. The
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TABLE 13. The G-mean index for the seven algorithms on the three imbalanced datasets.

FIGURE 15. The two-dimensional decision graphs of the ADPC-FLD algorithm on the three imbalanced datasets. (a) Ecoli
(dc = 0.2054). (b) Yeast (dc = 0.2291). (c) Pima-indians (dc = 5.4074).

color markers are the selected cluster centers. As we can see
from Fig. 15, the ADPC-FLD algorithm obtains the appropri-
ate cluster centers and the accurate number of clusters on the
three imbalanced datasets. Table 13 shows the G-mean index
of the seven compared algorithms on the three imbalanced
datasets. To more intuitively compare the seven algorithms,
Fig. 16 shows the histogram of G-mean for the seven algo-
rithms on the three imbalanced datasets. From the height of
the histogram, the pros and cons of each compared algorithm
can be clearly indicated. On the Ecoli dataset, the G-mean
of ADPC-FLD is the largest, and RAMU exhibits the second
best performance as HSVM. The G-mean values of HKAP-
LLE, ADASYN+DEC, ADASYN and DEC are similar and
smaller than those of ADPC-FLD, RAMU and HSVM. It can
be easily concluded from the G-mean on the Yeast dataset,
ADPC-FLD performs the best result, and RAMU achieves
the worst accuracy. In detail, the other five algorithms shows
slightly better performance than the RAMU algorithm, and
slightly worse than the ADPC-FLD algorithm. On the Pima-
indians dataset, the G-mean of ADPC-FLD is slightly lower
than those of HKAP-LLE and HSVM, but larger than the
other four methods. Although the clustering accuracy of
ADPC-FLD is slightly lower than those of HKAP-LLE and
HSVM on the Pima-indians dataset, it is superior to the
other six algorithms on both the Ecoli and Yeast datasets. In
general, the proposed ADPC-FLD algorithm is effective on
the imbalanced UCI datasets.

D. COMPARISONS OF TESTING ACCURACY ON GENE
EXPRESSION DATASETS
It is well known that the gene expression datasets have the
common characteristics with high dimensionality and small
samples [38], where include a large number of irrelevant and
redundant features. Classification learning from gene expres-
sion data is a significant topic and inspiringmany applications

FIGURE 16. The G-mean index for the seven algorithms on the three
imbalanced datasets.

in cancer diagnosis [50], [51]. It follows that this portion
concerning high-dimensional gene expression datasets is
conducted to verify the clustering performance of the ADPC-
FLD algorithm. Seven gene expression datasets are selected
from http://csse.szu.edu.cn/staff/zhuzx/Datasets.html and
http://www.gems-system.org/., respectively. The detailed
description of the seven gene expression datasets is shown
in Table 14. Note that, following the experimental techniques
and parameters designed by Sun et al. [38], to ensure a fair
comparison and reduce the random error, the 5-fold cross
validation method is employed to test the clustering results
in terms of three indices (R, S, and AC) on the seven gene
expression datasets.

The first portion of this subsection is to evaluate the
clustering performance of ADPC-FLD on the three gene
expression datasets (Colon, Leukemia and Prostate) selected
from Table 14. The two-dimensional decision graphs of the
ADPC-FLD algorithm on the three gene expression datasets
are shown in Fig. 17. The optimal dc of each data is adaptively
selected by the minimization method of density estimation

VOLUME 7, 2019 72951



L. Sun et al.: Adaptive Density Peaks Clustering Method With Fisher Linear Discriminant

FIGURE 17. The two-dimensional decision graphs of the ADPC-FLD algorithm on three gene datasets. (a) Colon(dc = 0.3492).
(b) Leukemia(dc = 1.5351). (c) Prostate(dc = 1.3687).

TABLE 14. Description of the seven gene expression datasets.

entropy. The color markers are the selected cluster centers,
and the dc value is optimized by our proposed density esti-
mation entropy. It can be observed from Fig. 17 that ADPC-
FLD effectively selects the cluster centers and the number of
clusters on the three gene expression datasets.

The second portion of this experiment is to evaluate the
testing accuracy of ADPC-FLD on the three gene expres-
sion datasets (Colon, Leukemia and Prostate). Three com-
pared state-of-the-art algorithms include: (1) the HKAP-LLE
algorithm [38], (2) the hidden markov model (HMM) [50],
and (3) the information gain and standard genetic algo-
rithm (IG-SGA) [51]. The experimental results are shown
in Table 15. To further illustrate the classification accuracy
on the Colon and Leukemia datasets, five state-of-the-art
algorithms, including (1) the HKAP-LLE algorithm [38],
(2) the affinity propagation-based classifier ensemble selec-
tion algorithm (APCES) [52], (3) the ensemble gene selec-
tion algorithm by grouping (EGSG) [53], (4) the ensemble
selection algorithm based on the random subspace method
(RSM) [54], and (5) the random forest-based feature selection
algorithm (RF) [55], are selected to compare with the ADPC-
FLD algorithm. Following the experimental techniques and
parameters designed by Sun et al. [38], all the above com-
pared algorithms are adjusted to obtain the optimal perfor-
mance. Similar to the last part, the optimal dc of ADPC-
FLD is adaptively selected by the proposed density estimation
entropy. The experimental results on the Colon, Leukemia
and Prostate datasets are evaluated with the four algorithms
under the two indices (R and S), shown in Table 15. The
results in terms of R, S and AC on the Colon and Leukemia
datasets are illustrated in Table 16. The values of evaluation
indices are between 0 and 1. The larger the value is, the better
performance the algorithm shows.

TABLE 15. The testing accuracy of the four algorithms on the three gene
datasets.

Table 15 shows the comparisons of theR and S indices with
the four algorithms on the three gene expression datasets.
It can be observed from Table 15 that for the Colon dataset,
the R and S indices of ADPC-FLD are much larger than the
other three methods, and then the results indicate that the
clustering performance of our algorithm on the Colon dataset
is better than the other three algorithms. The HMM algorithm
has the lowest clustering accuracy that leads to the worst
performance on the Colon dataset. For the Leukemia dataset,
the R value of ADPC-FLD is larger than the other three meth-
ods. The values of S for the HKAP-LLE, HMM and IG-SGA
algorithms are similar, and the difference range is between
0.001 and 0.003. The S value of ADPC-FLD is slightly
smaller than those of the other three methods, but its accuracy
is pretty good and reaches 0.9506. On the Prostate dataset, the
two indices of ADPC-FLD and IG-SGA are both 1, indicating
that the two algorithms are much suitable for the Prostate
dataset. More narrowly, it can be obviously observed from
Table 15 that the values of R for HKAP-LLE and HMM are
smaller than those of ADPC-FLD and IG-SGA, while the S
index of HMM is much smaller than those of the other three
algorithms on the Prostate dataset. In general, on the three
gene expression datasets, the HMM algorithm is inferior to
the other three algorithms, and the ADPC-FLD algorithm
performs the best results, which indicate that ADPC-FLD
is efficient on the three high-dimensional gene expression
datasets.

Table 16 shows the comparison results of the R, S and
AC indices for the six compared algorithms on the Colon
and Leukemia datasets. As shown in Table 16, on the Colon
dataset, the ADPC-FLD and HKAP-LLE algorithms perform
well and achieve the great values for all three indices. Then,
it can fully demonstrate the effectiveness of the two algo-
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TABLE 16. The testing accuracy of the six algorithms on the colon and
leukemia datasets.

rithms on the Colon dataset. The APCES, EGSG and RSM
algorithms have the similar values on R and S, but their values
are smaller than those of the ADPC-FLD and HKAP-LLE
algorithms. For the RF algorithm, the values of theR index are
the smallest, but the values of the S index are larger than those
of the APCES, EGSG and RSM algorithms. Under the AC
index, the RSM algorithm achieves the smallest value, indi-
cating that the effect is the worst. On the Leukemia dataset,
the R and AC values of all algorithms are higher than 0.9.
Among them, the RF algorithm has the largest R on the
Leukemia dataset, the ADPC-FLD algorithm is the second,
and the EGSG algorithm is the smallest. The AC value of
ADPC-FLD is slightly smaller than those of HKAP-LLE and
APCES, but larger than the other three methods. The S index
of the ADPC-FLD and HKAP-LLE algorithms are much
larger than the other four algorithms and reach above 0.95,
while the S value of the RF algorithm is the smallest and less
than 0.73. The above results and analysis illustrate that the
ADPC-FLD algorithm is efficient on the Leukemia dataset.
Therefore, the three evaluation indices efficiently show that
ADPC-FLD can perform the better clustering results on the
two gene expression datasets.

The final portion of this subsection denotes the clus-
tering accuracy of our ADPC-FLD algorithm using the
AC index, which is compared with eleven state-of-the-art
clustering algorithms on the four gene expression datasets
(SRBCT, Leukemia1, 9-Tumor and Prostate1), selected from
Table 14. The eleven compared algorithms proposed in
recent years include: (1) the HKAP-LLE algorithm [38],
(2)-(4) three low rank projection least square regression
(LPLSR) and subspace segmentation algorithms (LPLSR-2
and LPLSR-1) [56], (5)-(7) three subspace segmentation
algorithms (LatLRR, LRR, and LSR) [57]–[60], (8)-(9) two
non-negative matrix factorization-based algorithms (S-NMF
and C-NMF) [61], (10) the K -means algorithm [62], and (11)
the hierarchical clustering algorithm (HC) [63]. The values
of the relevant parameters in each algorithm are designed by
Salem et al. [51]. The two-dimensional decision graphs of
the ADPC-FLD algorithm on the four datasets is illustrated
in Fig. 18, and the clustering accuracies of the twelve algo-
rithms on the four datasets are shown in Table 17.

Fig. 18 shows the two-dimensional decision graphs of
the ADPC-FLD algorithm on the SRBCT, Leukemia1,
9-Tumor and Prostate1 datasets, where the color markers are
the selected cluster centers, and the dc value is optimized
by the proposed density estimation entropy. According to
Fig. 18, on the SRBCT, Leukemia1 and Prostate1 datasets,

FIGURE 18. The two-dimensional decision graphs of the ADPC-FLD
algorithm on the four gene datasets. (a) SRBCT (dc = 1.8273).
(b) Leukemia1 (dc = 2.0158). (c) 9-Tumor (dc = 0.8914).
(d) Prostate1 (dc = 0.3642).

TABLE 17. The AC of the twelve algorithms on the four gene datasets.

ADPC-FLD can select the appropriate cluster centers and
the accurate number of clusters. But as shown in Fig. 18(c),
it is difficult to determine the suitable cluster centers on
the 9-Tumor dataset. Table 17 shows the comparisons of
the AC values for the twelve algorithms on the four gene
expression datasets. As we can see from Table 17, the four
traditional clustering algorithms (S-NMF, C-NMF, K -means,
and HC) have the lower clustering accuracies and the poor
performance on the four datasets. The clustering accuracies
of the subspace clustering algorithms (LPLSR, LPLSR-2,
LPLSR-1, LatLRR, LRR, and LSR) are higher than those
of the four traditional clustering algorithms. The clustering
accuracies of LPLSR-1, LPLSR-2 and LPLSR are similar and
higher than the other three subspace clustering algorithms.
The ADPC-FLD and HKAP-LLE algorithms perform much
better in terms of clustering accuracy than the other ten
algorithms, especially the ADPC-FLD algorithm. Taking the
LPLSR algorithm as an example, the clustering accuracy of
the proposed algorithm on the SRBCT, Leukemia1, 9-Tumor
and Prostate1 datasets is increased by about 10%, 7%, 31%
and 8%, respectively, which fully indicates that our ADPC-
FLD method is superior to the other eleven methods on these
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datasets. Thus, the clustering results on the four gene datasets
illustrate that the proposed ADPC-FLD algorithm is more
valid and feasible than the other eleven algorithms. In sum-
mary, the ADPC-FLD algorithm is suitable for the high-
dimensional gene expression datasets and performs better
than the other recent clustering algorithms.

V. CONCLUSION
In order to solve the problems that the traditional DPC
algorithm is difficult to deal with the complex datasets,
the Euclidean distance only considers the spatial structure
of the sample and does not take into account the correlation
and the similarity between samples, and the manual setting of
parameters affects the objectivity of clustering results. On the
basis of the local structural characteristics of the data, this
paper proposes an ADPC method with Fisher linear discrim-
inant. The Pearson correlation coefficient is firstly introduced
as the weight, and then the kernel density estimation function
based on the weighted Euclidean distance is used to calculate
the local density between the samples. Then, the density esti-
mation entropy is presented to select the density estimation
parameters. An adaptive strategy of cluster center selection
is designed to construct a novel ADPC algorithm. Finally,
the Fisher linear discriminant method is employed to reduce
the dimensionality of the high-dimensional data, and then
an ADPC-FLD algorithm is developed. The experimental
results on synthetic datasets, standard UCI datasets and gene
expression datasets indicate that the presented ADPC-FLD
algorithm can obtain the more accurate cluster centers and
the higher clustering accuracy, which proves that our method
can effectively process the complex datasets.

REFERENCES
[1] Z. Chen, D. Chang, and Y. Zhao, ‘‘An automatic clustering algorithm based

on region segmentation,’’ IEEE Access, vol. 6, pp. 74247–74259, 2018.
[2] H. Wang and G. Liu, ‘‘Two-level-oriented selective clustering ensem-

ble based on hybrid multi-modal metrics,’’ IEEE Access, vol. 6,
pp. 64159–64168, 2018.

[3] J. Xie, W. Xie, H. Gao, X. Liu, and P. W. Grantd, ‘‘Robust clustering by
detecting density peaks and assigning points based on fuzzy weighted K -
nearest neighbors,’’ Inf. Sci. vol. 354, pp. 19–40, Aug. 2016.

[4] M.-S. Yang, S.-J. Chang-Chien, and Y. Nataliani, ‘‘A fully-unsupervised
possibilistic c-means clustering algorithm,’’ IEEE Access, vol. 6,
pp. 78308–78320, 2018.

[5] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of density
peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

[6] J. Gao, M. Kang, J. Tian, L. Wu, and M. Pecht, ‘‘Unsupervised locality-
preserving robust latent low-rank recovery-based subspace clustering for
fault diagnosis,’’ IEEE Access, vol. 6, pp. 52345–52354, 2018.

[7] M. Du, S. Ding, and Y. Xue, ‘‘A robust density peaks clustering algorithm
using fuzzy neighborhood,’’ Int. J. Mach. Learn. Cybern., vol. 9, no. 7,
pp. 1131–1140, 2018.

[8] R. Zhang, F. Nie, and X. Li, ‘‘Self-weighted spectral clustering with
parameter-free constraint,’’ Neurocomputing vol. 241, pp. 164–170,
Jun. 2017.

[9] H. Zhou, B. Xi, Y. Zhang, J. Li, and F. Zhang, ‘‘A graph clustering algo-
rithm using attraction-force similarity for community detection,’’ IEEE
Access, vol. 7, pp. 13683–13692, 2019.

[10] L. Yaohui, M. Zhengming, and Y. Fang, ‘‘Adaptive density peak clustering
based on K-nearest neighbors with aggregating strategy,’’ Knowl.-Based
Syst. vol. 133, pp. 208–220, Oct. 2017.

[11] S. A. Seyedi, A. Lotfi, P. Moradi, and N. N. Qader, ‘‘Dynamic graph-
based label propagation for density peaks clustering,’’ Expert Syst. Appl.,
vol. 115, pp. 314–328, Jan. 2019.

[12] H. Shao, P. Zhang, X. Chen, F. Li, and G. Du, ‘‘A hybrid and parameter-
free clustering algorithm for large data sets,’’ IEEE Access, vol. 7,
pp. 24806–24818, 2019.

[13] L. Zheng, Y. Qu, X. Qian, and G. Cheng, ‘‘A hierarchical co-clustering
approach for entity exploration over Linked Data,’’ Knowl.-Based Syst.,
vol. 141, pp. 200–210, Feb. 2018.

[14] F. Gullo, G. Ponti, A. Tagarelli, and S. Greco, ‘‘An information-theoretic
approach to hierarchical clustering of uncertain data,’’ Inf. Sci., vol. 402,
pp. 199–215, Sep. 2017.

[15] T. Li, L. Zhang, W. Lu, H. Hou, X. Liu, W. Pedrycz, and C. Zhong, ‘‘Inter-
val kernel fuzzy c-means clustering of incomplete data,’’ Neurocomputing
vol. 237, pp. 316–331, May 2017.

[16] A.-J. Gallego, J. Calvo-Zaragoza, J. J. Valero-Mas, and J. R. Rico-Juan,
‘‘Clustering-based k-nearest neighbor classification for large-scale data
with neural codes representation,’’ Pattern Recognit., vol. 74, pp. 531–543,
Feb. 2018.

[17] W. Ding and P. X.-K. Song, ‘‘EM algorithm in Gaussian copula with
missing data,’’ Comput. Statist. Data Anal., vol. 101, pp. 1–11, Sep. 2016.

[18] J. Fan and T. W. S. Chow, ‘‘Sparse subspace clustering for data with
missing entries and high-rank matrix completion,’’ Neural Netw. vol. 93,
pp. 36–44, Sep. 2017.

[19] X. Zhao, J. Liang, and C. Dang, ‘‘Clustering ensemble selection for cate-
gorical data based on internal validity indices,’’ Pattern Recognit., vol. 69,
pp. 150–168, Sep. 2017.

[20] R. Bie, R. Mehmood, S. Ruan, Y. Sun, and H. Dawood, ‘‘Adaptive fuzzy
clustering by fast search and find of density peaks,’’ Pers. Ubiquitous
Comput. vol. 20, no. 5, pp. 785–793, Oct. 2016.

[21] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, ‘‘OPTICS:
Ordering points to identify the clustering structure,’’ ACM Sigmod Rec.,
vol. 28, no. 2, pp. 49–60, Jun. 1999.

[22] L. Bai, X. Cheng, J. Liang, H. Shen, and Y. Guo, ‘‘Fast density clustering
strategies based on the k-means algorithm,’’ Pattern Recognit., vol. 71,
pp. 375–386, Nov. 2017.

[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, vol. 96, 1996, pp. 226–231.

[24] Z. Liang and P. Chen, ‘‘Delta-density based clustering with a divide-
and-conquer strategy: 3DC clustering,’’ Pattern Recognit. Lett., vol. 73,
pp. 52–59, Apr. 2016.

[25] M. Du, S. Ding, and Y. Xue, ‘‘A novel density peaks clustering algorithm
for mixed data,’’ Pattern Recognit. Lett. vol. 97, pp. 46–53, Oct. 2017.

[26] S. Ding, M. Du, T. Sun, X. Xu, and Y. Xue, ‘‘An entropy-based density
peaks clustering algorithm for mixed type data employing fuzzy neighbor-
hood,’’ Knowl.-Based Syst., vol. 133, pp. 294–313, Oct. 2017.

[27] M. Du, S. Ding, and H. Jia, ‘‘Study on density peaks clustering based on k-
nearest neighbors and principal component analysis,’’ Knowl.-Based Syst.,
vol. 99, pp. 135–145, May 2016.

[28] X. Xu, S. Ding, and Z. Shi, ‘‘An improved density peaks clustering
algorithm with fast finding cluster centers,’’ Knowl.-Based Syst., vol. 158,
pp. 65–74, Oct. 2018.

[29] J. Jiang, Y. Chen, D. Hao, and K. Li, ‘‘DPC-LG: Density peaks clustering
based on logistic distribution and gravitation,’’ Phys. A, Stat. Mech. Appl.,
vol. 514, pp. 25–35, Jan. 2019.

[30] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, ‘‘Kernel density estimation
via diffusion,’’ Ann. Statist., vol. 38, no. 5, pp. 2916–2957, 2010.

[31] H. Zhou, Z. Deng, Y. Xia, and M. Fu, ‘‘A new sampling method in particle
filter based on Pearson correlation coefficient,’’Neurocomputing, vol. 216,
pp. 208–215, Dec. 2016.

[32] L. Sun, X.-Y. Zhang, Y.-H. Qian, J.-C. Xu, S.-G. Zhang, and Y. Tian,
‘‘Joint neighborhood entropy-based gene selection method with Fisher
score for tumor classification,’’ Appl. Intell., vol. 49, no. 4, pp. 1245–1259,
Apr. 2019.

[33] R. A. Fisher, ‘‘The use of multiple measurements in taxonomic problems,’’
Ann. Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[34] W. Li, B. Liao, W. Zhu, M. Chen, Z. Li, X. Wei, L. Peng, G. Huang, L. Cai,
and H. Chen, ‘‘Fisher discrimination regularized robust coding based on a
local center for tumor classification,’’ Sci. Rep., vol. 8, no. 1, Jun. 2018,
Art. no. 9152.

[35] N. X. Vinh, J. Epps, and J. Bailey, ‘‘Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction
for chance,’’ J. Mach. Learn. Res., vol. 11, pp. 2837–2854, Jan. 2010.

72954 VOLUME 7, 2019



L. Sun et al.: Adaptive Density Peaks Clustering Method With Fisher Linear Discriminant

[36] E. B. Fowlkes and C. L. Mallows, ‘‘A method for comparing two hierar-
chical clusterings,’’ J. Amer. Statist. Assoc., vol. 78, no. 383, pp. 553–569,
1983.

[37] D. Cai, X. He, X. Wu, and J. Han, ‘‘Non-negative matrix factorization
on manifold,’’ in Proc. IEEE 8th Int. Conf. Data Mining, Dec. 2008,
pp. 63–72.

[38] L. Sun, R. Liu, J. Xu, S. Zhang, and Y. Tian, ‘‘An affinity propagation
clustering method using hybrid Kernel function with LLE,’’ IEEE Access,
vol. 6, pp. 68892–68909, 2018.

[39] R. Liu, H. Wang, and X. Yu, ‘‘Shared-nearest-neighbor-based clustering
by fast search and find of density peaks,’’ Inf. Sci. vol. 450, pp. 200–226,
Jun. 2018.

[40] D. Arthur and S. Vassilvitskii, ‘‘K-means++: The advantages of careful
seeding,’’ in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms,
Philadelphia, PA, USA: SIAM, Jan. 2007, pp. 1027–1035.

[41] F. Murtagh and P. Contreras, ‘‘Algorithms for hierarchical clustering:
An overview,’’ Wiley Interdiscipl. Rev. Data Mining Knowl. Discovery,
vol. 2, no. 1, pp. 86–97, 2012.

[42] L. Wang, Q. Ji, and X. Han, ‘‘Adaptive semi-supervised affinity propa-
gation clustering algorithm based on structural similarity,’’ Tehnicki Vjes-
nik/Tech. Gazette, vol. 23, no. 2, pp. 425–435, 2016.

[43] W. Limin, H. Xuming, and J. Qiang, ‘‘Semi-supervised affinity prop-
agation clustering algorithm based on fireworks explosion optimiza-
tion,’’ in Proc. IEEE Int. Conf. Manage. E-Commerce, E-Government,
Oct./Nov. 2015, pp. 273–279.

[44] B. J. Frey and D. Dueck, ‘‘Clustering by passing messages between data
points,’’ Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007.

[45] C. Zhu and Z. Wang, ‘‘Entropy-based matrix learning machine for imbal-
anced data sets,’’ Pattern Recognit. Lett., vol. 88, pp. 72–80, Mar. 2017.

[46] D. Q. Liu, Z. J. Chen, Y. Xu, and F. T. Li, ‘‘Hybrid SVM algorithm oriented
to classifying imbalanced datasets,’’ Chin. Appl. Res. Comput., vol. 35,
no. 4, pp. 1023–1027, 2018.

[47] P. Branco, L. Torgo, and R. P. Ribeiro, ‘‘A survey of predictive modeling
on imbalanced domains,’’ ACM Comput. Surv., vol. 49, no. 2, Nov. 2016,
Art. no. 31.

[48] H. He, Y. Bai, E. A. Garcia, and S. Li, ‘‘ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,’’ inProc. IEEE Int. Joint Conf.
Neural Netw. Jun. 2008, pp. 1322–1328.

[49] K. Veropoulos, C. Campbell, and N. Cristianini, ‘‘Controlling the sensi-
tivity of support vector machines,’’ in Proc. Int. Joint Conf. Artif. Intell.,
Jul. 1999, pp. 55–60.

[50] T. Nguyen, A. Khosravi, D. Creighton, and S. Nahavandi, ‘‘HiddenMarkov
models for cancer classification using gene expression profiles,’’ Inf. Sci.,
vol. 316, pp. 293–307, Sep. 2015.

[51] H. Salem, G. Attiya, and N. El-Fishawy, ‘‘Classification of human can-
cer diseases by gene expression profiles,’’ Appl. Soft Comput., vol. 50,
pp. 124–134, Jan. 2017.

[52] J. Meng, H. Hao, and Y. Luan, ‘‘Classifier ensemble selection based on
affinity propagation clustering,’’ J. Biomed. Informat., vol. 60, Apr. 2016,
pp. 234–242.

[53] H. W. Liu, L. Liu, and H. Zhang, ‘‘Ensemble gene selection by grouping
for microarray data classification,’’ J. Biomed. Inform., vol. 43, no. 1,
pp. 81–87, Feb. 2010.

[54] T. K. Ho, ‘‘The random subspace method for constructing decision
forests,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8,
pp. 832–844, Aug. 1998.

[55] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[56] X. Chen, B. Xiao, and L. Lin, ‘‘Low rank projection least square regression
subspace segmentation for gene expression data,’’ Pattern Recognit. Artif.
Intell., vol. 30, no. 2, pp. 106–116, Feb. 2017.

[57] G. Liu, Z. Lin, and Y. Yu, ‘‘Robust subspace segmentation by low-rank
representation,’’ in Proc. Int. Conf. Mach. Learn. Jun. 2010, pp. 663–670.

[58] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, ‘‘Robust recovery
of subspace structures by low-rank representation,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[59] C. Y. Lu, H. Min, Z.-Q. Zhao, L. Zhu, D.-S. Huang, and S. Yan, ’’Robust
and efficient subspace segmentation via least squares regression,’’ in
Proc. Eur. Conf. Comput. Vis., Florence, Italy: Springer-Verlag, Oct. 2012,
pp. 347–360.

[60] G. Liu and S. Yan, ‘‘Latent Low-Rank Representation for subspace seg-
mentation and feature extraction,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2012, pp. 1615–1622.

[61] C. Ding, T. Li, and M. I. Jordan, ‘‘Convex and semi-nonnegative matrix
factorizations,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1,
pp. 45–55, Jan. 2010.

[62] J. A. Hartigan and M. A. Wong, ‘‘A K-means clustering algorithm,’’ Appl.
Stat., vol. 28, no. 1, pp. 100–108, 1979.

[63] F. Nielsen, ‘‘Hierarchical clustering,’’ Revista Mexicana De Astronomía Y
Astrofísica, vol. 43, no. 2. Universidad Nacional Autónoma De México,
Instituto De Astronomía, Mexico City, Mexico, 1999, pp. 59–67.

LIN SUN received the M.S. degree in computer
science and technology from Henan Normal Uni-
versity, in 2007, and the Ph.D. degree in pattern
recognition and intelligent systems from the Bei-
jing University of Technology, in 2015. He became
a Postdoctoral Researcher with the Medical and
Biological Engineering Research Group, Henan
Normal University, China, in 2016, where he is
currently an Associate Professor with the College
of Computer and Information Engineering. He has

received funding from ten grants from the National Natural Science Foun-
dation of China, the China Postdoctoral Science Foundation, the Plan for
Scientific Innovation Talent of Henan Province, and the Key Scientific and
Technological Project of Henan Province. He has authored or coauthored
for more than 70 articles. His current research interests include granular
computing, cluster analysis, big data mining, and intelligent information pro-
cessing. He has received the title of Henan’s Distinguished Young Scholars
for Science and Technology Innovation Talents. He has served as a Reviewer
in several prestigious peer-reviewed international journals.

RUONAN LIU received the B.Sc. degree in com-
puter science and technology from Henan Nor-
mal University, in 2016, where she is currently
pursuing the master’s degree in computer science
and technology with the College of Computer
and Information Engineering. Her current research
interests include granular computing, cluster anal-
ysis, and data mining.

JIUCHENG XU received the M.S. and Ph.D.
degrees in computer science and technology from
Xi’an Jiaotong University, in 1995 and 2004,
respectively. He is currently a Professor with the
College of Computer and Information Engineer-
ing, Henan Normal University. He has received
funding from grants from the National Natural
Science Foundation of China, the Key Scientific
Research Project of Higher Education of Henan
Province, and the Key Scientific and Technolog-

ical Project of Henan Province. He has published more than 100 articles.
His research interests include granular computing, data mining, intelligent
information processing, and pattern recognition. He has received the title
of Henan’s Distinguished High Profile Professional. He has served as a
Reviewer in several prestigious peer-reviewed international journals.

SHIGUANG ZHANG received the M.S. degree
in mathematics from Guangxi University for
Nationalities, in 2007, and the Ph.D. degree in
applied mathematics from Hebei Normal Univer-
sity, in 2014. He is currently pursuing the Ph.D.
degree with the School of Computer Science and
Technology, Tianjin University, Tianjin, China.
He is also with the College of Computer and
Information Engineering, Henan Normal Univer-
sity, China. He has authored more than 10 peer-

reviewed papers. His research interests include knowledge discovery and
machine learning. He has served as a Reviewer in several prestigious peer-
reviewed international journals.

VOLUME 7, 2019 72955


	INTRODUCTION
	RELATED WORK
	ADAPTIVE DENSITY PEAKS CLUSTERING ALGORITHM WITH FISHER LINEAR DISCRIMINANT
	LOCAL DENSITY BASED ON KERNEL DENSITY ESTIMATION FUNCTION
	DENSITY ESTIMATION ENTROPY
	ADAPTIVE STRATEGY OF CLUSTER CENTER SELECTION
	DESCRIPTION OF ADPC-FLD ALGORITHM

	EXPERIMENTAL RESULTS AND ANALYSIS
	EXPERIMENT PREPARATION
	COMPARISONS OF CLUSTERING RESULTS ON SYNTHETIC DATASETS
	COMPARISONS OF CLUSTERING RESULTS ON STANDARD UCI DATASETS
	COMPARISONS OF TESTING ACCURACY ON GENE EXPRESSION DATASETS

	CONCLUSION
	REFERENCES
	Biographies
	LIN SUN
	RUONAN LIU
	JIUCHENG XU
	SHIGUANG ZHANG


