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ABSTRACT Scene classification and semantic segmentation are two important research directions in
computer vision. They are widely used in the research of automatic driving and human–computer interaction.
The purpose of the scene classification is to use the image classification to determine the category of the scene
in an image by analyzing the background and the target object, while semantic segmentation aims to classify
the image at the pixel level and mark the position and semantic information of the scene unit. In this paper,
we aimed to train the semantic segmentation neural network in different scenarios to obtain the models with
the same number of scene categories, which they are used to process the images. During the process of the
actual test, the semantic segmentation dataset was firstly divided into three categories based on the scene
classification algorithm. Then the semantic segmentation neural network is trained under three scenarios, and
three semantic segmentation network models are obtained accordingly. To test the property of our methods,
the semantic segmentation models we got were selected to treat other pictures, and the results obtained
from the performance of scene-aware semantic segmentation were much better than semantic segmentation
without considering categories. Our study provided an essential improvement of semantic segmentation by
adding category information into consideration, which will be helpful to obtain more precise models for
further picture analysis.

INDEX TERMS Semantic segmentation, scene classification, convolutional neural network.

I. INTRODUCTION
Scene classification and semantic segmentation are two
essential conceptions in computer vision, for they are widely
used in the research of automatic driving, human-computer
interaction and augmented reality. The purpose of scene
classification is to use the image classification to deter-
mine the category of the scene in an image by analyzing
the background and the target object. The goal of semantic
segmentation is to classify images at the pixel level, and to
mark the position and semantic information of the scene unit.

Semantic segmentation involves two aspects: segmentation
and classification. In order to determine the corresponding
category of a pixel, we use not only the information of
the pixel near the point, i.e the local information, but also
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the information of the pixel far away from the distance,
i.e the global information, should be considered.

Many of the current semantic segmentation methods are
developed on the basis of the Fully Convolutional Net-
work (FCN), which usually takes the semantic information of
long distance into consideration, leading to the mismatches in
the analysis results. [30]. However, if a priori can be added
to the semantic segmentation, the errors developed from
FCN could be greatly reduced, and the accuracy could be
improved [18]. Thus, many studies of existing semantic seg-
mentation expanded the receptive field with the convolution
kernel and feature fusion, which aimed to let the convolution
kernel in the network structure get the semantic informa-
tion of the image from a distance [17], [26]. During this
process, once the scene category information is determined,
more priors of the ‘‘farthest distance’’ (ie the whole picture)
semantic information that can be used may also increase
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and the accuracy may also be improved. If training multiple
scenarios separately without changing the network structure,
the results of all the scenarios can only achieve this level,
however, if adding the scene category information, the results
of the accuracy will be definitely improved. Moreover, this
adding information will also possess instructive significance
for the design of the network structure and the training of the
network model.

In this paper, we managed to improve the scene-aware
semantic segmentation methods by combining scene cate-
gory information into semantic segmentation. Specifically,
we trained the semantic segmentation neural network in dif-
ferent scenarios to obtain the semantic segmentation neural
network model with the same number of scene categories.
In the actual test, the images were classified by scene classi-
fication, and then processed with the semantic segmentation
neural network model of the corresponding scene category.
Moreover, we also explored a main question whether the use
of scene category information could improve the accuracy of
semantic segmentation by setting control experiments. For
the improvement of accuracy of image analysis, our results
can be used in related researches, such as automatic driving,
human-computer interaction, and augmented reality.

II. RELATED
A. SEMANTIC SEGMENTATION ALGORITHM
There are two important aims of the researches of semantic
segmentation algorithms: firstly, to continuously improve the
ability of abstracting features from neural networks, includ-
ing the expansion of receptive fields and the fusion of multi-
ple ranges of features, such as PSPNet [30], DeepLab series
algorithms [1]; secondly, to try to restore the reduced fea-
ture map to a larger spatial resolution by different methods.
Many algorithms use feature fusion to merge the shallower
feature maps during recovery, such as FCN [14], U-Net [24],
DeconvNet [21], DeepLab v3+ [3], because the lower level
feature map has more spatial resolution and contains more
position information, which can make the segmentation more
accurate [13]. However, recent artificial intelligence tech-
nologies have many limitations [16], [19], for example,
the classification of FCN is too rough. The main reason is
that when the resolution of feature map is enlarged by linear
interpolation, the magnification is too large, and even if a
skip structure is used, the accuracy will only be increased
limitedly, and as mentioned above, FCN does not combine
information over long distances, which can lead to some
relationship mismatch errors.

Compared with FCN, DeepLab v2 algorithm [2] makes
better use of remote semantic information by expanding the
receptive field and feature fusion, which greatly improves
the accuracy of semantic segmentation. These improvements
make the network structure more complex, thus, compared
with FCN, more computation is required in both training
and testing. Besides, DeepLab v3+ [3] is the latest semantic
segmentation neural network structure of DeepLab series.
The main feature of DeepLab v3+ is to propose an Encoder-

Decoder structure to implement semantic segmentation algo-
rithm. Regarding to the inconsistency of categories, DeepLab
v2 has been greatly improved by expanding convolution
and space pyramid pooling, while DeepLab v3+ has been
improved by spatial pyramid pooling, whichmakes the results
are slightly better than those of DeepLab v2. The obvious
alternation in DeepLab v3+ is that the boundaries become
more precise, which attributed to the fact that the decoder
part fuses the shallow feature maps and scales up on the
featuremap in two steps instead of scaling to the ultimate goal
once directly like DeepLab v2. As a result, the results of the
semantic segmentation algorithm have been greatly improved
by using the methods of expanding convolution and spatial
pyramid pooling to merge the remote information, reveal-
ing the essentiality of long-distance semantic information.
As a kind of global information, scene category information
is regarded as a kind of special long-distance information,
which is considered in semantic segmentation, and receive
a positive result.

B. SCENE CLASSIFICATION ALGORITHM
Traditional artificial design features include underlying fea-
tures extracted based on pixel points, for instance GIST
features [22], [23], SIFT features [15], HOG [5] features,
and advanced features which are similar with those including
Object banks, and features [10], such as Latent pyramidal
regions [11], [25], Bag of parts features [8] etc. containing
more semantics. After the emergence of convolutional neural
networks, the potential features of images are extracted well
when dealing with large-scale image data sets and widely
used in scene classification. Traditional classifiers in machine
learning research include Support Vector Machine (SVM),
Bayesian classifier, K-nearest neighbor classifier, and BP
neural network classifier. With the rapid development of deep
learning, convolutional neural network has become the most
commonly used classification method. After AlexNet [9]
achieving great success in image classification, deep learning
is now awidely usedmethod in scene classification, andmore
valuable methods have been proposed, such as VGGNet [27],
Inception Network [28], [29] and ResNet [7].

C. SEMANTIC SEGMENTATION DATA SET
Common scene analysis data sets include LMO [12],
PASCALVOC and PASCAL context [6], [20], Cityscapes [4]
and ADE20K [31], among which ADE20K is the latest data
set. Compared with the previous data sets, both scene cate-
gory and object category are more enormous, which become
the most used data sets in the recent semantic segmentation
research.

III. METHOD OVERVIEW
A. SCENE-AWARE SEMANTIC SEGMENTATION
ALGORITHM DESIGN
In this paper, we used the flow chart shown in Figure 1
to show the scene-aware semantic segmentation algorithm.
Specifically, there are three steps:
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FIGURE 1. Flowchart of scene-aware semantic segmentation algorithm.

1) Classification neural network learning phase: In order
to classify the scenes of the pictures in the test set, it is
necessary to train the convolutional neural network of the
scene classification, in which the images are input and the
scenes are labeled.

2) Semantic segmentation neural network learning phase:
Semantic segmentation neural network is trained in each
scene category, and a priori information in different scenarios
is learned to improve the final result. The picture is input and
the semantic segmentation result is labeled.

3) Test phase: The final result is obtained by processing
the test set using the scene classification neural network and
semantic segmentation neural network trained in step 1 and
step 2. In the flow chart, the scene classification neural net-
work and the semantic segmentation nerve are distinguished
by different colors. After performing the test phase, we clas-
sify the pictures to obtain the number of scene category:
y, and then select the corresponding segmentation network for
further processing to obtain the final semantic segmentation
result.

The results of experiment, which use the above-mentioned
sub-scenario training semantic segmentation neural network
combined with the scene classification test method, show
that when training only in a single category of data set,
the accuracy rate of the experimental semantic segmentation
is dropped compared to the entire training set. Further anal-
ysis of the experimental results revealed that it is due to the

FIGURE 2. Schematic diagram of adding the training phase after
pre-training.

reduction of target resolution accuracy, which rarely occurs
in the scene, when considering that the time cost of every
single iteration during training is roughly the same. For a
more reasonable comparison, the experimental comparison is
based on the equalization of the total time cost (the number
of iterations) of the semantic segmentation training. At the
same time, in order to avoid the problem of the accuracy of the
training in the scene, the pre-training step needs to be added,
as shown in Figure 2.

Trying to use the above experimental scheme incorporate
scene category information (section III-B) into the semantic
segmentation algorithm, there are two notable factors.

Firstly, under such experimental settings, how to com-
pare with the control semantic segmentation algorithm
(section III-C) (training on the entire training set) is more
reasonable. Considering that in the absence of over-fitting,
the general training time is more costly and the result is better.
In this paper, we use the same semantic separation training,
compare the pixel accuracy and average cross-comparison
ratio of the test results. Secondly, in this experimental
scheme, the semantic segmentation algorithm between our
experiment and the control group are different in terms of
the complexity of the algorithm flow and the number of
models. Even if the results of the former are better, they are
not determined because of the addition of scene category
information. In order to do further explore, we design another
set of controlled trials for comparison, and find it mainly
affects by the scenario class information rather than algorithm
flow changes, which is called the algorithm flow control
experiment (section III-D). After that, we mainly detect the
effect of scene classification accuracy on scene-aware seman-
tic segmentation algorithm (section III-E).

B. SCENE CLASSIFICATION DESIGN
In order to classify the scenes of the pictures in the test
set, we use the deep convolutional neural network to imple-
ment the scene classification algorithm, and select the more
commonly used VGGNet [27] network structure. The algo-
rithm will be trained on the semantic segmentation dataset
to determine the category of the scene in which the image
to be processed belongs to. Since the subsequent algorithm
requires to train the semantic segmentation neural network
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FIGURE 3. Pictures of three different scenes.

under each scene, the division of the scene category should
be reasonably selected, that is, all the pictures are divided into
several categories. Firstly, the scene category should not be
divided too much, for the following reasons:

1) The follow-up algorithm should train the semantic seg-
mentation neural network in each scene. If there are too many
scene categories, the workload is too large;

2) The total number of training pictures is determined. The
more categories, the fewer the training pictures under each
scene on average, which may lead to over-fitting;

3)When the scene is divided intomany parts, the difference
of images between different scenes is small, and the difficulty
of scene classification increases, which is not conducive to the
subsequent experiments.

After analyzing, our work classifies all the pictures into
three categories according to the scene: indoor scene pictures,
outdoor natural scene pictures and outdoor artificial scene
pictures which were shown in Figure 3.
Dividing pictures into these categories is mainly based on

the following considerations:
1) The total number of categories is three, which is not

large, and there will be no disadvantages caused by too many
classifications;

2) The differences between the pictures of the same cat-
egory are small, and the pictures of different categories are
very different, thus, the image classification will reach a high
accuracy rate;

3) The types of objects in different categories of pictures
vary greatly. For example, beds and carts do not appear in out-
door natural scenes, mountains and airplanes do not appear in
indoor scenes, etc. These differences make the scene category
containing more information and may play a greater role in
the semantic segmentation algorithm.

C. SEMANTIC SEGMENTATION ALGORITHM
COMPARISON DESIGN
For the scene-dependent semantic segmentation algorithm,
we chose the deep convolutional neural network to imple-
ment the semantic segmentation algorithm, and select the two
network structures DeepStudio v2 [2] and DeepLab v3+ [3]
to avoid accidental results that lead to the wrong conclusion.
We also set up a group of contrast experiment in the following
experiments.

In order to compare whether the addition of scene category
information improves the results of semantic segmentation,
a set of semantic segmentation experiments needs to be set
for comparison. For the semantic segmentation algorithm is

implemented in this study, which is trained on the whole
data set without considering the scene category, the semantic
segmentation model will be used to compare with the fol-
lowing experiments. The convolutional neural network can
efficiently extract potential features in the image through the
continuous stacking of multiple network layers. The feature
map is transmitted in the form of a three-dimensional matrix
from the front to the back in the neural network. In order to
continuously extractmore abstract and advanced information,
the width and height of the feature map are often reduced.
Semantic segmentation requires the annotation of all the
pixels, and the reduced feature map needs to be restored to
larger resolution.

The existing semantic segmentation algorithms basically
use the convolutional neural network to extract the feature
map with reduced spatial resolution, and then restore the
feature map to a larger spatial resolution by means of decon-
volution and bilinear interpolation, and finally get the result
of semantic segmentation. Most of the results do not reach
the size of the original image, and need to be enlarged to get
the final result.

To train semantic segmentation using the training set,
we need to label the dataset carefully in advance, and mark
the category of each pixel in each image. The categories are
indicated by numbers, and generally have a special number
such as 0 or 255, whichmeans that the pixel is ignored and can
be ignored during training, testing, and evaluating. During
training, it is necessary to calculate the differences between
the output of the neural network and the actual annotation,
then to adjust the weight of the neural network model accord-
ing to the differences. By using the adjusted model to carry
out the next training and cycle until the differences between
the output of the neural network and the actual results is small,
then the training can be ended.

D. CONTROL EXPERIMENT DESIGN
In the control experiment, the algorithm flow is similar to the
scene-aware semantic segmentation algorithm experiment.
We divide the pictures into three categories and train each
of them to obtain a semantic segmentation neural network
model. In test stage we first determine the category, then
select the corresponding model. Instead of classifying cat-
egories based on the scene category, we select the picture
randomly. The proportion of images in different categories
is still consistent with the previous ones. The flow chart of
the training is shown in Figure 4. The semantic segmentation
models in different categories are distinguished by different
colors. The flow chart of the test is shown in Figure 5.
Using the algorithm flow similar to Figure 1. In addition

to the image classification method is not in accordance with
the scene category, the experiment controls other variables
and the scene-aware semantic segmentation experiment is the
same. The specific settings are as follows:

1) Pre-processing the training set;
2) The DeepLab v3+ network model is also used during

training;
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FIGURE 4. Schematic diagram of the algorithm flow control experiment
training stage.

FIGURE 5. Schematic diagram of the algorithm flow control experiment
test phase.

FIGURE 6. Scene-aware semantic segmentation algorithm test phase
process decomposition.

3) The total number of training iterations is 480K, and
the two distribution modes given in section III-C are also
allocated according to the proportion of the picture and the
average distribution.

E. DESIGN OF THE METHOD FOR EVALUATING THE
IMPACT OF THE ACCURACY OF THE SCENE
CLASSIFICATION ALGORITHM ON THE RESULTS
This section mainly studies the impact of the accuracy of
scene classification on the scene-aware semantic segmenta-
tion algorithm. As shown in Figure 6, the algorithm can be
divided into scene classification stage and semantic segmen-
tation stage while testing on the test set and in current section,
the scene classification stage was the emphases. The effect of
the accuracy of the scene classification on the final result is
explored by adjusting the results of the scene classification.

IV. RESULTS
A. EVALUATION CRITERIA
In order to evaluate the accuracy of the scene classification
algorithm, we select accuracy as the evaluation standard, and
set the total number of pictures as m, while Q is set as the
prediction result of all pictures. Qij indicates the number of
pictures with real category i and prediction category j, then:

accuracy =

∑
i Qij
m

(1)

In this experiment, m is 1611, the value of the i and j is
indoor scene, outdoor natural scene, outdoor artificial scene.

We also use VGGNet as the network structure for scene
classification. The final full connection layer and output num-
ber of the network are modified according to the number of
categories.

According to the above implementation details and eval-
uation criteria, our work carries out an experiment on the
ADE20K semantic segmentation dataset. The experimental
results are as follows:

1) 16326 training pictures, 1611 test pictures, 3 category,
accuracy rate is 96.46%;

2) Use theVGGNetmodel obtained to classify pictures that
are not labeled in the training set, and then be trained. There
are 20210 training pictures, 1611 test pictures and.3 cate-
gories,Accuracy rate is 96.90

Among the 20210 training pictures, there are 10279 for
indoor scene pictures, 2144 for outdoor natural scene pic-
tures and 7757 for outdoor artificial scene pictures. The test
set was classified using the 2) trained VGGNet From the
experimental results, the accuracy of the scene classification
is still relatively high, which indicates that there will be little
influence in the subsequent experiments.

B. SEMANTIC SEGMENTATION ALGORITHM
COMPARISON EXPERIMENTAL RESULTS
We use the ADE20K data set as the data set of the semantic
segmentation experiment part. The training data set has all
20210 pictures, and the test data contains 2000 pictures. Each
picture has a corresponding label, and the label data is a
single-channel image that has the same size as the original
image. The value on the image is the category label of the
pixel in the corresponding original image, and the category is
represented by a number. There are 150 types of target objects
in the ADE20K dataset, numbered from 1 to 150, and points
marked 0 are ignored.

The preparation of the training data is mainly the variation
of the annotation. Most of the datasets are labeled from 0, and
255 is used as the annotation of the ignored pixels. In order
to be consistent with other datasets, the preprocessing is done
in the experiment.

After pre-processing the experimental data according to the
above method, the Deeplab v2 network structure was used to
train on the data set, and the test results of the model on the
test set were evaluated with Mean IoU and Pixel Accuracy
respectively.
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FIGURE 7. Semantic segmentation algorithm experimental test results -
DeepLab v2.

FIGURE 8. Semantic segmentation algorithm experimental test results -
DeepLab v3+.

The red line in Figure 7 is the result of a test using the FCN
model as the baseline published by the ADE20K Dataset.
We can find that when the number of training iterations
exceeds 20K, the result of DeepLab v2 is significantly better
than FCN.

According to the same pre-processing, we also use the
Deeplab v3+ network structure to train the data set. The
results on the test set are shown in Figure 8.

Compared with DeepLab v2, DeepLab v3+ requires more
resources during training. Due to equipment limitations,

FIGURE 9. Comparison of semantic segmentation effects of different
network structures.

the number of pictures input in one iteration is less than
DeepLab v2 when training DeepLab v3+, so more iterations
are needed. From the results, after a certain training stage,
the results of DeepLab v3+ are much better than FCN and
DeepLab v2.

In order to make the comparison more intuitively,
we selects several pictures from the test set, processes them
with different semantic segmentation algorithms, and visu-
alizes the category numbers with different colors. The com-
parison results are shown in Figure 9. The first column is
the original image, the second column is the image after
the visualization, and each column is the result of different
semantic segmentation algorithms. Each row represents the
same graph. For the convenience of analysis, the following
will be called Picture 1, Picture 2, and Picture 3 from top to
bottom.

From the Figure 9 we find that in the results obtained by
the FCN, there are some inconsistent results in the continuous
area. For example, there is incorrect color appears on the door
of the Picture1, which also happens on the parts of the yellow
frame in the Figure1 and Picture2. It is probably that we don’t
take the semantic information of the far range (a small pixel
that was misjudged does not take into account points outside
this local area) into account in the feature extraction phase.

C. SCENE-AWARE SEMANTIC SEGMENTATION
ALGORITHM EXPERIMENTAL RESULTS
This experiment is also carried out on the ADE20K dataset.
The preparation of the experimental data mainly involves
two aspects. On the one hand, this experiment divides the
training set into three parts according to the scene, and the
classification standard according to the results of the clas-
sification algorithm(section III-B). There are 10279 pictures
of indoor scene, 2144 pictures of outdoor natural scene and
7757 pictures of outdoor artificial scene. On the other hand,
similar to the section IV-B, the labels are also processed in
this experiment as we have mentioned above.

The results of this experiment were compared with the
experimental results of the semantic segmentation algorithm
(section IV-B) to analyze whether the addition of scene cat-
egory information can improve the results of semantic seg-
mentation. In order to make the comparison more reasonable,
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the experimental comparison is based on the equalization
of the total time cost of the semantic segmentation training.
Considering that the same network structure is used to train
on the same data set on the same device, the time cost of
a single iteration is roughly the same, and the experimental
comparison will be based on the same semantic iteration.

We use the network structure of DeepLab v2 and DeepLab
v3+ which are modified slightly at the output layers, as in
the experiments performed while implementing the semantic
segmentation algorithm.

The number of training iterations for pre-training is also
counted in the total number of times. There are three scenarios
in total. The number of pre-trainings is one-fourth of the total
for simplicity. There are two ways to allocate time in three
scenarios: average allocation and distribution according to the
training picture proportion. The training scenes pictures of
the three scenes are 10279 indoor scene pictures, 2144 out-
door natural scene pictures and 7757 outdoor artificial scene
pictures, the ratio is about 5:1:4.

The essential reason why we want to allocate the training
time according to the proportion of the picture is that the
pictures proportions in the three scenes are too different. If the
distribution is average simply, the semantic segmentation net-
workmodel may be over-fitting in the scene with few pictures
with the increase of training time. However, the semantic
segmentation model with a lot of pictures is still in an under-
fitting state.

Taken the number of iterations as 40K as an example:
in the first scheme, 10K pre-training and 10K in three sce-
narios, which means that in order to obtain the semantic
segmentation model of the indoor scene, the selected network
model is trained and iterated 10K times on all the training
images firstly, and then trained and iterated 10K times on
the indoor training images. The other two scenes are similar:
in the second scheme, pre-training 10K times, indoor scene
model allocation 15K times; outdoor nature scene is allocated
3K times, and the outdoor artificial scene is allocated 12K
times.

In the end, the two schemes get three semantic segmenta-
tion neural networkmodels, corresponding to three scenarios.
The test is still using the method shown in Figure 1. Firstly,
we use the scene classification algorithm to decide which
model to use, and secondly we use a specific model for
semantic segmentation.

We use DeepLab v2 network structure in above compar-
ative experimental scheme, and carry out experiments under
the condition that the total training amount is 40K, 80K, 160K
iterations. The test results are shown in Figure 10.
The scene-aware semantic segmentation of the two distri-

bution methods is better than that of the control group, and
the experimental group that allocates the training time pro-
portionally is better than the average distribution result. We
conduct the experiment using DeepLabv3+ in the same com-
parative experimental scheme with a total training of 160K,
320K, and 480K iterations. The results on the test set are
shown in Figure 11.

FIGURE 10. Scene-aware semantic segmentation test results -
DeepLab v2.

FIGURE 11. Scene-aware semantic segmentation test results -
DeepLab v3+.

Similar to the experiment usingDeepLab v2 network struc-
ture, the results of scene-aware semantic segmentation of the
two distribution methods are better than those of the control
group. The results of experimental group with proportional
training time are better than those of average distribution.
We mainly summarize three conclusions from experimental
results on DeepLab v2 and DeepLab v3+:

After a certain number of training iterations, compared
with the control experiment without considering the scene
category, the experimental results which considered the
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FIGURE 12. Algorithm flow comparison experiment results.

scene category obviously had higher pixel accuracy (Pixel
Accuracy) and average cross ratio (Mean IoU). It verifies
the hypothesis mentioned above that the addition of scene
category information does make the semantic segmentation
algorithm get better results. However, the premise is the scene
category information, rather than the process itself, which is
much more complex than the control group.

In the two ways of allocating training time, the proportion
of distribution according to the picture is better than the aver-
age allocation. For the ratio of the pictures in the three scenes
is too different, the training time should be divided according
to the proportion of the picture. If the distribution is simply
average, the semantic segmentation network model will be
over-fitting in the scene with especially few pictures with
the increase of training time, but the semantic segmentation
model is still in an under-fitting state in the scene with a
lot of pictures. The experimental results also prove that the
distribution according to the picture is a more reasonable
choice.

In comparison with the final results, the experimental
results using the Deep Lab v3+ network structure are much
better than those using DeepLab v2. It is mainly due to the
advantages of DeepLab v3+ network structure, including
more efficient decoders, stronger feature extraction capabili-
ties, etc., which is consistent with the results of section IV-B.

D. ALGORITHM FLOW CONTROL EXPERIMENT RESULTS
After obtaining the test results, we use Pixel Accuracy and
Mean IoU as the quantitative evaluation criteria. By using
DeepLab V3+ network structure with 480K total train-
ing, the experiments of scene-aware semantic segmentation

FIGURE 13. Effect of classification accuracy on scene-aware semantic
segmentation.

in section 4.2 and non-categorized control experiments in
section 4.1 are compared. The comparison results are shown
in Figure 12.

When compared with the control experiment in which the
category is not divided in section IV-C, the accuracy of the
algorithmic flow using randomized image category does not
improve, but decreases, which shows that the improvement of
accuracy in the semantic segmentation experiment related to
the section IV-B scenario is not from the algorithm flow, but
the addition of the scene category information.

E. THE ACCURACY OF THE SCENE CLASSIFICATION
ALGORITHM AFFECTS THE RESULTS
We also try to improve the scene classification algorithm
implemented in section III-B by changing the parameters
and increasing the number of training iterations. The classi-
fication accuracy rate on the test machine is increased from
96.90% to 97.08%. The scene correlation semantic segmen-
tation algorithmwas re-evaluated by using the neural network
model after the replacement scenario. The pixel accuracy rate
(Pixel Accuracy) increased from 79.45% to 79.51%, and the
average cross-over ratio (Mean IoU) increased from 37.66%
to 37.98%. Mean IoU and Pixel Accuracy were further
improved to 38.27% and 79.73% when directly using scene
category annotations (equivalent to a classification accuracy
of 100%).

In addition, we also attempt to scramble some of the scene
category annotations to obtain a lower classification accuracy
rate for comparison, and obtain the variation of Mean IoU
and Pixel Accuracy with classification accuracy as shown in
Figure 13.
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FIGURE 14. Scene-aware semantic segmentation algorithm Comparison
of network models in different scenarios.

In the figure, the results of the scene-aware semantic
segmentation algorithm are increased with the classification
accuracy rate, which shows that better results will be obtained
if process the corresponding scene image. For example,
the results of indoor image segmentation by indoor semantic
segmentation model are better than those by natural seg-
mentation semantic segmentation model. For visual compar-
ison, the comparison of sample images results is shown in
Figure 14.

From the first row to the third row in Figure 14 are exam-
ples of indoor scenes, outdoor natural scenes, and outdoor
artificial scenes. The first column is the original image,
the second is the label, and the last three columns are the
results of the indoor semantic segmentation model, outdoor
natural scene semantic segmentation model and the out-
door artificial scene semantic segmentation model. It can be
intuitively found that the image is processed best by using
corresponding model, and the semantic segmentation neural
network in each scenario learns the scenario category infor-
mation can improve the results of semantic segmentation,
which led to a better final result when compared with the
semantic segmentation algorithm without the combination of
scene categories.

V. CONCLUSION
Our work include below key points:

1.For the semantic segmentation algorithm, we choose to
use the deep convolutional neural network to implement the
semantic segmentation algorithm, and select DeepLab v2 and
DeepLab v3+ networks. The obtained algorithm was trained
on the ADE20K data set, whose result was used as a control
to compare with the scene-related semantic segmentation
algorithm.

2.In order to classify the scenes of the pictures in the test
set, we choose to use the deep convolutional neural network
to implement the scene classification algorithm, and select
the VGGNet network structure. The training set pictures of
ADE20K data set are divided into three categories: indoor
scene pictures, outdoor natural scene pictures and outdoor
artificial scene pictures. We trained the obtained algorithm
on the ADE20K data set to determine the scene category that
distinguish the pending image in the test set.

3.For the scene-aware semantic segmentation algorithm,
there are 10279, 2144 and 7757 images of indoor scene
pictures, outdoor natural scene pictures and outdoor arti-
ficial scene pictures respectively according to the results
of the scene classification algorithm. After the data set
was classified, we trained the semantic segmentation neu-
ral network in three scenarios, and obtained three seman-
tic segmentation neural network models. The test used the
scene classification algorithm to determine the result of the
image to be tested, and selected the semantic segmentation
network model of the corresponding scene for processing.
Comparing with the results of the semantic segmentation
algorithm, the accuracy of the scene-aware semantic segmen-
tation algorithm is higher than that without considering the
scene category, which indicates that the addition of the scene
category information can indeed improve the results of the
semantic segmentation algorithm.

The shortcoming of this paper is that we use the existing
semantic segmentation algorithm instead of proposing a new
semantic segmentation network model. The training sample
is limited to the picture of the specific scene to combine the
scene category information, and the scene category informa-
tion is combined into the semantic segmentation to improve
the result.

Adding category information is just one way to increase
a priori to improve the results. The experimental results
showed that the result of semantic segmentation can be
improved by adding a priori, and thus a new thought can
be drawn. The next step is to try more ways to increase the
a priori for the preprocessing of semantic segmentation to
increase the accuracy of semantic segmentation in the future.
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