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ABSTRACT The path planning technology is an important part of navigation, which is the core of robotics
research. Reinforcement learning is a fashionable algorithm that learns from experience by mimicking the
process of human learning skills. When learning new skills, the comprehensive and diverse experience help
to refine the grasp of new skills which are called as the depth and the breadth of experience. According to
the path planning, this paper proposes an improved learning policy based on the different demand of the
experience’s depth and breadth in different learning stages, where the deep Q-networks calculated Q-value
adopts the dense network framework. In the initial stage of learning, an experience value evaluation network
is created to increase the proportion of deep experience to understand the environmental rules more quickly.
When the path wandering phenomenon happens, the exploration of wandering point and other points are
taken into account to improve the breadth of the experience pool by using parallel exploration structure.
In addition, the network structure is improved by referring to the dense connection method, so the learning
and expressive abilities of the network are improved to some extent. Finally, the experimental results show
that our model has a certain improvement in convergence speed, planning success rate, and path accuracy.
Under the same experimental conditions, the method of this paper is compared with the conventional
intensive learning method via deep Q-networks. The results show that the indicators of this method are
significantly higher.

INDEX TERMS Machine learning algorithms, path planning, neural network.

I. INTRODUCTION
In the field of artificial intelligence, it is a well-known and
important issue that how to find the best path from the
start point to the goal in a given grid environment. For a
long time, many researchers have spent a lot of effort in
path planning, and have proposed many algorithms for pro-
cessing path search and optimization. More representative
heuristic algorithms such as A* algorithm [1], [2], simu-
lated annealing algorithm [3], [4], artificial potential field
method [5], [6], group intelligent algorithm such as particle
swarm algorithm [7], [8] and ant colony algorithm [8], [9].
With the deepening of research, the planning speed and the
accuracy of path planning continue to increase, but these
traditional algorithms always have shortcomings such as low
real-time performance and easy to fall into local best.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yanzheng Zhu.

With the advent of the artificial intelligence era, the envi-
ronment facing the path planning field is becoming more
and more complex, which requires the path planning algo-
rithm to have the ability to respond quickly to complex
environmental changes and flexible learning capabilities. The
expressive power of traditional algorithms encounters bottle-
necks and it is difficult to model dynamic complex problems.
It is imperative that something be done to change the path
planning algorithm framework. Combining deep learning
with reinforcement learning [10]–[12] is a good method of
autonomous learning [32]–[34]. The concept of ‘‘reinforce-
ment learning’’ first appeared in 1954. This learning method
transforms the sequence decision problem into a Markov
model [13], and establishes the mapping between the envi-
ronment state and the state-action value function through the
interaction between the agent and the environment, and then
obtains the optimal state-action value function to obtain the
optimal action sequence.
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With the development of time, dynamic programming [14],
Q-learning [15], SARSA [16] and other reinforcement algo-
rithms have been proposed, but these tabular reinforcement
learning methods have obvious limitations in the size of
state space and action space. In 2013, Mnih et al. have
proposed the first successful Deep Q-network (DQN) [17]
framework that combines deep learning with reinforcement
learning. In DQN, the experience pool structure is used
to disrupt the sample order to solve the problem that the
experience gained from reinforcement learning is related
in time. It improves the stability of the combination and
achieved impressive performance. Several improvements
based on DQN have proposed in 2015 [18]–[25], includ-
ing duel network structure [18], complex empirical sampling
policy [20] and advantage function. The DQN framework has
a certain improvement in learning speed and value function
estimation accuracy. Q-learning is very suitable for solving
some discrete motion sequence decision problems. In recent
years, some researchers have used Q-learning on path plan-
ning, and the effect is excellent. However, as mentioned
above, the tabular reinforcement learning algorithm has lim-
ited capacity, this leads to the model needing to train each
map and the model has no generalization performance. DQN
can solve these problems very well, so the DQN framework
has great potential in path planning.

The policy which is chosen is a very important factor
influencing learning outcomes. Many educators advocate a
method of learning from typical experiences and then refin-
ing knowledge through learning diverse experiences. From
the field of artificial intelligence, some special samples can
really speed up the learning, and the comprehensiveness
of the sample can reduce the over-fitting and improve the
accuracy of the model. The network structure determines
the learning efficiency and expressive ability of the network.
In 2017, Huang proposed a dense connection network
(Dense Network) [30], [31], which uses channel-level fea-
ture short-circuit connections, effectively improving the
feature reuse rate and reducing the gradient disappear-
ance. A small amount of parameters yields surprising
results.

Unlike traditional path planning methods that require mod-
eling of the various constraints of the problem, map image
data are only used as input in our path planning method.
In addition, taking into account the generalization ability of
the model, the input maps in each round are different. Under
the above conditions, we hope that the agent can find the
shortest path without collision. In order to accomplish the
above functions, the deep reinforcement learning framework
is used to improve the common problems in path planning.
From the aspects of policy and network architecture, the main
contribution of this paper is listed as follows:

(1) An experience value evaluation network is built. At the
beginning of the training, when the network is in the pseudo-
minded stage, the network is used to help Q network to gain
more depth experience and help the model to quickly learn
the environmental rules.

(2) A parallel exploration structure is created in order to
utilize every step well. When path wandering phenomenon
occurs, the exploration of wandering point and other points
are taken into account to improve the breadth of the experi-
ence pool and increase the accuracy.

(3) The dense connection is added to increase the utiliza-
tion of network features. The convolutional layer is used as
the transition layer to reduce the dimension, at the same time
to retain more high-dimensional information and position
sensitivity.

In general, we propose a rapid learning policy that changes
the probability distribution of experience in the skill learning
process, so that the model can obtain more needed experi-
ence at different stages of learning, which improves learning
efficiency. In the path planning application, we only need the
map image as input instead of modeling the map. For the
image input, we improve the network structure and enhance
the expressive ability of the network. The remainder of the
paper is structured as follows. The traditional reinforcement
learning and DQN are introduced in Section II. In Section III,
we propose an efficient learning policy based on the dif-
ferent demand of the depth and the breadth of experience
in different learning stages, and furthermore, build a value
evaluation network to control the depth of experience and
speed up the learning process. Data simulation process and
simulation results are provided in Section IV to demonstrate
the effectiveness of our model. Section V concludes the paper
with some discussion on future research directions.

II. RELATED WORK
A. REINFORCEMENT LEARNING
Compared with the ‘‘open loop’’ machine learning method
based on existing static data, the reinforcement learning is a
kind of ‘‘closed loop’’ method that learns from the experience
with the environment. By interacting with the environment,
a basic reinforcement learning framework is considered to
learn how to maximize the benefits of a sequence decision
problem. The problem can be represented by the Markov
decision process (MDP) [13], which can be composed of
5-tuple 〈S,A,P,R, γ 〉, where S is the state set, A is the set
of finite actions, R is a finite set of the expected reward rt ,
γ ∈ [0, 1] is a discount factor, and P stands for the state
transition probability and a simplified form of the conditional
probability Pa(st , st+1) that the action at in state st is per-
formed to achieve state st+1 in time t + 1.
The purpose of reinforcement learning is to ultimately find

an optimal sequence of actions π∗ = {a∗1, a
∗

2, · · · , a
∗
t , · · · }

in a given environment to maximize the cumulative reward
of the agent. For the given action policy π , the cumulative
reward and state value functions are defined to quantify the
value of the state:

Gt = rt+1 + γ rt+2 + γ 2rt+2 · · · =
∑∞

k=0
γ krt+k+1 (1)

In the formula, Gt is called cumulative reward, which repre-
sents the sum of the discounts of the reward from the time
step t until the end of the action sequence. γ ∈ [0, 1] is a
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discount factor that determines the trade-off between short-
term and long-term gains. γ = 1 means that the agent treats
the rewards equally from different time step away from itself.

Since the sequence of actions may be different in the
same state, the cumulative reward from a certain state is an
expected value rather than a certain value. But we can define
a state value function to quantify the expected value of the
cumulative reward in a state under a given policy, as follow.

Vπ (st ) = Eπ
{∑∞

k=0
γ krt+k+1|s = st

}
(2)

where Vπ (st ) represents the expected cumulative reward of
the agent starting from the state st under the policy π . Fur-
thermore, considering the executing action at , we can change
the state value function (2) into the state-action value function
to describe the cumulative reward, as below:

q(st , at ) = Eπ
{∑∞

k=0
γ krt+k+1|s = st , a = at

}
(3)

Obviously, the algorithm of reinforcement learning needs
to get the maximum value of the state-action value func-
tion q∗(st , at ) = maxa∈A q(st , a) in a given state. In other
words, it is easy to get the optimal policy a∗t , that is,
argmaxa∈Aq

∗(st , a).
For the problem of policy evaluation, it is generally to find

each q(st , at ) and the optimal policy finally by updating the
Q table. Note that the state-action value function in (3) indi-
cates that the entire complete sequence of actions is required
to update the value of the state-action value function. This
means a lot of computational burden, and such an algorithm is
undoubtedly inefficient. According to the Bellman equation,
q(st , at ) can be rewritten as the following form:

q(st , at ) = Eπ
{
rt+1 + γ q(st+1, at+1)|s = st , a = at

}
(4)

The above equation indicates that the state-action value func-
tion can be written by the state-action value of next state
and the reward of the specified action. Obviously, according
to (4), the Q value of the state can be updated every step,
and the efficiency of the algorithm are higher. The value
iterative algorithm is based on this, directly updating the table
to estimate the optimal state-behavior value function:

q∗(st , at ) = Eπ
{
rt+1 + γ max

at+1∈A
q(st+1, at+1)|s = st , a = at

}
(5)

B. DEEP Q-NETWORK
The traditional reinforcement learning algorithm learns the
optimal policy by establishing a Q table and updating the
Q table, but the reinforcement learning method based on the
Q table has an inevitable capacity limitation. When the state
space and the action space are large or continuous, the algo-
rithm needs to occupy a large amount of memory or even
can’t express the problem. In 2013, Mnih et al. proposed
the first framework DQN, which combines deep learning
with reinforcement learning, to solve the problem of capacity
limitation and sample correlation. In 2015 [17], a double net-
work structure was proposed to solve the correlation between

the state-action value function and the update target. The
main achievements are as follows: (1) Propose to use deep
convolutional neural network q(s, a; θ ) to represent q(s, a),
avoiding the problem that Q table capacity is limited and each
state-action value function needs training; (2) Propose the
experience replay(ER) structure, solving the problem of time-
correlation of samples and improving the stability of training;
(3) Set up a separate target network to handle temporal dif-
ference (TD) targets, estimating the state-action value and the
TD target and updating the weight.

DQN is an algorithm based on Q-learning. Q-learning
updates the value function by time difference formula:

q(st , at )=q(st , at )+α[rt + γ max
at+1∈A

q(st+1, at+1)−q(st , at )]

(6)

where q(st , at ) is the state-action value function at the current
moment, q(st+1, at+1) is the state-action value function at
the next moment, and α is the update step size. After using
the deep convolutional neural network, change to update the
weight θ of Qv:

θt+1 = θt + α[rt + γ max
at+1∈A

q(st+1, at+1; θTD)

−q(st , at ; θt )]×∇q(st , at ; θt ) (7)

where rt + γ maxat+1∈ A q(st+1, at+1; θ
TD) is the TD tar-

get. The network update its weight to let q(st , at ; θt ) fit
the TD target. A separate target network is employed to
represent the TD target. Since θt used in the calculation
of the gradient is different from θTD used in the calcula-
tion of the TD target, it solves the problem of unstable
training due to the correlation between samples. The rt +
γ maxat+1∈A q(st+1, at+1; θ

TD)− q(st , at ; θt ) in the equation
is the loss, the network is trained by minimizing the loss, and
finally q(st , at ) is estimated. The algorithm uses the stochas-
tic gradient descent method to train the network, θt is updated
every training iteration, and θt is assigned to θTD after every
C iterations. The DQN algorithm is as shown in Algorithm 1,
where pre_train_step, decline_step, µ, mini_batch and
terminal will be defined in Section III.

C. DENSE NETWORK
Convolutional neural network (CNN) has become the main-
stream method in the field of computer vision. In general,
the deeper network is, the higher nonlinearity and fitting
accuracy are. However the gradient of network training
is transmitted from the back to the front, so the gradient
received by the front layer gradually becomes smaller or even
the training is stagnant, if the number of network layers
reaches a certain limit. Dr. He proposed the Residual Net-
work (ResNet) [26]–[29] in 2015. Short-circuiting some
layers front and back strengthens the information connection
between the front and back layers in order to make training
of deeper network possible. In 2017, Huang employed the
idea of the residual network to connect the front layer with
all the layers after it (Dense Network [30], [31]), enhanced
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Algorithm 1 DQN.
Initialization Initialize replay memory space D to capacity

N , Initialize the Q network Q with random weights θ0,
Initialize the weights θTD of target network Qt with
weights θ0. Initialize t = 0.

1: for t < tmax do
2: if t 6= 1 then st = st+1
3: else get the initial observation st
4: end if
5: if t < pre_train_step then
6: select a random action at
7: else
8: if µ < ε then select a random at
9: else select at = argmaxa∈Aq(st , a; θt )
10: end if
11: end if
12: Store experience ext = (st , at , rt , st+1)
13: if t < decline_step then
14: ε decreases by a certain percentage
15: end if
16: if t ≥ pre_train_step then
17: Sample mini_batch in D and calculate yi:

18: yi =


ri,

if terminal
ri + γ maxai+1∈A qt (si+1, ai+1; θ

TD),
otherwise

19: Calculate the loss (q(si, ai; θt )− yi)2

20: Train and update Q network’s weights θt+1
21: Every C step copy θt+1 to θTD

22: end if
23: end for

FIGURE 1. The structure of dense connection.

the feature reuse from the propagation and utilization of
features, and achieved better performance with fewer param-
eters. As shown in Figure 1, an L-layer network (L = 4) is
supposed. Each layer has a nonlinear conversion Hl(·), and
the output of the l − 1 layer is xl−1.
Then, in the Dense Network, the output expression of the

l-th layer is shown mathematically:

xl = Hl([x0, x1, · · · , xl−1]) (8)

where [x0, x1, · · · , xl−1] is the splicing of the output feature
map produced by the 0, 1, 2, · · · , l − 1 layers in the dense
block, which is a tensor. The advantage of this connection
is that the model is more compact, information can be trans-
ferred to deeper layers, enhance the connection of features
between the layers, and mitigate gradient disappearance.

The premise of feature graph splicing is that the dimension
of the feature graph is the same, so the Dense Network is
divided into dense blocks and transition layers structure. The
convolution with one step size is used in the dense blocks to
keep the feature map size unchanged. The convolution uses
multiple small convolution kernels to obtain higher nonlinear-
ity, and the transition layer uses average or maximum pooling
to reduce the dimension of the feature map.

III. PATH PLANNING BASED ON EFFICIENT LEARNING
POLICY DQN COMBINED WITH DENSE NETWORK
In the context of path planning, this paper develops an
improved in Policy and Network Deep Q-network (PN-DQN)
model. We proposes some policies such as action experience
value evaluation network, parallel greedy random exploration
structure andmerges the connection method of dense connec-
tion, aiming to improve the path planning speed and accuracy.
This chapter will introduce our algorithm from the problem
statement, the learning settings of the model (such as envi-
ronment observation, action space, reward design, and policy
setting) and network architecture, then carefully describe the
algorithm flow and training process.

A. PROBLEM STATEMENT
The aim of our model is to find an optimal path from the
start point to the end point in a randomly generated map
without collision. It is considered that the agent moves in a
four-connected environment consisting of passable and non-
passable trellis. Given the start point s and the goal g which
are connectable, the task of the agent is to find a feasible
sequence of actions from s to g. It is also the policy π (s, g).

Considering the general path planning problem and assum-
ing that the map M , the start point s and the goal g are
known, we use E(M , s, g) to represent the environment. The
traditional path planning algorithm deals with these prob-
lems by constraining conditions and problems. Mathematical
modeling is transformed into searching optimization or solv-
ing energy optimization problem. When E(M , s, g) changes,
it needs to be solved again. It is also difficult to model
E(M , s, g). Our model mimics the process of human learning
skills, which finds the optimal path by learning the rules of
the environment. Even if a given obstacle or goal changes,
the model does not need to be retrained because our rules are
universal. Taking the picture of E(M , s, g) as input, the agent
selects the optimal policy to achieve the maximum benefit
by observing its position, obstacle position and goal position.
In order for the trained model to have good generalization
performance, a new E(M , s, g) will be randomly generated
in each episode.

In the process of human learning new skills, typical cases
tend to be more profound and clearer than the general experi-
ence. Furthermore, it is important for the refinement of skills
to accumulate comprehensive and multi-faceted experience
called as the depth and the breadth of experience. So we
can improve the learning policy based on the depth and the
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FIGURE 2. The structure of PN-DQN model.

FIGURE 3. Two different observations.

breadth of experience in different stages of learning in two
sides:

1. An action experience value evaluation network is built
that increases the proportion of special experience (at obsta-
cles or reaching the end) at the beginning of training. It is
helpful for the model to learn environmental rules faster;

2. A parallel exploration structure is created. If path wan-
dering phenomenon occurs in training, the learning policy
will continue to explore the wandering point and take into
account other points on the map, in order to obtain more
diverse experience and help the model to master the skills in
detail.

Combined with the efficient learning policy, we improve
the network structure and get PN-DQN model. The main
model of PN-DQN is shown in Figure 2. In this figure,
we take the picture of E(M , s, g) as input. The Q network
above the figure is responsible for estimating the value of
the state-action. The experience value evaluation network
below the figure to take a part of evaluating the value of
the experience of each action. For faster training speed and
higher accuracy, the Q network is combined with the dense
connection to improve the extraction and propagation of pic-
ture features. On the other hand, the value evaluation network
uses a convolutional neural network with a simple structure.
Ultimately, the model selects the actions performed by taking
into account the output of the two networks.

B. LEARNING SETTINGS
1) ENVIRONMENT OBSERVATION
Figure 3 shows two different environment observations.
An observation consists of background, obstacle, current

point and goal. According to the image information of the
environment, an RGB pixel matrix of 80∗80∗3 is formed, and
then perform gray-scale processing on RGB image matrix to
obtain 80∗80 graymatrix. In general, the graymatrix includes
four types of image values. By preprocessing, four types
of pixel values are rewritten into a matrix [Pb,Po, pc, pg]
consisting of background pixel set Pb, obstacle pixel set Po,
current point pixel pc and goal pixel pg. The purpose of our
preprocessing is to more accurately distinguish between dif-
ferent objects and get a more manageable observation matrix.

2) ACTION SPACE
There are two general kinds of action space in the mesh
path planning task, which are four neighborhoods and eight
neighborhoods. These definitions of action space can control
the change of the current location. The experiments in this
paper all use four neighborhoods, because the research goal
is to get the best path not the motion plan. In the experiment,
the speed will be ruled as that one unit distance can be moved
per time step.

3) REWARD DESIGN
The reward is the only feedback that the model can get from
the environment, and it is the learning orientation of the
model. The reward determines the skills that the model learns
and the efficiency of the model. Therefore, a good reward
design should be concise and fully reflect the designer’s
desire to implement the model. In our tasks, reward design
focuses on two aspects: reaching the goal and avoiding obsta-
cles. Based on these requirements, the reward function is
defined as a sparse form:

rt =


rreach, if pc = pg
rcrash, if pc ∈ Po
0, otherwise

(9)

which divides the reward function into three parts according
to the difference of the arrival point at the next moment.
Combined with the optimal function Bellman equation (5),
it can be seen that the value of the action to reach the goal
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is rreach, and the value of the action that hits the obstacle
point is rcrash. We generally give rreach a positive value to
encourage the model to find the goal, give rcrash a negative
values to punish collision behavior. The value of normal
action decreases with the increase of the distance between the
current point and the goal, and γ needs to take less than 1 to
promote the agent to the goal in this experiment.

4) POLICY SETTING
DQN generally uses ε-greedy policy to balance the explo-
ration and utilization of models, such as:

π (st ) =

{
argmaxa∈Aq(st , a), if µ ≤ ε
ã, otherwise

(10)

where µ is the random value generated from [0, 1] per round,
ε is the exploration rate and ã is a random action.
On the basis of retaining certain randomness, combined

with the application characteristics of grid path planning,
we make the following improvements to the policy:

a: POLICY OF THE DEPTH OF EXPERIENCE
In order to gain more special experience in the early stage,
we create an experience value evaluation network. The eval-
uation network only considers a rectangle with the current
point as the center of the eight neighborhoods, and evaluates
how valuable the experience of choosing a particular action is.
The t-th loss of evaluation network E is defined as:

Lt (θt ) = Es,a
{
((1+ |rt |)− e(st , at ; θEt ))

2
}

(11)

where the value evaluation function e(st , at ; θEt ) gradually
progresses to 1+|rt | through training and θE is the weight of
evaluation network E . Combined with (9), it can be estimated
that the value of e(st , at ; θEt ) will converge to:

e(st , at ; θEt ) =


1+ |rreach|, if pc = pg
1+ |rcrash|, if pc ∈ Po
1, otherwise

(12)

The value evaluation network E completes the training in
the pre-train stage before the train of networkQ, and then help
to select action:

at = argmaxa∈Aq(st , a; θt )e(st , a; θ
E
t ) (13)

Remark 1: According to (12), the model selects an action
based on the product of the value evaluation function and
the state-behavior value estimation function. In the initial
stage of Q network training, due to the maximum operation
in (5), the state-action value function gives a positive dif-
ference estimate for each action. At this time, e(st , at ; θEt )
encourages the model to choose the action of reach or crash
in the next step, increasing the proportion of special expe-
rience. When q(st , at ; θt ) begins to correctly identify obsta-
cles, e(st , at ; θEt ) can suppress collisions, encourage agents to
explore more locations, increase the diversity of experience,
and learn skills carefully. Moreover, in the later exploration,

when the model misjudges the obstacle q(st , at ; θt ) > 0,
it encourages to get the experience of the misjudges place.

b: POLICY OF THE BREADTH OF EXPERIENCE
In order to make better use of each step, the model creates
a parallel structure for the path wandering phenomenon (left
right left right, or up down up down) that appears during the
training process, as shown in Figure 4. The model selects
action to maximize q(st , a; θt )e(st , a; θEt ) under normal con-
ditions. When the path wandering phenomenon occurs,
the parallel structure will be triggered. The parallel structure
continues to explore the rest of the map with the greedy
random policy, simultaneously continues to gain the experi-
ence of wandering point. The greedy policy randomly selects
actions with a certain probability, or greedily chooses tomove
the current point closer to the goal without considering obsta-
cles. We don’t recommend direct forced out of the wandering
point, because the phenomenon of wandering shows that the
model lacks of that point’s understanding, and the experience
is very important. Wandering processing as shown in the right
part of Figure 4, we extract the experience of the two steps
before that points ext−1 = (st−1, at−1, rt−1, st ) and ext =
(st , at , rt , st+1), and the current_step in the current map. The
model interacts with the environment through greedy random
policy and also judges whether the network weights can jump
out of the wandering point after update. If the model can
identify that point, or if the number of steps reaches the pre-
set maximum exploration steps for a single map, then the
structure is ended. If not, it continue to add experience of
wandering point. Our general idea is to take into account
the wandering experience gained and the exploration of other
locations on the map.

c: POLICY OF AVOIDING INCORRECT EVALUATION
In order to save time resource, we usually set a maximum
number of steps as max_step that the agent can move in each
episode. This assumption brings the problem of incorrect
evaluation of the value function. In Algorithm 1:

yi=

{
ri, if termial
ri+γ maxai+1∈A qt (si+1, ai+1; θ

TD), otherwise
(14)

where termial means pc = pg or pc ∈ Po or current_step =
max_step. If there is no collision or reach the target, the value
function should be ri+γ maxai+1∈A qt (si+1, ai+1; θ

TD). How-
ever, when current_step is exactly equal to max_step,
the model estimate function is ri. This causes a large loss in
the evaluation of the value function, which in turn leads to
unstable training of the model. So in the experiment we aban-
doned the experience of current_step reaching max_step.
Remark 2: The terminal in the figure represents three

cases: 1. current_step is equal to max_step 2. collision
occurs 3. reaching the target point. The terminal_w in the
figure indicates that the model successfully identifies the
defect, that is, the action selected under the current weight
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FIGURE 4. The algorithm flow charts of PN-DQN.

FIGURE 5. The structure of value evaluation network.

is different from the action in the experience, and the END in
the figure indicates that t reaches tmax .

C. MODEL AND NETWORK ARCHITECTURE
To successfully complete the navigation task, we propose a
learning model PN-DQN which is suitable for the current
task. The model is shown in Figure 2. The model consists of
a value evaluation network E below the figure and the deep
Q network Q above the figure and the target network Qt with
the same structure. The value evaluation network is shown
in Figure 5.

The value evaluation network consists of convolution lay-
ers and fully connected layers. All convolution layers in
this paper consist of convolution and batch normalization,
extracting features, changing dimensions and reducing the
possibility of over-fitting. The activation function uses ReLU
to reduce the gradient disappearance and speed up the train-
ing. Using the same padding mode, the relationship of the

FIGURE 6. The structure of Q network.

convolution layer input feature map size Win, output feature
map size Wout and the stride S can be given by:

Wout =
Win

S
(15)

The Q network structure is shown in Figure 6. The network
consists of a pre-processing layer, dense blocks and a fully-
connected layer. The input of the network is the gray matrix
of 80∗80∗4. The first layer is the convolution layer, uses the
ReLU function as activation function, the convolution kernel
size is 8 ∗ 8, and the step size is 4, which reduces the image
dimension, reduces subsequent calculations, and extracts fea-
tures. Behind the convolution layer is an overlapping pooling
layer of 2 ∗ 2, which maintains the feature map size and
increases the generalization performance of the model to
avoid over-fitting. Then there are three dense blocks and
transition layers,the growth rate is 8, 16, and 16 respectively,
and the bottleneck takes 2, which determines the output of
the 3 ∗ 3 convolutional layer. The 1 ∗ 1 convolution layer has
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TABLE 1. The parameters in Q network.

the function of integrating features and reducing the amount
of subsequent calculations. The number of output channels is
bottleneck ∗growth rate. Dense blocks use dense connections
and use multiple small convolution kernels to improve feature
propagation and reuse, as well as increase nonlinearity. The
pooling layer is discarded in the transition layer, and the
convolution layer is employed to reduce the dimension. The
main purpose is to retain more high-dimensional features and
location information. The transition layer has a ratio of input
to output channels of 2 : 1, which compresses the features to
make the network lighter. The third part is the fully connected
layer, which integrates the features and outputs the state-
action value for four actions. The specific parameters of the
network are shown in Table 1.

To train the model, we calculate the loss and mean square
error, and update the network parameters with (7). The algo-
rithm flow and pseudo code are as follows:
Remark 3: As shown in Algorithm 2, we first initialize

the environment, experience pool space, value network, target
network, value evaluation network, etc. Set a pre_train_step
to get some experience through random actions to store in
the experience pool and complete the training of the value
evaluation network in the pre-training stage. The training
phase sets a ε that decreases as the number of steps increases,
and uses the ε-greedy policy to determine whether the current
step is random exploration or exploitation (13). If the path
wandering phenomenon occurs, the exploitation will adopt
the greedy random policy instead, and the parallel structure
as shown in Figure 4 is taken into consideration, taking into

Algorithm 2 PN-DQN.
Initialization Initialize replay memory space D to capac-

ity N , Initialize the Q network Q with random weights
θ0, Initialize the target network Qt ′s weights θTD with
weights θ0, Initialize the value evaluation network E with
random weights θE . Initialize t = 0.

1: for t < tmax do
2: if t 6= 1 then st = st+1
3: else get the initial observation st
4: end if
5: if t < pre_train_step then
6: Select a random action at
7: if t > mini_batch then
8: Sample mini_batch in D and calculate yi = ri
9: Calculate the loss (e(si, ai; θEt )− yi)

2

10: Train and update E network’s weights θEt+1
11: end if
12: else
13: if µ < ε then
14: select a random action at
15: else
16: select at = maxa∈A q(st , a; θt )e(st , a; θEt )
17: end if
18: end if
19: Store experience ext = (st , at , rt , st+1)
20: if t < decline_step then
21: ε decreases by a certain percentage
22: end if
23: if t ≥ pre_train_step then
24: Sample mini_batch in D and calculate yi:

25: yi =


ri,

if terminal
ri + γ maxai+1∈A qt (si+1, ai+1; θ

TD),
otherwise

26: Calculate the loss (q(si, ai; θt )− yi)2

27: Train and update Q network’s weights θt+1
28: Every C step copy θt+1 to θTD

29: end if
30: end for

account the exploration of other points and the acquisition
of the wandering experience. It should be noted that the
evaluation of the network weights in the form of θEt is only
to distinguish between moments and unify other weights.
In fact, both θEt and θt do not change with time t , and
only during their training rounds will they update based on
the calculated gradient. During training, draw mini_batch
experiences from the experience pool per step and train the
Q network. Finally, the parameters of the Q network Q are
copied to the target network every C steps.

IV. TEST AND RESULT ANALYSIS
The evaluation of the model path planning ability is carried
out in a grid environment. The goal of the model is to find
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TABLE 2. The parameters in algorithm 2.

the optimal sequence of actions from the starting point to
the target point without collision. In order to verify that the
model has the ability to adapt to different environments, map
E(M , s, g) is regenerated every episode. The model has only
a limited number of steps max_step in each episode, and the
episode ends early when the agent hits an obstacle or reaches
the target. The experiment is divided into two groups with the
size of 5 ∗ 5 and 8 ∗ 8. For each group PN-DQN compared
by DQN, P-DQN (only change policy), N-DQN (only change
network) is employed to show the advantage of our idea.

The policies and networks used in the experiments have
been introduced in the previous chapter. Table 2 provide some
of the basic parameters used in the experiments:

The size of Mini-batch is set to 32, and the parameters
of the value network are copied to the target network every
5 steps. We set the value γ to 0.9 instead of the common 0.99.
Since each round E(M , s, g) is different, the minimum value
is set to 0.01 to more intuitively observe the model perfor-
mance.
Remark 4: Mini-batch determines the direction in which

the gradient falls. Too small may cause over-fitting, while
too large will slow down the convergence, and the memory
size of the computer is also a limit. Since the reward function
(9) stipulates that the return is 0 under normal conditions,
we use the discount factor to distinguish the action different
from their distance beyond the target point more clearly in the
magnitude of the Q value. N should be appropriately larger
to allow the model to learn more experience in the state to
prevent overfitting and local optimization. A small C can
keep the loss calculation real-time and effective, but too small
will lead to training shocks.

To evaluate the performance of the model we define the
following metrics:

1. Success rate: the ratio of the number of rounds that suc-
cessfully find the target point to the total number of rounds;

2. Accuracy: the ratio of the shortest path steps to the
number of steps used in a successful round;

3. Loss: the loss during training.
The premise that the model ultimately achieves good train-

ing results is that the value evaluation network can accurately
identify different points. The training process of the 5∗5 map
consists of 1450000 exploration steps and 50000 pre-training
steps (no update network), and the maximum number of steps
per episode is 15 steps. Similarly, the training process of the

FIGURE 7. The loss of value evaluation network in the 5 ∗ 5 map.

8∗8 map consists of 1850000 exploration steps and 150, 000
pre-training steps. Themaximum number of steps per episode
is 25 steps. After the pre-training step is completed, observe
whether the empirical value network converges, and then train
the Q network.

Figure 7 is the loss of the value evaluation network in
50, 000 steps in the 5 ∗ 5 map. It can be seen that the loss
decreases with the increase of the number of training steps,
which indicates that the parameters of the A network are opti-
mized by the gradient descent method. The model converges
around 25, 000 steps, and the value evaluation network can
accurately identify different points.

Figure 8 is the success rate and the accuracy of the training
process. The results show that as the training progresses,
the models become familiar with the environment, and the
success rate and the accuracy are increasing. Figure 8(a)
and Figure 8(b) are the rates of change in success. From a
policy point of view, P-DQN and PN-DQN learn faster than
DQN and N-DQN because they get more deep experience in
the early stage of training. After the stability, their success
rate are higher than DQN (and N-DQN). From the perspec-
tive of network architecture, N-DQN and PN-DQN benefit
from dense connection and efficient feature learning and
utilization, so they have stronger learning ability and learning
speed. In Figure 8(b), the P-DQN policy is more suitable for
learning, so the success rate of the previous period is higher
than that of the N-DQN. However, due to the limitation of
the network architecture, the success rate is exceeded by the
N-DQN after convergence. The PN-DQN model is excellent
in both convergence speed and success rate.

Figure 8(c) and Figure 8(d) are accuracy, their trends are
similar to success rates. It is worth noting that the accuracy
is affected more by the policy than the success rate. It can be
seen that the policy greatly improves the accuracy rate while
slightly increasing the success rate of the model, showing the
superiority of our policy. In general, both the improvement of
the policy and the network structure have a certain improve-
ment on the learning speed and the success rate and also the
accuracy. The PN-DQN model has excellent performance in
all these aspects.

Figure 9 shows the success rate and the accuracy of the
test after the training of the model. The test has a total of
200000 steps. Figure 9(a) and Figure 9(b) are success rates.
Through the comparison of the four models in each graph,
it can be seen that both the policy and the network have
improved the success rate of navigation. Comparing the two
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FIGURE 8. The success rate and the accuracy of training process. (a) The
success rate in 5 ∗ 5 map. (b) The success rate in 8 ∗ 8 map. (c) The
accuracy in 5 ∗ 5 map. (d) The accuracy in 8 ∗ 8 map.

graphs Figure 9(a) and Figure 9(b), Figure 9(b) shows obvi-
ous stratification according to the network used by the model.
The more complicated the environment is, the more obvious
the learning advantage of dense connections is. In terms of
accuracy, it can be seen from Figure 9(c) and Figure 9(d) that
efficient learning policies have a great improvement in accu-
racy. In Figure 9(c), P-DQN even achieve better performance
than N-DQN relies on policy advantages. The effect reflects
the efficient learning policy is more conducive to the model
to master the path planning skills. And Figure 9(d) once
again shows us the learning advantage of dense connections.
In Figure 9, the PN-DQN model is far ahead of the DQN
model in both accuracy and success rate.

Deep experience can bring deeper impact (expressed in
the learning of the appropriate loss function), speed up the
learning speed of the early period, and breadth experience can

FIGURE 9. The success rate and the accuracy of testing process. (a) The
success rate in 5 ∗ 5 map. (b) The success rate in 8 ∗ 8 map. (c) The
accuracy in 5 ∗ 5 map. (d) The accuracy in 8 ∗ 8 map.

improve the diversity of the sample and improve the learning
accuracy. In general, the expressive ability of the network
model determines the success rate and accuracy of the model,
and our policy changes the distribution of the experience we
have acquired, which is more suitable for skill learning, and
has a higher success rate and accuracy, especially accuracy.

Figure 10 shows the loss during the training. Comparing
P-DQN with DQN and PN-DQN with N-DQN respectively,
the model with efficient learning policy drops faster under the
same conditions, because our policy bring some of the more
diversified samples that allows us to get steeper gradients in
the early stage. This leads us to have more rounds to get more
diverse experience, which make the training process more
stable. Compared with N-DQN and DQN, the loss curves of
PN-DQN and P-DQN are more stable and smaller, showing
the excellent learning characteristics of our policy. In terms of
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FIGURE 10. The loss of training process. (a) The loss in 5 ∗ 5 map. (b) The
loss in 8 ∗ 8 map.

TABLE 3. Result.

network structure, the loss curve graphs of N-DQN and DQN
are very similar, but due to the higher learning efficiency
and higher fitting ability of our model, N-DQN has faster
convergence speed and smaller loss. Overall, our PN-DQN
model is more stable, faster, and more accurate than the
traditional DQN model.

Table 3 is the performance
index of each model in this experiment, taking the average

of the success rate and accuracy rate of the last 50, 000 steps
in the test, and the loss is the average value of the last 50000
step error in the training. The probability of finding the path
in our 5 ∗ 5 and 8 ∗ 8 variable map environment is 99.58%
and 98.70%, the path accuracy is 99.95% and 99.70%, and
the state-action values estimation errors are 4.0800e− 5 and
1.0741e− 4 respectively. All aspects have been improved.

V. CONCLUSIONS
This paper has proposed an efficient PN-DQN algorithm.
It has been found that when people learn new skills, they
like to learn typical cases to master the general framework
of skills, and enrich their understanding of skills through
diversified experience. In the experience pool, the proportion
of deep experience and breadth experience has been decided
to change depending on the type of experience required at

the different stages of the learning model. In the grid path
planning experiment, a value evaluation network has been
built to control the depth of experience and speed up the learn-
ing process. For the path wandering phenomenon, a parallel
structure has been created that it makes more efficient use of
time steps and increases the breadth of experience. In addi-
tion, we have incorporated a dense connection to enhance the
learning ability of the network model. In the end, simulation
experiments have shown that our algorithm is much better
than traditional DQN algorithms in terms of learning speed,
path planning success rate and path accuracy. We believe that
as long as the State space is discrete, our learning policy
can speed up learning. our further research topics include the
improvement of our algorithm and its application to obstacle
avoidance and navigation of aircraft.
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