IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 26, 2019, accepted April 23, 2019, date of publication May 24, 2019, date of current version June 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2918784

Variation Pattern Recognition of the BIW OCMM
Online Measurement Data Based on LSTM NN

CHANGHUI LIU™, KUN CHEN, SUN JIN, AND YUAN QU

State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author: Sun Jin (1e020702 @outlook.com)

This work was supported in part by the Ministry of Industry and Information Technology of China under Grant 17GFBZB02194 and Grant
18GC04246, in part by the National Science and Technology Major Project under Grant 2017-VII-0008-0102, and in part by the China

Postdoctoral Science Foundation under Grant 17Z102060069.

ABSTRACT An accurate recognition of a dimensional variation pattern is very important for producing high-
quality body-in-white (BIW). The wide application of optical coordination measurement machines (OCMM)
in vehicle factory provided massive online dimensional data for the variation pattern recognition. However,
the massive serially correlated or autocorrelated and 100% measurement data generated from the OCMM
challenge the traditional statistical process control (SPC) technology and the common variation recognition
approaches. This paper presents a novel deep-learning method, long short-term memory neural network
(LSTM NN)), to recognize the variation pattern of the BIW OCMM online measurement data. A comparative
study between the backpropagation neural network (BP NN) and the LSTM NN was implemented, and the
practicability of the proposed intelligent method was demonstrated by a case study. With the efficient use of
time series information, the LSTM NN has a good performance in variation patterns’ recognition and high
practicability in improving the quality of the BIW.

INDEX TERMS Variation pattern recognition, long short-term memory neural network (LSTM NN), body-

in-white (BIW), online measurement data, deep learning.

I. INTRODUCTION

Body-in-white (BIW) is the main component of an automo-
bile, which dimensional accuracy directly affects the quality
of the whole vehicle. While the dimensional variation reduc-
tion of the BIW is always a tough task for the vehicle factory
due to its complex assembly, which involves 100 to 150 sheet
metal parts and 80-120 assembly stations [1]. Any deviations
introduced by incoming parts or any failures occur at these
stations would be finally accumulated to the BIW.

In order to monitor the final quality of BIW, online optical
coordination measurement machines (OCMM) are widely
applied in the vehicle factory [2]. They are installed at the
end of each assembly line and use more than 100 optical laser
sensors to measure the key measurement points (MPs) set
at the final BIW. With its non-contact, high efficiency and
full sample measurement, a tremendous amount of serially
correlated and 100% sampled online dimensional data are
obtained (approximately 1 min per BIW and 500 vehicles
per day). However, the massive dimensional data generated
from the OCMM is not fully utilized by the manufacturers.
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These OCMM data are usually used to recognize the vari-
ation patterns only by manual analysis in many vehicle
factories [2].

The conventional control charts, as one of the most impor-
tant statistical process control (SPC) tools for quality control
and improvement, has been widely used in the vehicle factory.
The effectiveness of using control charts largely depends
on the correct recognition for different kinds of variation
patterns, which named as control chart pattern (CCP) [3], [4].
Eight types of CCPs are summarized by Gauri [5] and Gauri
and Chakraborty [6], and the common variation patterns
for BIW are normal (NOR), upward shift (US), downward
shift (DS), increasing trend (IT), and decreasing trend (DT).
In practice, quality engineers usually use the coordination
measurement machine (CMM) to sample the deviation of the
BIW and keep the data are uncorrelated. Then the quality
monitoring and the CCP recognition can be implemented
based on the SPC techniques and their engineering experi-
ence. Nevertheless, the serially correlated or autocorrelated
100% measurement data generated from the OCMM chal-
lenges the SPC control technologies [7]. The SPC for the BIW
OCMM data has the following limitations:
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(1) The SPC is a time-consuming procedure for the fast
data processing and information extraction in the high
rate online measurement system. It is to plot quality
observations vs. sample sequences with specific control
limits. If there are points exceed control limits or some
nonrandom variation patterns happened the process is
estimated as out-of-control. The assignable causes for
the out-of-control should be identified and removed
so that the process is able to back to normal. While
reacting to these out-of-control conditions is not easy
applying SPC techniques alone.

(2) Control charts are based on the assumption of inde-
pendent data. However, the BIW OCMM data are a
complex time-varying signal with complex correlations
at a range of different timescales. The assumption of
independent data may not only result in the loss of
information of the process which may be quite useful
for studying the process and identifying the assignable
cause but also lead to high-frequency false alarms, such
as alarms indicating process out of control when the
process is actually in control.

From the quality control viewpoint, the impact of OCMM
data on the quality engineering function is a requirement
for a faster and higher accuracy CCP recognition can be
implemented so that the feedback loop between the fault diag-
nosis and corrective action can be closed within a sufficiently
small-time frame to avoid or minimize defective products.
Therefore, more accurate, effective, automatic and intelligent
variation pattern recognition methods are needed to address
this challenging problem in the BIW assembly.

Generally, the common CCP recognition approaches can
be subsumed under just two broad categories: run-rule-based
Expert Systems (ESs) [8] and machine learning methods
including the support vector machine (SVM) [9] and artificial
neural networks (ANNSs) [10]. The comparison of these three
methods is summarized in Table 1. According to the com-
parison, we know that each method has its advantages and
disadvantages. Even though the largest problem the ANNs
encountered in the modeling process is the requirement for
a large amount of training data, whereas it is exactly what
online OCMM measurement data can provide in the recog-
nition of dimensional variation pattern of BIW. In order to
overcome the corresponding shortcomings of each method,
a lot of improvement models have been proposed, especially
for the ANNs. However, for its actual application in the recog-
nition of dimensional variation pattern for BIW the ANNs
still must face the problem that how to process and utilize the
serially correlated or autocorrelated OCMM data effectively.

With the development of deep learning algorithm, a lot
of deep artificial neural networks have been proposed and
have won numerous contests in pattern recognition [22].
Long Short-Term Memory Neural Network (LSTM NN), as a
special recurrent neural network (RNN) structure, is designed
to model temporal sequences and their long-term dependen-
cies [23], [24]. In other words, the LSTM NN is very suit-
able for dealing with the serially correlated or autocorrelated
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TABLE 1. Three types of methods to recognize CCPs.

. Improvement
Category Method  Advantage Disadvantage models
No one-to-one
. correspondence
Contains
. . between an )
information IntelliSPC [8],
. abnormal
Based explicitly; Internet-based
pattern and a
on run ESs Can be . EPs[11], EPs
i running rule; .
rules modified or . R for on-line
Heavily relying .
updated detection[12]
Rk on the
easily; .
experience of
engineers;
Hard to select
Good correct kernel MCSVM[13],
SVM generalization  functions and PS-SVM([14],
ability in optimize its DAGSVM[15],
small sample;  corresponding BTSVM[16]
Based
parameters;
on
. BP[17], MLP
machine
. Non- [5], LVQ[18],
learning . . o
parametric; Big training K-MICA based
ANNs  Non-linear; data ANNG5[19],
Adaptive requirement; COA-
learning; RBFNN][20],
PSO-BP[21]

data. It has been successfully applied to various sequence
recognition and sequence prediction tasks, such as handwrit-
ing recognition [25], [26], large-scale acoustic modeling and
vocabulary speech recognition [27]-[29], document analy-
sis and recognition [30], [31], image recognition [32], [33],
machine translation [34], traffic speed prediction [35], real-
time safety monitoring in the induction motor [36], and so
on. To the best of our knowledge, there is no application of
LSTM NN in the domain of the variation pattern recognition
for the BIW OCMM data.

In order to address the drawbacks of the conventional
ANN s brought by the complex time-varying and serially cor-
related or autocorrelated data, we explore LSTM NN archi-
tectures for the variation pattern recognition of the large-scale
BIW OCMM online measurement data. Based on the discus-
sion above, the contribution of this paper mainly contains:
(1) anovel recurrent neural network architecture: Long Short-
Term Memory Neural Network, is developed to capture the
correlation or autocorrelation OCMM online measurement
data for the variation pattern recognition of the BIW; (2) a
comparative study between the Backpropagation Neural Net-
work (BP NN) and the LSTM NN is implemented to provide
a general guideline for selecting different ANN structures for
the variation pattern recognition of the BIW; (3) an actual case
is studied to demonstrate the practicability of the proposed
intelligent method.

The remainder of the paper is organized as follows.
In Section 2, an automatic and intelligent method to recognize
the variation pattern of the BIW based on the LSTM NN is
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FIGURE 1. An overview of the proposed intelligent method based on
LSTM NN.
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developed. Based on the proposed method, the experiment is
carried out to verify the recognition accuracy, followed by a
comparative study between the BP NN and the LSTM NN
in Section 3. In Section 4, a case study will be implemented
to demonstrate the practicability of the proposed intelligent
method in the variation pattern recognition of the BIW.
Finally, the conclusions and some future works are discussed
in Section 5.

Il. METHODOLOGIES

A. OVER REVIEW OF THE INTELLIGENT METHOD

In this paper, an automatic and intelligent system for the
variation pattern recognition of the BIW is proposed (see
Fig. 1). First, the BIW OCMM online measurement data
are input to the monitoring window, followed by the nor-
malization preprocessing. Then a recognition process for the
variation pattern based on the trained LSTM NN is proposed
to implement. If the variation pattern output is an abnor-
mal pattern, the alarm system will trigger the alarm and the
quality engineer will diagnose the corresponding fault cause
according to the type of abnormal pattern and the fault cause
database. Otherwise, new BIW OCMM online measurement
data will be input the monitoring window.

B. LSTM NN MODEL FOR VARIATION PATTERN
RECOGNITION

In order to overcome the disadvantages of the traditional
ANN:Ss in dealing with the complex time-varying data, LSTM
NN is developed in this paper to recognize the variation
pattern of the serially correlated or autocorrelated OCMM
online measurement data. The LSTM NN consists of one
input layer, one recurrent hidden layer, and one output layer.
The biggest structural difference from the traditional ANNSs is
that there is a set of interrelated recurrent subnetworks, named
basic memory block, in the hidden layer. The memory block
is controlled by some special adaptive gating units to save,
write, and read the information. These gate units are essen-
tially logical units which usually contain sigmoid functions
and point multiplication operations and can selectively pass
through information.
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FIGURE 2. The architecture of LSTM NN.

Figure 2 shows the basic architecture of the LSTM NN.
There are three nonlinear gate units that responsible for
activation. The input and output data are controlled by the
input gate and the output gate respectively. The forget gate
is added to prevent the internal cell values growing with-
out bound. Three black nodes are directly connected to the
corresponding activation functions. The core of the memory
cell is a recurrently self-connected linear unit-Constant Error
Carousel (CEC), which represents the memory of the neuron
state and records the state by adjusting the parameter state.
According to the state of CEC, the multiplication gates can
learn to open and close, so the LSTM NN solves the problem
of vanishing errors by keeping the network error constant.
The dashed line represents the weight connection of the node
to each gate at the previous moment, and the weight value
of the other connections is a fixed constant of 1. And the
only output of the neural network to the next time step is the
transmission at the output gate.

Let wy; denote the connection weight between unit i and
unit j of the LSTM NN, a]t- and b]t. denote the input and output
of the unit j at time ¢. The input gate, forget gate and output
gate are respectively corresponding to n, ¢ and w. I, H and
K represent the neurons number of the input layer, the hidden
layer, and the output layer, respectively. C denotes the number
of the memory cell. Then the input of the memory cell n is:

1 H C

t t t—1 —1

a, = § WinX; + E Whnbh + E chstc (D
i=1 h=1 c=1

where xl.’ denotes the value of unit i at time 7, b;l_l denotes
the output of unit & at time t — 1, s, represents the state of the
memory unit.

In the memory unit of LSTM NN, only the previous
moment output b, of the forget gate will be transmitted to
this unit. The output of the forget gate is:

I H c
bfp = Z w,-(px,-t + Z wh(pbz_] + Z wc(psz_1 2)
i h c

The input of the memory unit is:

1 H
! 13 r—1
a = wiexl + ) wach}, 3)
i" h
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The state of the memory unit is:
sh= b(ptstc_1 + bg (al) “)

The input of the output gate is:

I H c
i r—1
=D WioXl + ) whobly 'Y Wewsh (5)
i=1 h=1 c=1
The activation function can be denoted as:

by, = f(a}) (6)

where k can be written as n, ¢ and w, denoting the input gate,
forget gate and output gate, respectively.

The output of the node corresponding to Eq. (3) is con-
trolled by output gate, the output is also the input to the entire
memory unit at the next moment. It can be represented as:

bl = b, h(s;) 7

The activation function of the output gate is generally the
logistic function or the softmax function. In order to facilitate
the reverse transmission of the representation error, the fol-
lowing intermediate variables are defined by the chain rule:

dLdal dLdd!
o _ k h
fo = abf Z aakabt Z 9d.9b.
=1
= Z wekd), + Z wendy ! ®)
k=1 h=1
gt — a_L
S ast
= bH (st) el + L e + wewdl, + wendy !
w8 )

where L denotes the loss function. It acts sequentially on the
memory cell, the forget gate and the input gate:

oL AL ds. dg(d
8t = AT =3 - a(tC) =¢'b g (d\) (10
al. st 3g (a) a
oL dL ds’. dby,
r__ _ t—1 t
% = dal, < dsL. 3D, aat =/ )ZS an
c=1
C
aL AL ds.. ab', _
8 = ol => = 95 35 7a. —f’(a;)Zg(ai, Del (12)
c=1 c=1

The partial derivative of weight w;; is obtained by using
loss function:

8L8a
Bw,] - Z aa Bw,]

= 8ib, (13)
t

The value of initial weights has a great influence on the
training results of the LSTM NN model. The values of initial
weights were calculated according to the activation func-
tion of the network nodes, the number of input and output
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TABLE 2. Experiment environment.

Item Environment
Development Python
language
Library Keras
Disk capacity 1T
RAM 20G
Intel (R) Core (TM) i7-4770 CPU
CPU 3.4GHz
Windows Server 2008 R2 Enterprise
(0N .
64bit

nodes per layer. The parameter initialization formulas are as
follows:

tanh : W ~ Uniform
6 6
(- V6 7 V6 a4
\/fanin +fa”0ut \/fanin +fanaut
sigmoid : W ~ Uniform
6 6
car YO VO (15)
fani, + fanou Nfaniy + fangy,
where fan;, and fan,,; represent the number of the input and
the number of the output for the network nodes, respectively.

Uniform represents the uniform distribution. The value of
weights can be selected in its interval.

IlIl. EXPERIMENT

A. EXPERIMENT ENVIRONMENT

In this paper, the experiment environment of LSTM NN is
based on Python 3.6.0-0. Anaconda was used to write the
program. It has a powerful and convenient function package
management and environment management ability. A deep
learning library, Keras, was applicated to construct the LSTM
NN for parallel computing. The specific experiment environ-
ment is shown in Table 2.

B. DATA PREPROCESSING
In this section, the actual OCMM online measurement data
from July 2017 to July 2018 for a specific kind of BIW
produced in a vehicle factory were collected and 1000 groups
for each pattern including NOR, IT, DT, US, and DS were
summarized. The length of data for each group was 60, which
means each pattern was taken as a time series of 60 data
points. Monte Carlo simulation method was used to generate
similar data. The simulation equations for different various
patterns were shown in Table 3. The values of parameters
were calculated based on the actual OCMM online measure-
ment data.

Based on these simulation equations, 4000 groups data
for each variation pattern were generated so that there were
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TABLE 3. Variation pattern simulation equations.

CCPs Simulation equations Parameters

4#=0 : the mean

of the sample, ¢ :

the discrete time

r({®)~N(0,1): a

random number

generating

function

o,,,=0.5: the
standard

DT xX(t) = pto,,r(0)-kt deviation of

system noise

s €[0.8,2.3]: the

magnitude of the

shift

b=0or 1: the

55 omweon e
the gradient

NOR (1) = p+o,,r(1)

IT x(t)=uto, r(t)+kt

noi

(0N} x(t) = pto, ,r(t)+bs

noi

TABLE 4. LSTM NN initialization.

Learning Activation Batch

. . Loss functi . Iterati
algorithm function 085 function size eration
1 jcal
RMSprop  Sofimax CAtesSonear £ 5 50
i ossentropy
TABLE 5. BP NN initialization.
Activation  Activation Traini-
. . Lear ..
. function function Minim ng
Learning -
. for the for the . -um steps
algorithm . ning
hidden output error
rate
layer layer
trainlm logsig purelin 0.05 0.01 2000

TABLE 6. Comparison of recognition performance between LSTM NN and
BP NN.

Mean percentage for confusion

Average
recognition
accuracy 1T DT Us DS NOR
(%)

Model

5000 groups data for each variation pattern including the
actual data groups. These 5000 groups data were randomly
distributed. After the min-max normalization (MMN) process
was carried out, the data preprocessing was finished.

C. CONTRAST EXPERIMENT

1) THE SIMULATION OF LSTM NN

In this experiment, the LSTM NN was constructed accord-
ing to reference [37]. There were one hidden layer and one
output layer, and their corresponding numbers of units were
50 and 5, respectively. The 5 units of the output layer denote
five different patterns including NOR, IT, DT, US, and DS.
The Sequential, Dense andActivation in theKeras frame-
work proceeded. The Softmax function acted as the activation
function, and the corresponding categorical_crossentropy
function was selected as the loss function. According to
reference [38], the advantage of matching the activation func-
tion with the loss function is that the derivative of the loss
function of each output unit to the input is equal to the
difference between the actual output and the ideal output in
the process of error reverse transfer. The index list metrics
selects the default accuracy. The optimizer parameter was set
as RMSprop. The batch size was set to 20. The number of
iterations was 50. The initialization of the LSTM NN is sum-
marized in Table 4. In the training and testing process, 70%
of training samples and 30% of test samples were randomly
selected from the whole data set, including 1000 groups of
actual data and 4000 groups of simulation data for each
pattern.

2) THE SIMULATION OF BP NN

In order to verify the superiority of the LSTM NN in variation
pattern recognition of the serially correlated or autocorre-
lated OCMM online measurement data, a similar BP NN
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IT 91.50  0.00 8.50 0.00 0.00
DT 0.00 9520  0.00 4.80 0.00
BP 94.72 Us 6.50 0.00 93.50  0.00 0.00
DS 0.00 6.60 0.00 93.40  0.00
NOR _ 0.00 0.00 0.00 0.00 100.0
IT 99.90  0.00 0.10 0.00 0.00
DT 0.00 100.0  0.00 0.00 0.00
LSTM  99.78 Us 0.30 0.00 99.70  0.00 0.00
DS 0.00 0.70 0.00 99.30  0.00
NOR  0.00 0.00 0.00 0.00 100.0

architecture in reference [39] was also applied. There were
2 hidden layers and the neuron number for the 1% and 2"
hidden layer was 10 and 7, respectively. The combination of
statistical features (including mean, standard deviation, mean
square value, skewness, and kurtosis [40]) and shape features
(including SB, AASL, SRANGE, and REAE [6]) was chosen
as the input. The initialization of BP NN is summarized
in Table 5. Then the training and the testing of the BP NN
were performed using the data set mentioned above.

D. RESULT ANALYSIS AND COMPARISON

In order to prove the superiority of the LSTM NN model
in identifying abnormal deviation pattern of BIW OCMM
online measurement data, the LSTM NN model was estab-
lished according to the above procedure. Finally, compared
with the traditional BP NN, the recognition accuracy is shown
in Table 6. It can be found that, with its efficient use of time
series information of online measurement data, the overall
average recognition accuracy for the five quality patterns can
reach 99.78% by using LSTM NN, which is 5.34% higher
than that of BP NN. Moreover, the recognition accuracy of
LSTM for each variation pattern is more consistent. Espe-
cially, its recognition accuracy of DT and that of NOR can
reach 100%. It is fully demonstrated that the LSTM NN can
effectively eliminate the confusion between different patterns
and accurately identify all kinds of abnormal variation pat-
terns of BIW based on the online measurement data.
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FIGURE 3. Average recognition accuracy of 15 repeated experiments.

TABLE 7. The statistics of the 15 experimental recognition results.

The mean value of

The standard deviation

Model average recognition of average recognition
accuracy (%) accuracy

BP 94.618 0.64

LSTM 99.977 0.01

In order to evaluate the robustness of recognition ability,
15 repeated experiments were implemented. The average
recognition accuracy of LSTM NN and that of BP NN are
shown in Fig. 3. The recognition accuracy of LSTM NN is
higher and more stable than that of BP NN because the aver-
age recognition accuracies of LSTM NN in these 15 repeated
experiments closed to 100%, while that of BP NN in these
15 repeated experiments varied in the range of 93.89% and
95.56%. The same result can also be summarized according
to Table 7. In Table 7, the mean value of average recognition
accuracy for these 15 repeated experiments is calculated and
make a comparison between LSTM NN and BP NN. The
mean value of average recognition accuracy of LSTM NN
and BP NN is 99.98% and 94.62% respectively, which means
the average recognition accuracy of LSTM NN is higher than
that of BP NN. The standard deviation of average recognition
accuracy of LSTM NN and BP NN are 0.01 and 0.64 respec-
tively, which means the performance of LSTM NN is more
stable than that of BP NN.

IV. CASE STUDY

The shape of taillight has said goodbye to the simple plane
and straight-line structure. The complex surface and curve
of taillights make the matching gap control among the tail-
light, the out plate of the side wall and the welded part of
D-pillar in the assembly process to be one of the most difficult
works in the of vehicle quality control. So, it is necessary
to monitor the taillight installation area in the actual BIW
assembly process and some MPs are set in this area (see
Fig. 4).

The actual OCMM online measurement data of MPs in the
taillight area on March 4, 2018, were selected, which was a
total of 500 vehicle samples. The proposed intelligent method
was used to recognize the variation pattern. The monitoring
window for data number was 60 and the trained LSTM NN in
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FIGURE 4. The set of MPs in the taillight installation area.
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FIGURE 5. NO.14 MP (a) the measurements (b) the variation pattern
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FIGURE 6. The fault cause for the abnormal pattern (a) fault section
(b) the cause for the DS (c) the cause for the IT.

the above experiment was applied. When the data were read,
the recognition process was performed as shown in Fig.1.
Taking the y-direction measurement data of the NO.14 MP
as an example, all the measurement value of NO.14 MP in
the y-direction are shown in Fig. 5(a) and the corresponding
recognition results were shown in Fig. 5(b).

From Fig. 5(a) we know that when the monitoring window
moved to the 218th sample a DS happened, and the alarm
system triggered the alarm. The quality engineer responded in
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time and the diagnosis was carried out based on the fault cause
database and a site investigation for the assembly process of
the right-side wall was also conducted (see Fig. 6(a)). The
final diagnosis result was that the resin block of the elevator
mechanism in the side wall assembly line and the outer plate
of the side wall interfered with each other, which resulted in
a 2-3mm gap between the positioning surface of the fixture
and the side wall (see Fig. 6(b)). So, the right-side wall of the
taillight area will jump in a short period of time.

When the monitoring window moved to the 248th sample,
the abnormal variation pattern was identified as a UT and
continued to the 265th sample (see Fig. 5(b)). This was due
to the continuous wear of the resin block in contact with the
outer plate of the side wall after interference. The stiffness
of the resin block was relatively small, the wear process was
very rapid, which led to a UT from the 248th to the 265th
sample.

When the monitoring window moved to the 266th sample,
the output result of recognition was a NOR, which indi-
cated that the assembly process was in normal condition
again. At this time, the resin block was worn to a certain
extent, removing its own interference, and eliminating the gap
between the positioning surface of the fixture and the side
wall (see Fig. 6(c)). The results of recognition were in good
agreement with the cause of the investigation.

V. CONCLUSION

The dimensional variation pattern recognition for BIW plays
a very important role in the quality improvement of the
automotive body assembly. The wide application of OCMM
provided a tremendous amount of online dimensional data.
However, the massive serially correlated or autocorrelated
and 100% measurement data generated from the OCMM
challenges the traditional SPC technology and the com-
mon CCP recognition approaches. In this paper, we explore
the LSTM NN for the variation pattern recognition of the
large-scale OCMM online measurement data. In order to
validate the effectiveness of the proposed LSTM NN, 1-year
actual OCMM online measurement data for a specific kind
of BIW produced in a vehicle factory were collected and a
comparative experiment between the BP NN and the LSTM
NN for variation pattern recognition is implemented based on
these data. In addition, a case of the variation pattern recogni-
tion for an MP set in the taillight installation area was studied.
According to the result analysis of the experiment and the
case study, several useful findings can be summarized:

1) The LSTM NN can effectively eliminate the confu-
sion between different patterns and accurately identify
all kinds of abnormal variation patterns of the BIW
OCMM online measurement data. With the efficient
use of time series information, the LSTM NN has a
higher overall average recognition accuracy for the five
variation patterns, which can reach 99.78%.

2) The LSTM NN has a good robustness in the variation
recognition of the BIW OCMM online measurement
data. The average recognition accuracies of LSTM NN

VOLUME 7, 2019

in 15 repeated experiments are close to 100%, and the
corresponding standard deviation of average recogni-
tion accuracy of LSTM NN is just 0.01, which means
it is more stable than that of BP NN.

3) The LSTM NN has a high practicability in improving
the quality of BIW. A case study reveals that the intel-
ligent system based on the LSTM NN can not only
recognize the abnormal variation patterns with high
accuracy but also help the quality engineer to improve
the efficiency and the accuracy of fault diagnoses based

on the fault cause database.
Even though this paper mainly focuses on the automatic,

intelligent and accurate variation pattern recognition method
development for the BIW so that it can help the vehicle manu-
facturers make a full use of the OCMM online measurement
data and improve the quality of BIW, the method proposed
in this paper can also be used in the quality variation pattern
recognition of the online detection data for other products.
In this paper, in order to demonstrate the variation recognition
accuracy and the practicability of the proposed method, a sim-
ple case with one-dimensional data was studied. While the
fault diagnoses of dimensional variation in the BIW assembly
process is a complex issue, future work can be conducted by
considering the correlation between different MPs and using
the massive multivariate online measurement data to develop
an intelligent fault diagnose method based on the LSTM NN.

REFERENCES

[1] J. Shi, Stream of Variation Modeling and Analysis for Multistage Manu-
facturing Processes. Boca Raton, FL, USA: CRC Press, 2006.
[2] H. Wang, G. Chen, and P. Zhu, “BIW assembly quality evaluation with
variation of OCMM data and data-splitting error estimation,” Int. J. Adv.
Manuf. Technol., vol. 24, nos. 11-12, pp. 830-833, 2004.
J. Chen and Y. Liang, “Development of fuzzy logic-based statistical pro-
cess control chart pattern recognition system,” Int. J. Adv. Manuf. Technol.,
vol. 86, nos. 1-4, pp. 1011-1026, 2016.
J. Wang, A. K. Kochhar, and R. G. Hannam, “Pattern recognition for
statistical process control charts,” Int. J. Adv. Manuf. Technol., vol. 14,
no. 2, pp. 99-109, 1998.
[5] S. K. Gauri, “Control chart pattern recognition using feature-based learn-
ing vector quantization,” Int. J. Adv. Manuf. Technol., vol. 48, nos. 9-12,
pp. 1061-1073, 2010.
[6] S. K. Gauri and S. Chakraborty, “Recognition of control chart patterns
using improved selection of features,” Comput. Ind. Eng., vol. 56, no. 4,
pp. 1577-1588, 2009.
[71 S. Hu, “Impact of 100% measurement data on statistical process control
(SPC) in automobile body assembly,” Ph.D. dissertation, Univ. Michigan,
Ann Arbor, MI, USA, 1990.
[8] R.-S. Guh, J. D. T. Tannock, and C. O’Brien, “IntelliSPC: A hybrid
intelligent tool for on-line economical statistical process control,” Expert
Syst. Appl., vol. 17, no. 3, pp. 195-212, 1999.
[9] C.-J.Lu,Y.E. Shao, and C.-C. Li, “Recognition of concurrent control chart
patterns by integrating ICA and SVM,”” Appl. Math. Inf. Sci., vol. 8, no. 2,
p. 681, 2014.
[10] S. K. Gauri and S. Chakraborty, “Improved recognition of control chart
patterns using artificial neural networks,” Int. J. Adv. Manuf. Technol.,
vol. 36, nos. 11-12, pp. 1191-1201, 2008.
[11] R. Grove, “Internet-based expert systems,” Expert Syst., vol. 17, no. 3,
pp. 129-135, 2000.
[12] M. Bag, S. K. Gauri, and S. Chakraborty, “An expert system for control
chart pattern recognition,” Int. J. Adv. Manuf. Technol., vol. 62, nos. 1-4,
pp. 291-301, 2012.
[13] V.Ranaee and A. Ebrahimzadeh, “Control chart pattern recognition using
a novel hybrid intelligent method,” Appl. Soft Comput., vol. 11, no. 2,
pp. 2676-2686, 2011.

3

[4

=

69013



IEEE Access

C. Liu et al.: Variation Pattern Recognition of the BIW OCMM Online Measurement Data Based on LSTM NN

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Du, J. Lv, and L. Xi, “On-line classifying process mean shifts in
multivariate control charts based on multiclass support vector machines,”
Int. J. Prod. Res., vol. 50, no. 22, pp. 6288-6310, 2012.

S. Wang, M. Yang, S. Du, J. Yang, B. Liu, J. M. Gorriz, J. Ramirez,
T.-F. Yuan, and Y. Zhang, ‘““Wavelet entropy and directed acyclic graph
support vector machine for detection of patients with unilateral hearing loss
in MRI scanning,” Frontiers Comput. Neurosci., vol. 10, p. 106, Oct. 2016.
C. Wu, F. Liu, and B. Zhu, “Control chart pattern recognition using an
integrated model based on binary-tree support vector machine,” Int. J.
Prod. Res., vol. 53, no. 7, pp. 2026-2040, 2015.

C.-S. Cheng, “A neural network approach for the analysis of control chart
patterns,” Int. J. Prod. Res., vol. 35, no. 3, pp. 667-697, 1997.

N. Gu, Z. Cao, L. Xie, D. Creighton, M. Tan, and S. Nahavandi, “‘Identifi-
cation of concurrent control chart patterns with singular spectrum anal-
ysis and learning vector quantization,” J. Intell. Manuf., vol. 24, no. 6,
pp. 1241-1252,2013.

A. Ebrahimzadeh, J. Addeh, and Z. Rahmani, “Control chart pattern
recognition using K-MICA clustering and neural networks,” ISA Trans.,
vol. 51, no. 1, pp. 111-119, Jan. 2012.

J. Addeh, A. Ebrahimzadeh, M. Azarbad, and V. Ranaee, “Statistical pro-
cess control using optimized neural networks: A case study,” ISA Trans.,
vol. 53, no. 5, pp. 1489-1499, 2014.

J. Cao, H. Cui, H. Shi, and L. Jiao, “Big data: A parallel particle
swarm optimization-back-propagation neural network algorithm based on
MapReduce,” PLoS ONE, vol. 11, no. 6, 2016, Art. no. e0157551.

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Netw., vol. 61, pp. 85-117, Jan. 2015.

F. A. Gers, J. Schmidhuber, and F. Cummins, ‘““Learning to forget: Con-
tinual prediction with LSTM,” in Proc. 9th Int. Conf. Artif. Neural Netw.
ICANN, 1999, pp. 850-855.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2008, pp. 545-552.

A. Graves, M. Liwicki, S. Ferniandez, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition,” [EEE Trans. Pattern Anal. Mach. Intell., vol. 31,
no. 5, pp. 855-868, May 2009.

K. Chen and Q. Huo, “Training deep bidirectional LSTM acoustic model
for LVCSR by a context-sensitive-chunk BPTT approach,” IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 24, no. 7, pp. 1185-1193,
Jul. 2016.

H. Zen and H. Sak, “Unidirectional long short-term memory recurrent
neural network with recurrent output layer for low-latency speech synthe-
sis,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Apr. 2015, pp. 4470-4474.

H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in Proc.
15th Annu. Conf. Int. Speech Commun. Assoc., 2014, pp. 338-342.

H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and
R. Ward, “Deep sentence embedding using long short-term memory net-
works: Analysis and application to information retrieval,” IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 24, no. 4, pp. 694-707,
Apr. 2016.

S. Ghosh, O. Vinyals, B. Strope, S. Roy, T. Dean, and L. Heck, “Con-
textual LSTM (CLSTM) models for Large scale NLP tasks,” 2016,
arXiv:1602.06291, [Online]. Available: https://arxiv.org/abs/1602.06291
L. Wang, Y. Gao, F. Shi, G. Li, J. H. Gilmore, W. Lin, and D. Shen,
“LINKS: Learning-based multi-source integration framework for seg-
mentation of infant brain images,” Neurolmage, vol. 108, pp. 160-172,
Mar. 2015.

M. F. Stollenga, W. Byeon, M. Liwicki, and J. Schmidhuber, ‘‘Parallel
multi-dimensional LSTM, with application to fast biomedical volumet-
ric image segmentation,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 2998-3006.

1. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104-3112.

X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term
memory neural network for traffic speed prediction using remote
microwave sensor data,” Transp. Res. C, Emerg. Technol., vol. 54,
pp. 187-197, May 2015.

69014

(36]

(371
(38]

(39]

(40]

A. Kerboua, A. Metatla, R. Kelaiaia, and M. Batouche, “Real-time safety
monitoring in the induction motor using deep hierarchic long short-term
memory,” Int. J. Adv. Manuf. Technol., vol. 99, nos. 9-12, pp. 2245-2255,
2018.

B. Bakker, “Reinforcement learning with long short-term memory,” in
Proc. Adv. Neural Inf. Process. Syst., 2002, pp. s1475-1482.

N. M. Nasrabadi, ‘‘Pattern recognition and machine learning,” J. Electron.
Imag., vol. 16, no. 4, 2007, Art. no. 049901.

V. Ranaee and A. Ebrahimzadeh, “Control chart pattern recognition using
neural networks and efficient features: A comparative study,” Pattern Anal.
Appl., vol. 16, no. 3, pp. 321-332, 2013.

A. Hassan, M. S. N. Baksh, A. M. Shaharoun, and H. Jamaluddin,
“Improved SPC chart pattern recognition using statistical features,” Int.
J. Prod. Res., vol. 41, no. 7, pp. 1587-1603, 2003.

CHANGHUI LIU received the B.Sc. degree in
mechanical engineering from Hunan University,
Changsha, China, in 2010, and the Ph.D. degree
from Shanghai Jiao Tong University, Shanghai,
China, in 2016.

From 2016 to 2018, he was a Postdoctoral with
the Shanghai Key Laboratory of Digital Man-
ufacture for Thin-walled Structures, School of
Mechanical Engineering, Institute of Automobile
Engineering, Shanghai Jiao Tong University. He is

currently a Visiting Research Associate with the H. Milton Stewart School
of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA, USA. His primary research interests include data mining,
machine learning, and quality control.

KUN CHEN received the B.Sc. degree in
mechanical engineering from Sichuan University,
Chengdu, China, in 2015. He is currently pursuing
the Ph.D. degree with the Shanghai Key Labora-
tory of Digital Manufacture for Thin-walled Struc-
tures, School of Mechanical Engineering, Institute
of Automobile Engineering, Shanghai Jiao Tong
University, Shanghai, China. His primary research
interests include assembly automation and toler-
ance analysis based on the driven data.

SUN JIN received the B.Sc. and M.Sc. degrees
in mechanical engineering from Hunan University,
Changsha, China, in 1995 and 1998, respectively,
and the Ph.D. degree in mechanical engineering
from Shanghai Jiao Tong University, Shanghai,
China, in 2001.

He is currently a Professor with the Department
of Mechanical Engineering, Shanghai Jiao Tong
University. His current research interests include
data analysis, fault diagnosis, manufacturing qual-

ity control, assembly technology development, and industrial applications.

Dr. Jin received the Shanghai Technological Invention Award First Prize,
the New Technologies and New Methods of the Variation Control for Com-
plicated Sheet Metal Product Design, in 2008, the Ministry of Education,
National Science and Technology Progress Award nomination, the Data-
Driven Manufacturing Quality Control System for Multi-Species Scale of
Customized Products, in 2005, and the Shanghai Science and Technology
Progress Award, the Sheet Metal Stamping Quality Control Base on Numer-
ical Simulation, in 2001.

YUAN QU received the B.S. degree in mechan-
ical engineering from the Wuhan University of
Technology, Wuhan, China, in 2014, and the M.Sc.
degree in mechanical engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2017.

He is currently a Junior Researcher from
Huawei Technologies Co., Ltd. His current
research interests include data mining, assembly
tolerance analysis, and quality control.

VOLUME 7, 2019



	INTRODUCTION
	METHODOLOGIES
	OVER REVIEW OF THE INTELLIGENT METHOD
	LSTM NN MODEL FOR VARIATION PATTERN RECOGNITION

	EXPERIMENT
	EXPERIMENT ENVIRONMENT
	DATA PREPROCESSING
	CONTRAST EXPERIMENT
	THE SIMULATION OF LSTM NN
	THE SIMULATION OF BP NN

	RESULT ANALYSIS AND COMPARISON

	CASE STUDY
	CONCLUSION
	REFERENCES
	Biographies
	CHANGHUI LIU
	KUN CHEN
	SUN JIN
	YUAN QU


