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ABSTRACT Point clouds are an important type of geometric data obtained from a variety of 3D sensors.
They do not have an explicit neighborhood structure and therefore several researchers often perform a
voxelization step to obtain structured 3D neighborhood. This, however, comes with certain disadvantages,
e.g., it makes the data unnecessarily voluminous, enforces additional computation effort and can potentially
introduce quantization errors that may not only hinder in extracting implicit 3D shape information but also in
capturing the essential data invariances for the required segmentation and recognition task. In this context,
this paper addresses the highly challenging problem of semantic segmentation and 3D object recognition
using raw unstructured 3D point cloud data. Specifically, the deep network architecture has been proposed
which consists of a cascaded combination of 3D point-based residual networks for simultaneous semantic
scene segmentation and object classification. It exploits the 3D point-based convolutions for representational
learning from raw unstructured 3D point cloud data. The proposed architecture has a simple design, easier
implementation, and the performance which is better than the existing state-of-the architectures particularly
for semantic scene segmentation over three public datasets. The implementation and evaluation are made
public here https://github.com/saira05/DPRNet.

INDEX TERMS Object recognition, 3D point cloud, deep residual learning, 3D semantic segmentation.

I. INTRODUCTION
Semantic segmentation of point cloud refers to labeling each
3D point as belonging to a particular predefined object cat-
egory. It is particularly useful for 3D object detection that
enables to determine precise object contours together with
their label in 3D space. It has pivotal role in scene under-
standing which in turn has wide range of diverse applications
in different fields including robotics (e.g., autonomous navi-
gation, terrestrial mapping, housekeeping, old-age assistance,
agriculture), augmented/virtual reality, remote sensing (e.g.,
urban modeling, vegetation monitoring, surveying), 3D med-
ical imaging, and many others.

Before the era of deep learning, majority of earlier
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approaches that addressed the point cloud segmentation
problem may be broadly grouped into clustering (e.g.,
k-means and meanshift) based methods, similarity based
region growing algorithms [1], edge-based segmentation
techniques [2], [3] model fitting based methods [4], [5] and
approaches that model the segmentation as a graph partition-
ing problem where optimal solution is typically determined
using energy minimization techniques. These approaches
assign the label to each point based on some kind of coher-
ence/similarity typically defined in terms of low-level cues
e.g., euclidean distance, surface normals, scatter, entropy,
eigen value analysis etc. The task of semantic segmenta-
tion is slightly different from such coherent segmentation
in a way that it attempts to partition the whole point cloud
into semantic groups that are further classified as belong-
ing to one of the pre-defined object categories. To perform
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such semantic segmentation, most techniques relied on
extracting 3D hand-crafted features that are later fed to
conventional machine learning classifiers, such as support
vector machine (SVM) [6], [7] or random forests [8] etc., for
prediction [9]–[16] and [17]. The classification stage is often
coupled with post processing stage that exploit the high repre-
sentational ability of graphical models where such techniques
typically combine the classifier module with the conditional
random field (CRF) to ensure smoothness constraint while
performing prediction of each data point [14], [18]–[21].
Although this works well (particularly with random forest
classifier [14], [15]), but often, the usually adopted modular
wise training limits the flow of information between the
classifier and the CRF module.

With the recent success of deep neural architectures on
2D images, a variety of deep learning based methods have
been proposed to address the problem of semantic segmen-
tation of 3D point clouds. Since the traditional convolution
neural network (CNN) architectures are designed in a way
that they only accept structured type input, therefore several
researchers essentially focused on converting point clouds
into 3D rasterized voxel grids prior to actual processing.
For instance, Maturana and Scherer [22] developed VoxNet
that is a 3D convolutional neural network (CNN) architec-
ture based on a volumetric occupancy grid representation
for point cloud segmentation. Tchapmi et al. [20] proposed
an end-to-end framework which adopts voxel representa-
tion to obtain fine grained point-level segmentation of input
point cloud by enforcing smoothness constraints using fully
connected CRFs. Similarly, to ensure global consistency,
Kim et al. [19] also employed CRF as a post processing
step over a 3D volume capturing semantic and geometric
relationships among the neighboring voxels to semantically
label each input point by exploiting an effective predic-
tion strategy. Although the voxelization step is helpful in
obtaining a regular neighborhood structure which aids in
applying conventional convolution technique to learn fea-
ture representations, but it also comes with certain disad-
vantages. E.g., it makes the data unnecessarily voluminous,
enforces additional computation effort and can potentially
introduce quantization errors that may not only hinder in
extracting implicit 3D shape information but also in capturing
the essential data invariances for the required segmentation
task.

Directly processing on 3D point clouds can potentially
overcome these aforementioned limitations. In this regard,
few researchers have proposed solutions that directly does
the processing on input 3D point clouds without the addi-
tional step of voxelization [23]–[28]and [29]. Among them,
the most notable and pioneering architecture is PointNet, pro-
posed by Qi et al. [25], which presents a unified architecture
aimed at solving different applications including 3D object
classification, part segmentation and its extension to semantic
segmentation. It is highly efficient and robust but does not
take into account the variations in the local structures which
consequently limits its capability to classify and segment at

fine-grained level. To overcome this, a recursive application
of PointNet over a nested partitioning of the input point set
has been proposed in [26] which exploits the metric space
distances to allow learning local and contextual features at
increasing scales.

Since the point cloud are unordered and highly irregu-
lar, therefore the direct application of kernel convolutions
may lead to loss of shape information and variance to
point ordering. To cope with it, Hua et al. [30] recently
introduced a point-wise convolution operator that has the
ability to learn point level features by applying it on every
point of the input point cloud using a pointwise CNN
to perform semantic segmentation and object recognition.
The capability of using such point-wise convolutions using
deeper networks have been studied and found limited [30]
since the deeper architectures resulted in relatively degraded
performance when compared to the base pointwise
architecture.

To this end, in this paper we have proposed a deep 3D
point based CNN architecture that semantically segment indi-
vidual points belonging to a particular class by exploiting
the idea of residual learning [31] in the pointwise CNN
architectures [30]. The proposed architecture includes the
skip connection that help to avoid the vanishing gradient
problem while training the network from scratch. The use
of residual learning has been a great success in the domain
of 2D image classification problems as it allows to add more
layers without sacrificing the network performance. Despite
of this, up to our knowledge, the idea of residual learning
in unstructured (raw) point cloud segmentation has not been
explored. The proposed architecture essentially translates the
idea of using the 2D deep residual network design towards
3D convolutional architecture able to consume unstructured
point cloud as input. Following are the key contributions of
the proposed approach:
• The proposed Deep Point based Residual Net-
work (DPRNet) architecture comprises of a cascaded
combination of 3D point based residual networks for
simultaneous semantic scene segmentation and object
classification.

• DPRNet uses raw unstructured 3D point cloud data for
representational learning using 3D point based convolu-
tions.

• DPRNet is evaluated on three public datasets with
its performance being comparable with the existing
state-of-the architectures for scene segmentation. The
implementation and evaluation is made public here
https://github.com/saira05/DPRNet.

The paper is organized as follows: Section II contains an
overview of the related literature. Section III present in detail
the proposed deep point based residual network. Section IV
provides the qualitative and quantitative results together
with the performance analysis and comparison with the
existing state-of-the-art architectures. Finally, in Section V,
the conclusions are drawn and possible future avenues are
discussed.
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II. RELATED WORK
A. TRADITIONAL METHODS
Before the wide adoption of deep learning based archi-
tectures, hand-crafted features have been traditionally used
for discriminative representation. For instance, 3D data was
typically transformed into their respective 2D counterparts
and the feature representation was carried out using simple
features such as histograms, bag-of-feature models or more
discrimintatve harmonic [32] and light field descriptors [33]
for representing 3D shapes.

Initially, the work of semantic labelling of point clouds
mainly focused aerial laser scans to segment different objects
for reconstruction purposes. The typical workflow follows
the strategy of converting the raw point clouds into regular
2.5D rasterized grid over which conventional image process-
ing algorithms for edge detection and texture analysis [34]
together with maximum likelihood classification [35],
or bottom-up iterative classification rules [36], [37] have
been employed to semantically segment 3D point cloud.
In urban environments, a plethora of approaches have been
presented that aim to perform point cloud segmentation. For
instance, Hackel et al. [38] proposed semantic segmentation
of 3D point clouds by using Random forest as a classifier after
extracting 3D features based on eigenvalues/eigenvectors
analysis. Vosselman [39] combined traditional methods of
segmentation (like region growing and connected compo-
nents etc.) awith additional rule based post processing steps
to perform meaningful segmentation of point clouds. Qiu
and Neumann [10] proposed using pre-segmented exemplar
shapes/models for individual categories and used model fit-
ting to segment each point. Instead of adopting a model
fitting approach, Pang and Neumann [9] combined machine
learning methods with 3D local features and performed
object recognition on cluttered point cloud scenes. Huang and
You [13] combined learning based classification with local
descriptors for object detection in the industrial point cloud
scenes.

Although these aforementioned hand-crafted 3D features
based approaches work fairly well but often fail to gener-
alize in conditions when the particular hand crafted feature
does not capture the specific underlying dynamics of scene.
In contrast, such dynamics are better incorporated in features
learned via recent state-of-the-art deep neural network (DNN)
architectures presented in the next subsections.

B. DEEP LEARNING METHODS
1) 3D OBJECT RECOGNITION
Among other DNN architecture, the Convolutional neural
network (CNNs) have gained a lot of attention due to their
ability to progressively learn hierarchical discriminative fea-
tures from the input images. The CNN learned features have
outperformed the conventional hand-crafted features for var-
ious tasks including classification and object detection. The
pioneering work in the use of CNNs has been presented by
Alexnet [40] which proposed a rather shallow 5 convolutional
layers network architecture. Later, it has been demonstrated

that more deep architectures allow to encapsulate high level
feature extraction which in turn is much better in distinc-
tive representation [41], [42]. Training of deep architectures,
however, was challenging owing to the sol-called vanish-
ing gradient problem. To cope with this, [31] proposed the
concept of residual learning which allows to add short cut
connections in the network which allows effective training
of deep architectures with out losing performance. ResNet
architectures based on the residual concept won the ILSVRC
2015 with a remarkable low error rate of 3.6% (surpassing
humans) setting up a new record in image recognition and
localization via a single network architecture.

Owing to widespread success of CNNs, many approaches
have been proposed which translte the idea of 2D CNN to 3D.
In this regard, Voxnet [22] used a voxel-based representation
of point clouds to perform real-time object recognition. Sim-
ilar use of 3D CNN on voxelized shapes have been presented
in [43] and [44]. These networks adopted the volumetric rep-
resentation which has a disadvantage of consuming more
memory and being computationally expensive. To overcome
this, Multi-view CNNs [43], [45] have been proposed to ren-
der 3D point cloud into 2D images and subsequently employ
2D convolution network for classification purpose. Although
this approach achieved good performance for object recogni-
tion and shape retrieval purposes but their extension to scene
understanding was rather limited [46].

To cope with an additional overhead of voxelization,
recently few researchers have aimed to segment raw unstruc-
tured point cloud. Among them, PointNet [25] is a pioneering
architecture which directly consumed unstructured 3D point
clouds. PointNet architecture is robust and has the ability to
learn an order-invariance function. The drawback of PointNet
architecture is its inability to capture the relationship among
the neighboring points. PointNet++ [26], an extension to
PointNet, is a hierarchical type neural network which is able
to better capture such neighboring relationship to learn more
complex point-features. Klokov and Lempitsky [29] adapted
the 3D indexing structure (i.e., kd-tree) to build computa-
tional graphs and proposed a deep architecture that mim-
ics hierarchical convolution networks with learnable shared
parameters. The deep kd-tree network is efficient in terms
of memory and computation time as compared to uniform
3D voxel grids based architectures. PointCNN [47] attempted
to present a generalization of typical CNNs to learn point
features (using feed forward multilayer perceptrons) that
are later passed to a hierarchical network, where X -conv
is applied on transformed features prior to element-wise
convolution operation. Similarly, to improve learning of 3D
features, Hua et al. [30] developed a 4-layer CNN archi-
tecture for scene understanding in which the point features
are learned using 3D kernel based pointwise convolution
operations.

2) 3D SEMANTIC SEGMENTATION
In the context of 3D, SemanticFusion [48] explored the
idea of transferring the semantic segmentation predictions
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from 2D to 3D domain. SSCNet [49] proposed an archi-
tecture in which CNNs are used for 3D volumetric rep-
resentation to assign a label to each voxel in the scene.
This method could be easily adapted for real-time scene
reconstruction based techniques, e.g., Voxel hashing [50] and
KineticFusion [51] which are based on volumetric repre-
sentations. SEGCloud [20] also covert point clouds into 3D
voxel grids and applied 3D CNN for voxel-based predic-
tion. The architecture incorporated the interpolation layer for
transferring the individual voxel label to points and used addi-
tional CRF layers for post-processing. The combined training
of 3D CNN along with interpolation and CRF layers enable
the network to assign a label to each point. PointNet [25]
and PointNet++ [26] proposed separate architectures for
semantic segmentation by making modifications in their clas-
sification network. Wang et al. [27] proposed a similarity
group proposal network for instance segmentation by utiliz-
ing features of PointNet/PointNet++. The group proposals
are generated by computing the euclidean distance distance
between pair of point-features. Engelmann et al. [28] also
explored the spatial context for improving semantic seg-
mentation of 3D point clouds using PointNet and proposed
two architectures based on multi-scale blocks with consol-
idation units and grid-blocks with recurrent consolidation
units respectively. Qi et al. [52] proposed a 3D graph neural
network for semantic segmentation using RGBD images. Hua
et al. [30] used 3D kernel based convolutions to learn features
and used them with color attributes to semantically segment
individual points. Here, in this paper, we also propose an idea
similar to [30] but instead developed amore deep architecture
based on the concept of residual learning to which provides
relatively better accuracies particularly in the indoor scene
segmentation scenario.

III. METHODOLOGY
A. SPATIAL SORTING (PREPROCESSING)
In contrast to 3D convolution over voxel space, point ordering
(or structuring) is essential while working with unstructured
3D point cloud data. It is necessary because raw point cloud
of a scene containing multiple objects contains no struc-
tural information that yields the neighbourhood relationship,
i.e., points stored in memory next to each other may belong to
completely different and spatially distinct objects. Typically,
such point ordering/structuring may be partially achieved by
employing hierarchical data structures such as kd-tree [29],
octree [53] etc., that build efficient computational graphs
to explicitly capture the neighbourhood relationships. With-
out such explicit relationship (which exists in 2-D images
or voxel representation), directly feeding the unstructured
point clouds to the deep network would require the network
to be invariant to N! input permutations [25]. Such a con-
straint has been resolved in the literature either by defining
a symmetric function to accumulate information retrieved
by each point [25] or sorting the input point cloud based
some criterion [30], e.g., using cartesian x, y, z coordinates or

Morton curve [54] where both shows the comparable results.
In the proposed approach, we employed the spatial sorting
strategy, i.e., using the XYZ order as a pre-processing step
in our deep network to tackle the point ordering issue. The
use of spatial sorting is practically more suitable as it makes
the learned classification/segmentation networkmore generic
by eliminating the need to specifically learn a model (e.g.,
symmetric function [25]) to make the network invariant to
point order.

B. POINT-BASED DILATED 3D CONVOLUTION
An essential component contributing to the success of CNNs
is the primitive convolution operator that has the ability to
exploit the correlation characteristics in the local neighbor-
hood of the data (e.g., 2D images) expressed in dense cells
(or grids/pixels). Presumably, such an effective operation is
not efficient in feature learning in unstructured point clouds
owing to the absence of an explicit structured neighborhood.
For this reason, researchers applying the deep CNNs based
approaches to segment point clouds often perform voxeliza-
tion step to avoid the irregularity. Although this allows to
simply translate the 2D convolution operator to its 3D coun-
terpart but have a resulting trade-off in terms of consequent
quantization effects.

Directly being able to apply convolutions on unstruc-
tured point clouds may overcome such effects. To this end,
we employ a point based convolutional operator (introduced
in [30]) which can convolve over each point and extract the
features from each 3D point. The concept of point based
convolution follows the concept similar to that of convolution
in volumes in the 2D domain. Figure 2 shows the graphical
illustration of how point based convolution kernel works on
unstructured 3D points. The convolution kernel is placed on
each 3D point and the neighborhood is binned (using nearest
neighbors) into a certain number of 3D grid cells where the
number of grid cells depend upon the size of the convolution
kernel u×v×q, e.g., 27 grid cells are obtained for a 3×3×3
kernel size. Points within each grid cell share same weights
and the convolution results are obtained as follows [30]:

pl+1k =

u×v×q∑
i=1

 1
|ξk (i)|

|ξk (i)|∑
j=1

plj

 · wi (1)

where wi represents the kernel weight at ith grid cell while
plj ∈ ξk (i) denotes the value of any jth point lying within ith
grid cell ξk (i) in the previous layer l. For object recognition,
the values of points in the first layer (i.e., p1j ) of any jth point
is initialized with its coordinate values

(
xj, yj, zj

)
only while

for semantic segmentation it also includes the other attributes
(i.e., RGB values etc.).

The aforementioned point based convolution can be
extended to à-trous (or dilated) convolution in which an
additional stride parameter can also be used that defines the
gap between the grid cells and filter (or kernel) upsampling.
I.e., the stride factor s (equivalent to normal convolution for
s = 1) introduces s − 1 gaps between the kernel cells.
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FIGURE 1. Proposed 8-layer Deep Point based Residual Network (DPRNet) architecture for both semantic segmentation and object recognition. Here n
represents the number of points while m denotes the number of output classes for the semantic scene segmentation. The blue arrows show shortcut
connections for residual learning.

FIGURE 2. Illustration of the point based convolution kernel. The kernel
is placed on each point. The red point shows the point of interest whose
convolution value is being computed. The nearest neighbor points are
binned into 3 by 3 grid cells and contribute in the computation of
convolution.

FIGURE 3. Illustration of dilated convolution using the kernel with stride
of 2. Points in the kernel gaps do not contribute in the convolution
computation.

Figure 3 shows how the à-trous convolution extend kernel
size with the gap being equal to the size of the grid cell
(i.e., stride of 2). The benefit of using à-trous convolution is
two-fold: Firstly, it improves the network speed by avoiding
processing of too many points. Secondly, by changing the
stride, the perceptive field of the kernel can also be extended.
In this way, the filter has a trade-off between two perceptive

fields, i.e., small perceptive field allows accurate localization
while the large perceptive field helps in context assimilation.

C. PROPOSED NETWORK ARCHITECTURE − DEEP
CONVOLUTIONS WITH SHORTCUT CONNECTIONS
Figure 1 provides an overview of the proposed Deep Point
based Residual Network (DPRNet). It takes as input the
spatially sorted 3-D unstructured point cloud and assigns a
label to each point to semantically segment the whole input
scene and output the label of each input point, i.e., each point
is assigned a label category as belonging to a particular object
class. Additionally, the proposed architecture also recognizes
the type of object solely based on the geometric 3D point
representations. The workflow begins by applying a series
of pointwise 3D stacked convolutions to obtain hierarchical
point feature maps that are concatenated and subsequently
fed to a fully connected layer for object recognition and to
an additional pointwise convolution layer to achieve semantic
segmentation. To allow stacking the convolution layers, two
design choices are plausible, i.e., gradually increase either the
kernel radius for each layer or the stride incase of à-trous
convolution in each layer. The latter choice is adopted since
increasing the kernel radius takes much more time for the
network to converge. Thus, the point features are thus learned
using a fixed kernel radius for all layers while gradually
increasing stride in each layer for all experiments.

1) RESIDUAL LEARNING
To allow deeper training by avoiding the so-called vanish-
ing gradient problem, we employed the concept of residual
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FIGURE 4. Basic building block used for residual learning. The same
design is followed for whole deep convolution neural networks.

learning by adding shortcut (or skip) connections [28] that
apply identity mappings whose results later get added to the
output of the two or more bypassed (or in-parallel) stacked
convolution layers, i.e., instead of learning a function, the net-
work learns the residuals to ensure an identity mapping in
every layer. More specifically, let us suppose that H (x) rep-
resents an underlying mapping function that should be fit
after a few stacked layers with the input x to first layers.
If one can make this hypothesis that complicated functions
can be asymptotically approximated by multiple nonlinear
stacked layers, then same is also the case for residual func-
tions, i.e., H (x) −x (assuming dimension of input and out-
put is same). Instead of expecting approximation of H (x)
by stacked layers, let these stacked layers approximate the
residual function F (x) := H (x) + x and then original form
of residual function becomes F (x) + x [31]. It is easier
to approximate identity mapping with residual functions as
compared to approximate with multiple nonlinear stacked
layers [31], [55], [56]. The main thing is that identity map-
ping must be optimal, but it is difficult in real cases, so if
we design a function that is optimal and closer to identity
mapping (than to a zero mapping), then it is easier for a
solver to find the perturbations with reference to an identity
mapping. He et al. [31] showed how such identity mapping
can be performed by a shortcut connection in a simple way.
This is the essence of residual learning where the basic build-
ing block is the residual module (Figure 4) which can be
represented as:

y = F (x, {Wi})+ x (2)

Shortcut connections can be constructed by stacking mul-
tiple convolution layers. Element-wise addition is performed
between two feature maps, channel by channel. They does not
require an extra parameter or extra training time and allow
lower layer to jump directly toward higher layer by skipping
intermediate layers. Addition of such short cut connections
thus allow adding more point based convolution layers in
the proposed architecture consequently yielding better per-
formance.

2) IMPLEMENTATION & NETWORK TRAINING
The whole DPRN architecture is trained from scratch
using stochastic gradient descent (SGD) algorithm with the

following parameters: learning rate = 0.001, momentum =
0.9, decay rate 0.96 and batch size of 32. The architecture
does not use batch normalization. Instead, self-normalizing
activation function [57] − Scaled Exponential Linear Units
(SELU)− has been employed which induce self-normalizing
properties by enabling convergence of activation neurons to
zero mean and unit variance in automatic manner. Moreover,
they have the ability to learn faster and better in comparison
to other activation functions e.g., ReLU [57]. As mentioned
earlier, we gradually increase the stride parameter for dilated
convolution in each layer and simply added the output of
layer1 to the next by stacking two layers in 8-layers model
i.e., (layer3) and so on. In this way, the network turns into
its correspondence residual version. Although, the gradual
increase in the stride parameter on each layer enlarges the
perceptive field of the kernel but does not alter the output
dimension of layers.Moreover, there is no pooling layer in the
architecture which downsample the dimension of the feature
maps on each layer. As a consequent, there is no difference
in the input and output dimensions of layers. In case a pool-
ing layer is to be incorporated, one can use either of the
two options to cope with the difference in input and output
dimensions: 1) Use zero-padding for increasing/decreasing
dimensions (does not require any extra parameter); or 2) Use
a linear projection Ws (performed by 1 × 1 convolution) for
matching dimensions in the residual formulation as [31]:

y = F (x, {Wi})+Wsx (3)

The training and implementation of the proposed deep
point based residual CNN using above configurations is
simple and outperforms in terms of accuracy many exist-
ing semantic segmentation networks. However, for thorough
evaluations reported in the following section IV, we have also
analyzed the performance of our point based residual network
by training with the addition of layers before and after SELU
activation function and by using the pre-activation residual
module in which activation layer precedes the convolutional
layer. In this way the network allows the information to
flow unimpeded throughout the entire network [58]. Figure 5
shows the testing designs for all these various configurations
of the activation function.

For the object recognition network, we also followed the
concatenation of output from all layers and then passed the
concatenated features through two fully connected layers and
used the dropout value of 0.5 between the last two fully
connected layers. Finally, for scene segmentation network,
we added one point based convolutional layer to obtain the
point wise semantic labelling.

IV. EXPERIMENTAL RESULTS & EVALUATION
A. DATASETS
We have evaluated the proposed DPRNet network using three
benchmark datasets including ModelNet40 [44], S3DIS [59]
and SceneNN [60]. The first dataset is the standard bench-
mark for object recognition while the latter two datasets
pertains to the problem of semantic segmentation.
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FIGURE 5. Figure shows the design for various usage of activation
functions: (a) Shows the design where the addition of layers operation is
performed before the SELU activation function; (b) shows the design of
pre-activation (i.e., SELU as pre-activation) residual module; (c) shows the
design of shortcut connection in which the addition of layers operation is
performed after the SELU activation function.

ModelNet40 dataset comprises of 3D CAD models
of 40 object categories. The total number of CAD models
for these objects are 12311 CAD models which are split into
9,843 for training and 2,468 for testing. For object recognition
evaluation task, we follow the same experimental settings as
used in PointNet [25] in which 2048 points are uniformly
sampled from mesh and normalize to the unit sphere. The
input to the classification network is 2048 points with (x, y, z)
coordinates.

S3DIS dataset consists of 6 areas including 271 rooms
captured by matterport scanner. Each point is annotated
with one semantic label from a pool of 13 categories. Each
point has 9 attributes: XYZ coordinates, RGB value and
normalized coordinates with reference to the room place it
belongs to. For scene segmentation, each scene is divided
into 1 × 1 square-meter blocks and sample to 4096 points.
Each block is fed into the network for training. Prediction of
the entire scene is measure by gathering the prediction of all
blocks.

SceneNN dataset is comprised of complex indoor scenes
with relatively higher clutter compared to S3DIS and is there-
fore quite challenging dataset in terms of semantic segmen-
tation. It is essentially an RGB-D scene dataset in which all
scenes have been reconstructed into triangular meshes. The
annotations are available for every vertex of the reconstructed
mesh along with the per-pixel annotation. For semantic seg-
mentation training and evaluation, we have used the same
experimental settings as used in [30] where 76 scenes are
annotated from SceneNN dataset including 40 categories
defined by NYUv2 [61] and are further divided into train
and test set. For training, we used 56 scenes and for testing,
we used 20 scenes as done in [30]. Again, scenes divided
into 2 × 2 square-meter blocks and each block contained
4069 points. Prediction of the entire scene is measure by
gathering the prediction of all blocks.

B. SEMANTIC SEGMENTATION
For scene segmentation task, we have evaluated our DPR-
Net 8-layers network (with single shortcut connections and
SELU after addition). Table 1 shows the scene segmenta-
tion results obtained on S3DIS dataset. We compared accu-
racy of the proposed DPRNet 8-layers segmentation network
with PointNet [25], SGPN [27], pointwise CNN [30] and the
segmentation networks proposed by Engelman et al. [28].
Engelman et al. [28] have proposed two architectures MS +
CU (multi-scale blocks with consolidation units) and G +
RCU (grid-blocks with recurrent consolidation units) and
explored the spatial context by using PointNet [25] as the
feature learner. SGPN [27] also used PointNet [25] as feature
learner and proposed instance segmentation network which
also outputs the semantic segmentation score. As can be
seen, the proposed DRPN 8-layers segmentation network and
attained 83.8% accuracy on S3DIS dataset outperforming all
these state-of-the-art architectures.

TABLE 1. Comparison of semantic segmentation accuracy on S3DIS
dataset.

Figure 6 provides visualization of resultant scenes after
semantic segmentation on S3DIS dataset [59]. As can be seen
that the results are much better in case of non-overlapping
structures e.g., walls, floor etc. For overlapping regions,
we see some prediction inconsistencies which could be
addressed using an additional post processing smoothing step
(e.g., inclusion of conditional random field).

Table 2 presents the per-class accuracy results on S3DIS
dataset. In terms of quantitative analysis, we can see that
the proposed DPRNet per-class accuracy outperforms other
state-of-the-art architectures including PointNet [25] and
pointwise CNN [30]in many common classes.

TABLE 2. Comparison of semantic segmentation per-class accuracy on
S3DIS dataset [59].

To further evaluate the performance of the proposed
DPRNet 8-layers segmentation network, we obtained the
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FIGURE 6. Visualization of semantic scene segmentation results obtained using S3DIS dataset. In this figure (a) shows ground truth segmentation and
(b) shows DPRNet segmentation.

TABLE 3. Comparison of semantic segmentation per-class accuracy on
sceneNN dataset [60].

results on SceneNN containing complex indoor scenes of
e.g., bedroom, kitchen, living room etc. Figure 7 provides
visualization of resultant semantically segmented scenes of
SceneNN dataset. While the results obtained over per-class
accuracies and their comparison with reported Voxnet [22],
SemanticFusion [48], PointNet [25] and pointwise [30] seg-
mentation networks are presented in 3. It can be seen
that the proposed DPRNet is competitive to other state-of-
the-art networks in different object categories. In general
we see a degraded performance of the VoxNet architec-
ture owing to limited resolution. Moreover, the proposed
DPRNet network has significantly improved accuracies in

TABLE 4. Comparison of accuracy between ours DPRNet networks and
the pointwise CNN deep plain networks. These experiments are done on
ModelNet40 [44] dataset.

cases of categories including floor, chair, and bed. Further-
more, these results are obtained without performing and
any post processing to smooth label predictions which some
approaches (e.g., SemanticFusion) does to smooth the label
predictions.

C. OBJECT RECOGNITION
Table 4 and Table 5 shows a comparison of overall and
per-class accuracies obtained over ModelNet40 dataset using
the proposed DPRNet 8-layers, and 16-layers (with SELU
after addition) with PointNet [25] and pointwise CNN [30]
respectively. It can be seen that the performance in object
recognition task is comparable to existing state-of-the-art
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FIGURE 7. Visualization of semantic scene segmentation results obtained using SceneNN dataset. In this figure (a) shows ground truth segmentation and
(b) shows DPRNet segmentation.

TABLE 5. Comparison of per-class classification accuracy on ModelNet40 [44] dataset.

architectures. Despite of the fact that PointNet achieves
higher accuracy, the proposed DPRNet is much simpler in
design. We also compared the accuracies obtained on Point-
wise CNN extended to 8 and 16 layers (Table 4) to see
the effect of merely increasing the network layers without
residual connections. As evident, the use of residual learning
does increase the overall network accuracy.

D. ABLATION STUDY
We have performed all experiments for object recognition
with batch size of 32, and initial learning rate of 0.001 with
decay rate of 0.96 and momentum of 0.9. The batch size is
empirically set and the effect of it to the resulting accuracy
is depicted in Table 6 where network accuracies with batch
sizes of 32, 64 and 128 are reported.
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FIGURE 8. Training accuracy vs epoch graph for networks with different layers. The training accuracy of our proposed DPRNet 8-,16-layers
compared with pointwise CNN [30] 4-layer network for object recognition and our proposed DPRNet 8-layers with pointwise CNN [30] 4-layer
network for segmentation task, (a) shows comparison of training accuracy on object recongition task (b) shows comparison of training accuracy
on scene semantic segmentation task.

TABLE 6. Difference in accuracy is depcited when batch size is increased.

We have also evaluated the proposed DPRNet accu-
racy with the addition of layers output before and after
self-normalizing activation function (SELU). We adopted
this idea from [58] where different variants of residual
learning are defined and different experiments are per-
formedwith various usage of activation functions. [58] exper-
imented with 1000+ layers and showed that the error rate
increases with the addition operation performed after ReLU
activation function which is also the case in our experi-
ments with SELU (although there was a minor difference
in accuracies). Similarly, we have also evaluated our deep
network accuracy with the pre-activation residual module in
which activation function layer comes before the convolu-
tional layer. In this way information is able to flow unimpeded
throughout the entire network. Please refer to Figure 5 for
visual illustration. Table 7 depicts the results achieved by
applying SELU before and after the addition operation using
pre-activation and post-activation residual module.

E. TRAINING TIMES & HARDWARE
Figure 8 shows the graphical representation of how training
accuracy improves when more layers are added with shortcut
connections. In comparison with the base 4-layer pointwise
CNN [30] architecture, we see the improvement in training
accuracies with the increase in network depth and addition of
shortcut connections.

The proposed DPRNet 8-layers network takes around
4-5 days of training and DPRNet 16-layers network takes

TABLE 7. Comparison of accuracy with various usage of activation
function for DPRNet 8-layers network.

7-8 days for scratch training. The previous estimates are
obtained using batch size of 32 for all experiments with
a single Tesla K80 GPU equipped desktop computer with
following details: Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz and 16GBRAM. The total GPUmemory consumed
while training is around 10 GB. These training times can be
easily improved using a multi GPU environment.

V. CONCLUSION & OUTLOOK
In this paper, we have presented a deep point based convo-
lution architecture that is able to perform semantic segmen-
tation of individual points as well as recognize the object
category using a group of points. The architecture is able to
consume raw unstructured 3D point clouds as input and does
not require an additional step of voxelization. Despite being
a simple architecture, the proposed network design provides
better accuracy competitive accuracies in comparision to the
existing state-of-the-art architectures. The presented results
are expected to further stimulate the use of deep architectures
in processing raw point clouds obtained from variety of 3D
sensors.

In relation to the proposed network architecture, following
are few design parameters that are worth to be mentioned and
further explored:
• Point Based Convolution: The point based convolution
operator essentially takes the mean point values in each
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grid cell and assign them the sameweight without taking
into consideration their distance to the point of interest.
In this regard, the grid cells may be weighted such that
the nearest grid cells contribute more compared to the
farther ones in convolution computation. A Gaussian
weighting function assigning decaying weights to the
grid cells may be good choice for initial future study.

• Network Architecture Design: The proposed architec-
ture comprising of shortcut connections has the ability
to semantically segment and recognize different objects
using unstructured point clouds. Another worth to try
concept is similar to the one proposed in DenseNet
architecture [62] where each layer is directly connected
to each other in the network making dense direction
connections. DenseNets also avoid vanishing gradient
problem and have the ability to reuse features while
substantially reducing the number of parameters.

• Neighborhood Selection (Grid Cell Size): The size of
the grid cells have been fixed in the proposed study.
For optimal network design in terms of architecture with
fewer hyperparameters, an adaptive grid size selection
based on k-nearest neighbor approach, e.g., as proposed
in [30], may be employed.

• Hybrid features (Deep + hand crafted features): Only
deep point based convolution features have been used for
both semantic segmentation and objection recognition
tasks. Another possible future direction may be to incor-
porate conventional 3D point cloud features including
surface normals, plane residuals, eigen based features,
point density etc. with the deep features via concatena-
tion before the fully connected layer. Such a combina-
tionmay potentially yield good performance particularly
for object recognition [63].
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