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ABSTRACT This paper presents a control strategy named auxiliary surfaces slidingmode control (AS-SMC)
by using Positive Invariant Set (PIS) to control a class of continuous nonlinear systems with state constraints.
The PIS can be regarded as a special kind of sliding surface, and its invariance ensures that the system state
can satisfy the constraints in the convergence process. The stability analysis and a PIS theory proof are
given. The control strategy is successfully tested in numerical simulations and even effectively applied to
the coaxial unmanned helicopter flight control system on hardware in the loop (HIL) platform. The results
verify the effectiveness of the proposed control strategy for the experimental set-up.

INDEX TERMS Nonlinear system, positive invariant set (PIS), auxiliary surfaces (AS), sliding mode
control (SMC), state constraints.

I. INTRODUCTION
Sliding Mode Control (SMC) is widely used in practical
applications for its robust to bounded external disturbances
and internal dynamics [22], [23], [24], [9], [1], [6], [20], [11],
[12], [8]. In order to improve the robustness of satisfying
state constraints and to deal with the robustness of actuator
constraints, scholars have conducted a series of studies: [10]
proposed a nonlinear sliding surface to ensure that the control
signal generated by the controller did not exceed the bounds
of a system input, but the state constraints were not consid-
ered. Reference [18] presented a first attempt of a sliding
mode control to consider constraints in the state. Several
related methodologies of other researchers also conducted
in-depth research on state constraints [15], [16], [19]. Further
studies are required to understand how to satisfy the state
constraints of the system when using SMC.

Positive Invariant Set(PIS) research has important signifi-
cance in the study of the state constraints problem in control
theory [2], [14], [5], [17], [13], [25], [3], [21]. Among the
many studies, there are no discussions on how SMC can be
used so that the constraints are satisfied. Reference [7] pro-
posed a Sliding Mode Control With Unidirectional Auxiliary
Surfaces (UAS-SMC) by combining the benefit of SMC
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and PIS, but the area of the PIS was not large enough to
maintain the state within the constraints under some extreme
initial conditions. Reference [3] proposed a terminal sliding
mode controller with PIS. Although the algorithm improves
the computational capability, the real-time performance of
the proposed algorithm does not necessarily meets practical
engineering requirements.

Many practical engineering problems that have state con-
straints in the form of physical constraints, saturation, or per-
formance and safety specifications [29], [30]. For example,
the attitude of unmanned helicopter should not exceed the
safety angle, otherwise it will tip over. However, the external
influences, such as the wind, will inevitably produce a signif-
icant change in attitude. How to counteract the disturbance
to keep the unmanned helicopter safe, this is a typical state
constraints problem in flight control.

In this paper, we introduce an Auxiliary Surfaces Slid-
ing Mode Control (AS-SMC) design strategy by using
PIS to solve a class of continuous nonlinear system with
state constraints. The main contributions of this paper
are:

1) The invariance of PIS and the invariance of SMC in
sliding mode phase are correlated for the first time to cope
with the system state constraints.

2) On the promise of meeting the computational capability,
the designed PIS covers the maximum value of the state
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constraints range, so that the control input keeps the system
state within the constraints all the time.

3) This paper verifies that the new strategy can be used in
engineering application, and it is first applied to the coaxial
unmanned helicopter flight control system successfully. The
designed PIS can make the unmanned helicopter attitude
angle and angular rate (state) not to exceed the maximum
constraints, so as to satisfy the flight safety requirements of
the unmanned helicopter.

This paper is organized as follows. The second section
presents the problem statement. Then AS-UAS by using PIS
design steps are described. The stability analysis and PIS
theory proof is given in section IV. The experimental results
and analysis are given in section V.

II. PROBLEM FORMULATION
Consider the following general nonlinear uncertain system
with state constraints:

Ẋ = f (X )+ g(X )u+ η (1)

where X = [x1, · · · , xj, · · · , xn]T ∈ Rn is the system state
vector and the full-state vector X is available for feedback.
u ∈ Rm is the control input, f (X ) ∈ Rn, g(X ) ∈ Rn×m

are continuous functions, η = [η1, · · · , ηj, · · · , ηn]T ∈ Rn

denotes the disturbance. It is assumed that f (X ) and g(X )
are known, and η is bounded. Throughout this paper, Rn×m

represents the n × m-dimensional Euclidean spaces; | · |
denotes the absolute value, ‖ · ‖ denotes the euclidean vector
norm or the induced matrix 2-norm.
Assumption 1: The disturbance of the system is bounded,

that is |ηj| ≤ vj, vj is a constant, j ∈ {1, . . . , n}.
Note 1: For Assumption 1, the uncertainties values do not

require accurate upper bound in the actual design process.
As long as the approaching law Ni is greater than vi the
requirements of the controller design are satisfied, that is

Ni > sup{−
n∑
j=1

ωij1ηj}.

The state constraints$ and the state integral constraints γ
are formulated as follows:

$ =
{
X̄ | X̄ = [x̄1, · · · , x̄i, · · · , x̄m]T ∈ Rm, ni ≤ x̄i ≤ mi

}
γ = {

∫
X̄ |

∫
X̄=

[∫
x1, · · · ,

∫
xi, · · · ,

∫
xm

]T
∈ Rm,

pi ≤
∫
xi ≤ qi} (2)

where x̄i =
n∑
j=1

Iijxj,
∫
x̄i =

n∑
j=1
ξij
∫
xj, Iij, ξij and nj,mj, pj, qj

are constant values, i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}. The
state constraints and the state integral constraints can also
be expressed in the graphical form shown in Figure 1. The
yellow shaded area between x̄i ∈ [ni,mi] and

∫
x̄i ∈ [pi, qi]

shows the constraints region. Lines S1i, S2i, S3i are the switch-
ing surfaces. Quadrangular PS1i+PS1i−PS2i+PS2i− shown in

blue color is the PIS proposed by [7]. Point P indicates the
system state initial value. Points PN and PU indicate the
minimum value of system state following the normal SMC
method and the UAS-SMC method respectively. The system
state may exceed the state constraints following the normal
SMC method, while the UAS-SMC takes advantage of the
PIS to constraint the system state, the situation is improved
to a certain degree. However, if the system state initial value
is outside the PIS, then we cannot guarantee that the state is
always in the range of the constraints. In that case it is nec-
essary to extend the PIS as much as possible. The controller
should be such that the system state evolves along the ideal
red line shown in Figure 1.

FIGURE 1. The trajectory of system state and its constraints.

The proposed strategy preserves the robustness, while at
the same time contains and expands the positive invariant
set formed by four auxiliary surfaces in the original proposal
to an enlarged positive invariant set formed by six auxiliary
surfaces, leading to superiority in control effects within non-
linear system. Linking the state constraints to the PIS makes
good use of the excellent properties of the positive invariant
set: the system state entering the PIS always runs within it
until it tends to the origin. Whether the considered state can
satisfy the constraints becomes the problem that the consid-
ered state is inside the positive invariant set. If the system state
is inside the positive invariant set, the state constraints can be
satisfied.

III. AUXILIARY SURFACES SLIDING
MODE CONTROLLER DESIGN
Before we design the AS-SMC using PIS formed by six aux-
iliary surfaces, the traditional integral sliding mode control
method is first introduced. The form of its sliding surface is
often designed as

S(X ) = C[X ,
∫
X ]T = 0 (3)
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and the approaching law N of the integral sliding mode
control can be designed as:

N = Ṡ(X ) = −ε tanh(S), ε > 0 (4)

where X = [x1, · · · , xj, · · · , xn]T ∈ Rn,
∫
X = [

∫
x1, · · · ,∫

xj, · · · ,
∫
xn]T , the term

∫
xj dt is denoted as

∫
xj, S(X ) =

[S1(X ), · · · , Si(X ), · · · , Sm(X )]T ∈ Rm,C = [I ,D] ∈
Rm×2n, I = [I1, · · · , Ii, · · · , Im]T ∈ Rm×n, D =

[C1, · · · ,Ci, · · · ,Cm]
T
∈ Rm×n, Ci = [ξi1, · · · , ξin] ∈

R1×n, Ii = [Ii1, · · · , Iin] ∈ R1×n. The hyperbolic tangent
function tanh(*) is used to substitute the symbolic function
sgn(*). For the i-th switching surface Si(X ) in (3), its repre-
sentation can be written as:

Si(X ) =
n∑
j=1

(Iijxj + ξij

∫
xj), i ∈ {1, · · · ,m} (5)

Similar to the traditional integral sliding mode control,
the AS-SMC for (1) can be designed using the following
steps:
Step1: Select the appropriate switching surfaces S1i(X ),

S2i(X ), and S3i(X )

S1i(X ) =
n∑
j=1

(I1ijxj + ξ1ij

∫
xj);

S2i(X ) =
n∑
j=1

(I2ijxj + ξ2ij

∫
xj);

S3i(X ) =
n∑
j=1

(I3ijxj + ξ3ij

∫
xj);

(6)

where S1i(X ), S2i(X ), S3i(X ) exists, x̄i =
n∑
j=1

Iijxj,
∫
x̄i =

n∑
j=1
ξij
∫
xj, I1ij, I2ij, I3ij, ξ1ij, ξ2ij, ξ3ij are the switching surface

gains,
n∑
j=1
ξ1ij > 0,

n∑
j=1
ξ2ij > 0,

n∑
j=1
ξ3ij > 0,and I1ij = I2ij =

I3ij = Iij, ξ1ij = τ1 ·ξij, ξ2ij = τ2 ·ξij, ξ3ij = τ3 ·ξij, τ1>τ3>τ2.
Step2: The two-dimensional space (x̄i,

∫
x̄i) expanded by

x̄i and
∫
x̄i are divided into six subspaces by switching sur-

faces S1i, S2i, S3i. TheNo.0i, 1i, 2i, 3i, 4i, 5i subspaces can be
defined as in Figure 2, where

No.0i =
{
(x̄i,

∫
x̄i) | S1i < 0, S2i < 0, S3i < 0

}
No.1i =

{
(x̄i,

∫
x̄i) | S1i < 0, S2i > 0, S3i < 0

}
No.2i =

{
(x̄i,

∫
x̄i) | S1i < 0, S2i > 0, S3i > 0

}
No.3i =

{
(x̄i,

∫
x̄i) | S1i > 0, S2i > 0, S3i > 0

}
No.4i =

{
(x̄i,

∫
x̄i) | S1i > 0, S2i < 0, S3i > 0

}
No.5i =

{
(x̄i,

∫
x̄i) | S1i > 0, S2i < 0, S3i < 0

}
(7)

FIGURE 2. The switching surfaces S1i ,S2i ,S3i divide the state space into
six subspaces.

FIGURE 3. No.0i , · · · ,5i subspaces and the auxiliary surfaces
H0i , · · · ,H5i .

Then, according to the state constraints, points PS1i+,
PS1i−,PS2i+,PS2i−, PS1i+,PS1i− (presented in Figure 3) are
selected to fulfill the following conditions:

S1i(PS1i+) = 0, S1i(PS1i−) = 0

S2i(PS2i+) = 0, S2i(PS2i−) = 0

S3i(PS3i+) = 0, S3i(PS3i−) = 0 (8)

Points PS1i+,PS1i−,PS2i+,PS2i−,PS3i+,PS3i− are con-
nected to constitute a convex hexagon 4. The lines
PS1i+PS2i−,PS2i−PS3i−,PS3i−PS1i−,PS1i−PS2i+,PS2i+PS3i+,
PS3i+PS1i+ are auxiliary surfaces H0i,H1i,H2i, H3i, H4i, H5i
respectively. The equations of these auxiliary surfaces are
expressed as:

Hki =
n∑
j=1

(ωkij1xj + ωkij2

∫
xj +Mkij) (9)
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where ωkij1 6= 0, Mkij > 0, and the subscript k ∈ {0, · · · , 5}
in Hki, ωkij1 , ωkij2 denotes the serial number of the subspaces,
the subscript j1 in ωkij1denotes the first coefficient and j2
in ωkij2 denotes the second coefficient, and the subscript
i ∈ {1, · · · ,m} indicates the i-th switching surface of S(X ).
Auxiliary surfaces H0i = 0,H1i = 0,H2i = 0,H3i = 0,
H4i = 0,H5i = 0 represent lines PS1i+PS2i−, PS2i−PS3i−,
PS3i−PS1i−, PS1i−PS2i+, PS2i+PS3i+, PS3i+PS1i+ in their 2D
space. The set Q =

{
(x̄i,

∫
x̄i) | Hki > 0, k = 0, 1, · · · , 5.

}
denotes all points inside convex hexagon 4. Q is a positive
invariant set as will be demonstrated in section IV.
Step3: Similar to the normal integral sliding mode switch-

ing surface Si(X ) shown in (5), the current AS-SMC switch-
ing surface Hi(X ) can be expressed as:

Hi(X ) =
n∑
j=1

(ωij1xj + ωij2

∫
xj + mij) (10)

where

ωij1 =



ω0ij1 , No.0i
ω1ij1 , No.1i
ω2ij1 , No.2i
ω3ij1 , No.3i
ω4ij1 , No.4i
ω5ij1 , No.5i

ωij2 =



ω0ij2 , No.0i
ω1ij2 , No.1i
ω2ij2 , No.2i
ω3ij2 , No.3i
ω4ij2 , No.4i
ω5ij2 , No.5i

mij =



M0ij, No.0i
M1ij, No.1i
M2ij, No.2i
M3ij, No.3i
M4ij, No.4i
M5ij, No.5i

For the special sliding surface Hi(X ) of the AS-SMC,
the coefficients ωij1 and ωij2 can be calculated according
to the state constraints $ , the state integral constraints γ ,
and the switching surface gains ξ1ij, ξ2ij, ξ3ij. The calculation
steps are as follows:

i) Determine the point Ps3i+ and point Ps3i−
According to the state constraints $ and the state inte-

gral constraints γ , the point Ps3i+(−ξ3ij, 1) and the point
Ps3i−(ξ3ij,−1) are chosen on switching surface S3i in order
to satisfy the state constraints and the integral constraints
simultaneously.

ii) Determine the points Ps1i+, Ps1i− and the points
Ps2i+, Ps2i−

According to the parallel property (20), the slope of switch-
ing surface S2i = 0 and the point coordinates Ps3i+(−ξ3ij, 1)
and Ps3i−(ξ3ij,−1), the lines Ps3i+Ps1i+ and Ps3i−Ps1i− are
obtained by the point oblique equation. Where the auxiliary
surfaceH5i(Ps3i+Ps1i+) is

∫
xi−1 = ξ2ij(xi+ ξ3ij), the auxil-

iary surface H2i(Ps3i−Ps1i−) is
∫
xi + 1 = ξ2ij(xi − ξ3ij). The

two auxiliary surfaces intersect the switching surface S1i =
0 at Ps1i+ and Ps1i−, respectively. The point coordinates
of Ps1i+ and Ps1i− are Ps1i+

(
−
ξ1ij(1+ξ2ijξ3ij)
1+ξ1ijξ2ij

,
1+ξ2ijξ3ij
1+ξ1ijξ2ij

)
and

Ps1i−
(
ξ1ij(1+ξ2ijξ3ij)
1+ξ1ijξ2ij

, −
1+ξ2ijξ3ij
1+ξ1ijξ2ij

)
. Similarly, according to the

parallel property (20), the slope of switching surface S1i = 0
and the point coordinates Ps3i+(−ξ3ij, 1) and Ps3i−(ξ3ij,−1),
the auxiliary surfaces H4i(Ps3i+Ps2i+) and H1i(Ps3i−Ps2i−)
are obtained by the point oblique equation. Where the aux-
iliary surface H4i(Ps3i+Ps2i+) is

∫
xi − 1 = ξ1ij(xi +

ξ3ij), the auxiliary surface H1i(Ps3i−Ps2i−) is
∫
xi + 1 =

ξ1ij(xi− ξ3ij). The two auxiliary surfaces intersect the switch-

ing surface S2i = 0 at Ps2i+
(
−
ξ2ij(1+ξ1ijξ3ij)
1+ξ1ijξ2ij

,
1+ξ1ijξ3ij
1+ξ1ijξ2ij

)
and

Ps2i−
(
ξ2ij(1+ξ1ijξ3ij)
1+ξ1ijξ2ij

, −
1+ξ1ijξ3ij
1+ξ1ijξ2ij

)
, respectively. It is easy to

get the following results: ω1ij1 = ξ1ij, ω1ij2 = 1, M1ij =

−1 − ξ2ijξ3ij, ω2ij1 = ξ2ij, ω2ij2 = 1, M2ij = −1 − ξ2ijξ3ij,
ω4ij1 = ξ1ij, ω4ij2 = 1, M4ij = 1 + ξ1ijξ3ij, ω5ij1 = ξ2ij,
ω5ij2 = 1, M5ij = 1+ ξ2ijξ3ij.

iii) Determine the ω0ij1 , ω0ij2 ,M0ij, ω3ij1 , ω3ij2 ,M3ij
Since the coordinates of points Ps1i+, Ps1i−, Ps2i+, and

Ps2i− are obtained by i) and ii), and according to the two-point
coordinate equation, the auxiliary surfaces H0i(Ps1i+Ps2i−)
and H3i(Ps2i+Ps1i−) are obtained. Where the auxiliary sur-
face H0i is (

∫
xi+

1+ξ1ijξ3ij
1+ξ1ijξ2ij

)/( 1+ξ2ijξ3ij1+ξ1ijξ2ij
+

1+ξ1ijξ3ij
1+ξ1ijξ2ij

) = (xi −
ξ2ij(1+ξ1ijξ3ij)
1+ξ1ijξ2ij

)/(− ξ1ij(1+ξ2ijξ3ij)1+ξ1ijξ2ij
−

ξ2ij(1+ξ1ijξ3ij)
1+ξ1ijξ2ij

), the auxiliary

surface H3i is (
∫
xi+

1+ξ2ijξ3ij
1+ξ1ijξ2ij

)/( 1+ξ1ijξ3ij1+ξ1ijξ2ij
+

1+ξ2ijξ3ij
1+ξ1ijξ2ij

) =

(xi −
ξ1ij(1+ξ2ijξ3ij)
1+ξ1ijξ2ij

)/(− ξ1ij(1+ξ2ijξ3ij)1+ξ1ijξ2ij
−

ξ1ij(1+ξ2ijξ3ij)
1+ξ1ijξ2ij

). Thus we

got ω0ij1 = 1/(− ξ1ij(1+ξ2ijξ3ij)1+ξ1ijξ2ij
−

ξ2ij(1+ξ1ijξ3ij)
1+ξ1ijξ2ij

), ω0ij2 =

1/( 1+ξ2ijξ3ij1+ξ1ijξ2ij
+

1+ξ1ijξ3ij
1+ξ1ijξ2ij

), M0ij =
ξ2ij(1+ξ1ijξ3ij)
1+ξ1ijξ2ij

/( ξ1ij(1+ξ2ijξ3ij)1+ξ1ijξ2ij
+

ξ2ij(1+ξ1ijξ3ij)
1+ξ1ijξ2ij

) − 1+ξ1ijξ3ij
1+ξ1ijξ2ij

/( 1+ξ2ijξ3ij1+ξ1ijξ2ij
+

1+ξ1ijξ3ij
1+ξ1ijξ2ij

), ω3ij1 =

1/( ξ1ij(1+ξ2ijξ3ij)1+ξ1ijξ2ij
−

ξ1ij(1+ξ2ijξ3ij)
1+ξ1ijξ2ij

), ω3ij2 = 1/( 1+ξ1ijξ3ij1+ξ1ijξ2ij
+

1+ξ2ijξ3ij
1+ξ1ijξ2ij

), and finallyM3ij = −
1+ξ2ijξ3ij
1+ξ1ijξ2ij

/( 1+ξ1ijξ3ij1+ξ1ijξ2ij
+

1+ξ2ijξ3ij
1+ξ1ijξ2ij

)

−
ξ1ij(1+ξ2ijξ3ij)
1+ξ1ijξ2ij

/( ξ1ij(1+ξ2ijξ3ij)1+ξ1ijξ2ij
−

ξ1ij(1+ξ2ijξ3ij)
1+ξ1ijξ2ij

).
Step4: Referring to the form of (5), we rewrite (10) as

follow:

Hi(X ) =
n∑
j=1

(wij1xj + wij2

∫
xj)+

n∑
j=1

mij, i ∈ {1, · · · ,m}

(11)

That is

Hi(X ) = Ĉi[xj,
∫
xj]T +Mi (12)

where Ĉi = [Ĉi1, Ĉi2], Ĉi1 = [ωi11 , · · · , ωin1 ] ∈ R
1×n, Ĉi2 =

[ωi12 , · · · , ωin2 ] ∈ R
1×n, Mi =

n∑
j=1

mij, i ∈ {1, · · · ,m}

Referring to the form of (3), the AS sliding surface can be
written in a compact form:

H = Ĉ[X ,
∫
X ]T +M (13)

where H = [H1, · · · ,Hi, · · · ,Hm]T ∈ Rm, Ĉ =

[�1, �2] ∈ Rm×2n, �1 = [Ĉ11, · · · , Ĉi1, · · · , Ĉm1]T ∈
Rm×n, �2 = [Ĉ12, · · · , Ĉi2, · · · , Ĉm2]T ∈ Rm×n,M =

[M1, · · · ,Mm]T ∈ Rm.
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By solving the differential equation Ḣ (u) = N , we can
design the AS sliding mode control law for (1) of the form

u = [�1g(X )]−1[−�1f (X )−�2X + N ] (14)

where the approaching law N=diag[N1, · · · ,Ni, · · · ,Nm]T ,

and Ni > sup{−
n∑
j=1

ωij1ηj}.

FIGURE 4. Point P coordinate transformation schematic diagram.

IV. THE AUXILIARY SURFACES SLIDING
MODE CONTROL STABILITY PROOF
Lemma 1: Point Pj(xj, yj) = Pj(xj,

∫
xj) is located in No.ki

subspace for the state xj as shown in Figure 4. Any two adja-
cent points in points PS1i±,PS2i±,PS3i± ∈ {PS1i+,PS1i−,
PS2i+PS2i−,PS3i+,PS3i−} constitute the local auxiliary sur-
face (15) in No.ki subspace.

Hki(Pj) = ωkij1xj + ωkij2

∫
xj +Mkij,Mkij > 0 (15)

Thus for the point Pj, we haveMkij−Hki(Pj) > 0, and Pj(0, 0)
if and only if Hki(Pj) = Mkij.

Proof: Reference to Appendix A in [26]. �
Lemma 2: For the point set P(t) = {P1(x1(t), y1(t)), · · · ,

Pj(xj(t), yj(t)), · · · ,Pn(xn(t), yn(t))}, which is on the auxil-
iary surface (9), we have

Hki(P)=
n∑
j=1

Hki(Pj)=
n∑
j=1

(ωkij1xj+ωkij2

∫
xj +Mkij) (16)

where Mkij > 0. Thus for the point set P, we have
n∑
j=1

Mkij −

Hki(P) > 0, and P = {P1(0, 0), · · · ,Pj(0, 0), · · · ,Pn(0, 0)}

if and only if Hki(P) =
n∑
j=1

Mkij.

Proof: Without loss of generality, points PS1i− =
(x1j , y

1
j ) and PS3i− = (x3j , y

3
j ) are connected to form the

auxiliary surface H2i. Since points PS1i− and PS3i− are on
the line of the auxiliary surface H2i, we have

H2i(PS1i±) =
n∑
j=1

(ω2ij1x
1
j + ω2ij2y

1
j +M2ij) = 0

H2i(PS3i±) =
n∑
j=1

(ω2ij1x
3
j + ω2ij2y

3
j +M2ij) = 0

(17)

Since point Pj is located in the No.2i subspace, we have
−→
OPj = k1j

−−−−→
OPjS1i± + k2j

−−−−→
OPjS3i±, k1j > 0, k2j > 0

Thus, the coordinates of point Pj can be converted into the
following expression

Pj = ((k1j x
1
j + k

2
j x

3
j ), (k

1
j y

1
j + k

2
j y

3
j )) (18)

Substituting (18) into (16), we have

H2i(P)

=

n∑
j=1

[ω2ij1 (k
1
j x

1
j + k

2
j x

3
j )+ ω2ij2 (k

1
j y

1
j + k

2
j y

3
j )+M2ij]

=

n∑
j=1

[k1j (ω2ij1x
1
j + ω2ij2y

1
j )+ k

2
j (ω2ij1x

3
j +ω2ij2y

3
j )+M2ij]

=

n∑
j=1

[k1j (ω2ij1x
1
j + ω2ij2y

1
j +M2ij)

+ k2j (ω2ij1x
3
j +ω2ij2y

3
j +M2ij)−(k1j M2ij+k2j M2ij)+M2ij]

(19)

Substituting (17) into (19), we have

H2i(P) =
n∑
j=1

[−(k1j M2ij + k2j M2ij)+M2ij]

Thus
n∑
j=1

M2ij − H2i(P) =
n∑
j=1

[(k1j M2ij + k2j M2ij)]

Since k1j > 0, k2j > 0,M2ij > 0, we thus have

n∑
j=1

M2ij − H2i(P) > 0

Without loss of generality, any auxiliary surface which is
located in No.ki subspace has the following conclusion:

n∑
j=1

Mkij − Hki(P) > 0

When Hki(P) =
n∑
j=1

Mkij, since k1j > 0, k2j > 0,Mkij > 0,

we get k1j = 0, k2j = 0. And from (18), we have P =
{P1(0, 0), · · · ,Pj(0, 0), · · · ,Pn(0, 0)} if and only ifHki(P) =
n∑
j=1

Mkij. �
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FIGURE 5. The movement of point Pj in No.ki subspace schematic
diagram.

Definition 3: Points P̂S2i+P̂S3i+P̂S1i+P̂S2i−P̂S3i−P̂S1i−
are connected to form a convex hexagon δ, Points
PS2i+PS3i+PS1i+PS2i−PS3i−PS1i− are connected to form a
convex hexagon 1. As shown in Figure 5, the sides of the
convex hexagon δ and 1 have the following properties:

P̂S2i+P̂S3i+ ‖ PS2i+PS3i+ ‖ P̂S1i+P̂S1i−

‖ P̂S2i−P̂S3i− ‖ PS2i−PS3i−

P̂S3i+P̂S1i+ ‖ PS3i+PS1i+ ‖ P̂S2i+P̂S2i−

‖ P̂S3i−P̂S1i− ‖ PS3i−PS1i−

P̂S1i+P̂S2i− ‖ PS1i+PS2i− ‖ P̂S3i+P̂S3i−

‖ P̂S1i−P̂S2i+ ‖ PS1i−PS2i+

(20)

where the symbol ‖ indicates parallel. Point set P(t) is on the
boundary of the convex hexagon δ.
1) If Hki(P(t)) > 0, k = 0, · · · , 5, then point set P(t) is

inside the convex hexagon 1.
2) If Hki(P(t)) < 0, k = 0, · · · , 5, then point set P(t) is

outside the convex hexagon 1.
Theorem 4: For nonlinear system (1), the controller

(14) can guarantee the closed loop system state X =

[x1, · · · , xj, · · · , xn]T asymptotically stable and the convex
set

Q =
{
(x̄i,

∫
x̄i) | Hki(P(t)) > 0

}
, i ∈ {1, · · · ,m},

k = 0, · · · , 5. (21)

is a positive invariant set. In other words, for point set
P(t) = {P1(x1(t), y1(t)), · · · ,Pj(xj(t), yj(t)), · · · ,Pn(xn(t),
yn(t))}, if there is P(t0) inside the convex hexagon 1, then
for t > t0, P(t) is also inside the convex hexagon 1.

Proof: 1) First the stability proof is given.
For the point setP={P1(x1, y1), · · · ,Pj(xj, yj), · · · ,Pn(xn,

yn)}, we construct the convex hexagons 1 according to

Definition 1. A candidate Lyapunov function is chosen as

V =
1
2


n∑
j=1

Mkij − Hki(P(t))

n∑
j=1

Mkij


2

(22)

First of all, V > 0 will be proved, and if V = 0, then
X = 0.

From (22), it is easy to know that V > 0. When

V = 0, we have Hki(P(t)) =
n∑
j=1

Mkij. And according to

Lemma IV.2, Hki(P(t)) =
n∑
j=1

Mkij means P = {P1(0, 0), · · · ,

Pj(0, 0), · · · ,Pn(0, 0)}. Thus we have V > 0, and if V = 0,
X = [x1, · · · , xn]T = 0

Then, V̇ < 0 will be proved if X 6= 0. Differentiating (22),
we obtain

V̇ = −

n∑
j=1

Mkij − Hki(P(t))

n∑
j=1

Mkij

· Ḣki(P(t)) (23)

From Lemma IV.2, we have
n∑
j=1

Mkij −Hki(P(t)) > 0. And

when
n∑
j=1

Mkij = Hki(P(t)), we have X = [x1, · · · , xn]T = 0.

Thus,
n∑
j=1

Mkij − Hki(P(t)) > 0 holds if X 6= 0.

Differentiating (13), we obtain

Ḣ = �1Ẋ +�2X + Ṁ (24)

Substituting (1) and (14) into Ḣ (X ), we obtain Ḣ =

N + �1 · η. Thus the i-th AS switching surface in No.ki

subspace is Ḣki = Ni +
n∑
j=1
ωij1ηj. And from (14) we know

that Ni > sup{−
n∑
j=1
ωij1ηj}, thus Ḣki(P(t)) > 0. Since

n∑
j=1

Mkij − Hki(P(t)) > 0, Ḣki(P(t)) > 0,
n∑
j=1

Mkij > 0, thus

according to (23) we have V̇ < 0.
To sum up, we have the conclusion: if point set P =
{P1(x1, y1), · · · ,Pn (xn, yn)} 6= {P1(0, 0), · · · ,Pn(0, 0)},
then V̇ < 0.

The continuity of Lyapunov function V is also proved.
The discussion for the continuity of Lyapunov function V
will focus on the point which is switching between adja-
cent subspaces. Take point P̂j(t) which is switching between
the No.1i and No.2i subspaces as an example. Without loss
of generality, we assume point P̂j(t) coincides with point
P̂S3i− = P̂j(xj, yj) shown as Figure 6. It is apparent that point
P̂j(t) and point P̂S3i− are located on the switching surface Ŝ3i.
Then, the coordinate of point P̂j(t) can be expressed as

P̂j(t) = P̂j(λjxj, λjyj), λj > 0 (25)
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FIGURE 6. P(t) is switching between the switching surface S3i and No.ki
subspace.

Invoking (25) into (16), we have

H1i(P) =
n∑
j=1

H1i(P̂j)

=

n∑
j=1

λj(ω1ij1xj + ω1ij2yj +M1ij)

+

n∑
j=1

(−λjM1ij +M1ij)

H2i(P) =
n∑
j=1

H2i(P̂j)

=

n∑
j=1

λj(ω1ij1xj + ω2ij2yj +M2ij)

+

n∑
j=1

(−λjM2ij +M2ij) (26)

Substituting (17) into (26), we have

n∑
j=1

H1i(P̂j) =
n∑
j=1

(−λjM1ij +M1ij)

n∑
j=1

H2i(P̂j) =
n∑
j=1

(−λjM2ij +M2ij) (27)

Using the normalized method, we can design the auxiliary
surface parameters of M1ij equal to M2ij. Since M1ij = M2ij,
and reference to Lemma IV.2 in (Fu, 2016), we conclude
that H1i(P̂j) = H2i(P̂j). From (26), we can have a new

conclusion thatH1i(P) =
n∑
j=1

H1i(P̂j) =
n∑
j=1

H2i(P̂j) = H2i(P).

Without loss of generality, for the No.1i and No.2i subspaces,
we have the following equations according to (22):

V1 =
1
2

( n∑
j=1

M1ij − H1i(P(t)))/M1ij

2

V2 =
1
2

( n∑
j=1

M2ij − H2i(P(t)))/M2ij

2

(28)

Thus V1 and V2 are equal. Therefore, the Lyapunov func-
tion V is continuous.

In conclusion, Lyapunov function V is a continuous func-
tion. And because V > 0 (if and only if X = 0, then
V = 0), and V̇ < 0(if X 6= 0), thus the system state
X = [x1, · · · , xn]T is asymptotically stable.
2) Second, the prove that Qj is a positive invariant set by

using the counter-evidence method:
Consider point Pj(t0) = (xj(t0), yj(t0)) is inside the con-

vex hexagon 1. Assuming there exist a point Pj(t1) =
(xj(t1), yj(t1)), t1 > t0 located outside the convex hexagon1.
Since Pj(t0) is inside the convex hexagon 1, according to

Definition 1, we have Hki(P(t0)) =
n∑
j=1

Hkij(Pj(t0)) ≥ 0, thus

V (P(t0)) =
1
2


n∑
j=1

Mkij − Hki(P(t0))

n∑
j=1

Mkij


2

6
1
2

Since Pj(t1) is outside the convex hexagon 1, from

Definition 1 we also have Hki(P(t1)) =
n∑
j=1

Hkij(Pj) < 0, thus

V (P(t1)) > 1
2 .

In conclusion, V (P(t0)) 6 1
2 < V (P(t1)) when t0 < t1.

Since V is continuous, thus there must exist V̇ P((t2) > 0,
where t0 < t2 < t1. This conclusion contradicts the above
conclusion V̇ < 0 in the stability proof, thus the assumption
is invalid. Therefore, the convex set Qj is a positive invariant
set. The proof is completed. �

V. RESULTS
The auxiliary surfaces sliding mode control by using pos-
itive invariant set is tested under different conditions and
scenarios.

A. SCENARIO A: AUXILIARY SURFACES SLIDING MODE
CONTROL FOR FULL-DRIVE SYSTEM
In numerical simulation, a second-order nonlinear system
(29) is chosen as an example to validate the control strategy.

Ẋ = f (X )+ g(X )u+ η (29)
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where X = [x1, x2]T , η = [0.1sint + 0.1x2, 0.1cost]T , u =
[u1, u2]T

f (X ) =

 x2
107.9sinx1 − 1.5x22cosx1sinx1

7.3− 1.5cos(x1)2

 ,
g(X ) =

[
1 0
0 (cosx1)/7.3− 1.5cos(x1)2

]
.

The state initial values are x1(t0) = 1, x2(t0) = −1,∫ t0
0 x1(τ ) dτ = −1,

∫ t0
0 x2(τ ) dτ = 1. The state constraints

are

$ =
{
[x1, x2]T | −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1

}
γ =

{[∫
x1,
∫
x2

]T
| −1 ≤

∫
x1 ≤ 1,−1 ≤

∫
x2 ≤ 1

}
The sliding surface Ś and the approaching law Ń of the

normal integral SMC are

Ś =
[
Ś1
Ś2

]
=

[
I11x1 + ξ11 ·

∫
x1

I22x2 + ξ22 ·
∫
x2

]
, Ń =

[
−N1 · tanh(Ś1)
−N2 · tanh(Ś2)

]
,

where I11 = I22 = 1, ξ11 = ξ22 = 2, N1 = N2 = 10.
The AS-SMC controller design is presented under the steps

in Section 3:
First, we select the points PS3i+ = (−1, 1) and PS3i− =

(1,−1) according to the constraints. Thus, the third sliding
surface S3(X ) is constructed as S3(X ) = X + diag{1, 1}

∫
X ,

where S3(X ) = [S31, S32]T . Then, we select the switching
surfaces as S1(X ) = X + diag{2, 2}

∫
X , S2(X ) = X +

diag{0.5, 0.5}
∫
X , where S1(X ) = [S11, S12]T , S2(X ) =

[S21, S22]T .
Second, for state x1, according to the parallel property (20),

the slope of switching surfaces S11 and S21 and the point coor-
dinates of PS3i±, we choose points as PS1i+ = (−0.5, 0, 25),
PS1i− = (0.5,−0, 25), PS2i+ = (−0, 25, 0.5), PS2i− =
(0, 25,−0.5).

Third, the current auxiliary surface H1 = ω111x1 +
ω112

∫
x1 +M1 for state x1 can be obtained, where

ω111 =



1, No.0i
2, No.1i
−3, No.2i
−1, No.3i
−2, No.4i
3, No.5i

ω112 =



1, No.0i
3, No.1i
−2, No.2i
−1, No.3i
−3, No.4i
2, No.5i

M1 =



0.25, No.0i
1, No.1i
1, No.2i
0.25, No.3i
1, No.4i
1, No.5i

The coefficients of state x2 can be obtained in the same
way. In this example, we haveH2 = ω221x2+ω222

∫
x2+M2,

where ω111 = ω221 , ω112 = ω222 , M2 = M1.

Finally, the controller u = [�1g(X )]−1[−�1f (X )−�2X+
N ], where �1 = diag{ω111 , ω221}, �2 = diag{ω112 , ω222},
N = [N1,N2]T = [0.6, 0.3]T

The boundary layer SMC (shown as ’Normal’ in figures),
UAS-SMC using four auxiliary surfaces (shown as ’Quadran-
gular’ in figures) and AS-SMC using six auxiliary surfaces
(shown as ’Hexagon’ in figures) are compared in Scenario A.
All of the controller parameters are given in Table 1. Follow-
ing the above steps, we get the numerical simulation results
shown in Figure 7 through Figure 14 as follows:

TABLE 1. Controller design coefficients.

FIGURE 7. Point (x1,
∫

x1) trajectory.

FIGURE 8. Point (x2,
∫

x2) trajectory.

As shown in figures 7-12, the state control effect has
indeed been improved by UAS-SMC using four auxiliary
surfaces (Quadrangular). However the trajectory of boundary
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FIGURE 9. State x1 trajectory.

FIGURE 10. State x2 trajectory.

FIGURE 11. Control input u1.

SMC (Normal) and UAS-SMC using four auxiliary sur-
faces show that they are still unable to meet the require-
ments of state constraints $ . AS-SMC using six auxiliary

FIGURE 12. Control input u2.

FIGURE 13. Auxiliary surface H1.

surfaces (Hexagon) can perform well and the hexagon
enclosed by six auxiliary surfaces in blue color is a PIS. This
means that once the system state enters into this hexagon,
it will not leave this area even if the bounded disturbance
has a magnitude of 0.2. This is a very important property in
engineering applications on systems with constrained states.

It can be observed from Figure 13 and Figure 14,
Hi changes according to the subspaces divided by S1i, S2i, S3i.
In different subspaces, Hi changes when the system state
changes, and finally approaches zero. The focus of this paper
is to show the benefits of the extension of the positive invari-
ant set. We did not discuss in the Scenario A that the input
dimension m is not equal to the state dimension n because
we want to show that each state is restricted. The example in
Scenario A was originally an inverted pendulum model, and
we added a control input to better show that there is a good
constraint on each state. In fact, for the typical 1 input and
2 outputs system model of inverted pendulum, the auxiliary
surface sliding mode control method still has the ability of
state constraint as shown in [28]. Scenario B shows that two
states are controlled and constrained with only one control
input by using AS-SMC method.
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FIGURE 14. Auxiliary surface H2.

B. SCENARIO B: AUXILIARY SURFACES SLIDING MODE
CONTROL FOR UNMANNED HELICOPTER ON A
HARDWARE-IN-THE-LOOP PLATFORM
In real flight of unmanned helicopters, there are always rea-
sons such that the attitude information cannot be fed back
to the flight controller timely. For example: when the iner-
tial navigation system fails temporarily, the flight controller
is switched between master and slave. External influences,
such as wind disturbance, will inevitably produce a signif-
icant change in attitude. When everything is back to nor-
mal, the unmanned helicopter may be in an extreme flight
condition such as to be overturn. In this case, the flight
controller needs to give a control input, so that the unmanned
helicopter does not exceed the maximum constraint range to
avoid tipping.

In Scenario B, AS-SMC using PIS is tested for an
unmanned helicopter on a hardware-in-the-loop (HIL) plat-
form to simulate the above situation. The complete nonlinear
equation for unmanned helicopters is based on the formu-
las (1)-(5) in [3]. Since the constraint of the roll angle is
symmetry, in order to facilitate the comparison of the Sym-
metric Barrier Lyapunov Functions (SBLF) method with our
method [19], we use the model of roll channel for detailed
explanation. The tracking error model equations of roll
channel are given as follows:{

φ̇e = pe + η
ṗe = f (X )+ g(X )Mx(δlat )

(30)

where X = [φe, pe]T is the system state, φe is the roll angle
error, pe are the roll angle rate error, η = sinφ·tan θ ·q+cosφ·
tan θ ·r is treated as the disturbance, f (X ) = −

(
Iz − Iy

)
/Ix ·q·

r , g(X ) = 1/Ix ,Mx(δlat ) = K_Ymr ·Tmr 1 ·sin(δlat )·Dz+Ldf is
the rolling moment,K_Ymr is the thrust coefficient, Tmr is the
thrust of the main rotor, Dz represents the distance between
the hub and the center of the gravity, Ldf is the ducted fuselage
moments produced by aerodynamic forces, δlat is the control
input representing the lateral cyclic commands.

Before the start of the HIL simulation, we set the initial
values of roll angle φe(t0) = −35◦(0.6109rad), and the roll
angular rate pe(t0) = 70◦/s(1.2217rad/s). The roll angle
constraints are $ = {φe | −35◦ ≤ φe ≤ 35◦}, and the roll
angular rate constraints are γ = {pe | −70◦/s ≤ pe ≤ 70◦/s}.
In order to meet the actual angular rate constraint of the
HIL platform, the roll angular rate should be within the
constraints too.

The sliding surface Ś and the approaching law Ń of the
normal integral SMC are

Ś = I1 · pe + ξ1 ·
∫
pe, Ń = −N1 · tanh(Ś)

where I1 = 1, ξ1 = 4, N1 = 10. Neglecting the effects of
disturbance η in the first formula of (30), φe =

∫
pe can be

obtained. Thus the sliding surface can be written as Ś = I1 ·
pe + ξ1 · φe.
Following the steps in Section 3, the AS-SMC controller

design process is presented as follow:
First, the switching surfaces are chosen as S1(X ) = pe +

4 ·
∫
pe = pe + 4 · φe, S2(X ) = pe + 1 ·

∫
pe = pe + 1 · φe,

S3(X ) = pe + 2 ·
∫
pe = pe + 2 · φe.

Second, for roll angle error φe and the roll angular
rate pe, we choose points as PS1i+ = (−1.1335, 0.2835),
PS1i− = (1.1335,−0.2835), PS2i+ = (−0.5665, 0.5665),
PS2i− = (0.5665,−0.5665), PS3i+ = (−1.7, 0.85), PS3i− =
(1.7,−0.85). Thus the auxiliary surface H1 = ω111pe +
ω112

∫
pe + M1 = ω111pe + ω112φe + M1 for state pe and

φe can be obtained, where

ω111 =



1, No.0i
1, No.1i
−1, No.2i
−1, No.3i
−1, No.4i
1, No.5i

ω112 =



2, No.0i
4, No.1i
−1, No.2i
−2, No.3i
−4, No.4i
1, No.5i

M1 =



0.5665, No.0i
1.7, No.1i
0.85, No.2i
0.5665, No.3i
1.7, No.4i
0.85, No.5i

Finally, the AS-SMC controller is u = [ω111g(X )]
−1

[−ω111 f (X )− ω112pe + N ], where N = 0.05.
The boundary layer SMC (shown as ‘Normal’ in fig-

ures), the Symmetric Barrier Lyapunov Functions (shown as
‘SBLF’ in figures) and AS-SMC using six auxiliary surfaces
(shown as ‘AS-SMC’ in figures) are compared in Scenario B.
Following the above steps, we get HIL simulation results
shown in Figure 15 to Figure 18.

As can be seen from Fig.15, the normal method does
satisfy the roll angle constraint, but the roll angular rate
constraint is not satisfied. By setting the control gains
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FIGURE 15. Point (pe, φe) trajectory.

FIGURE 16. Control output δl at .

FIGURE 17. Roll angle error pe.

k1 = k2 = 2, kb1 = 35, the SBLF method appears to satisfy
the constraints of the roll angle. However, the output of the
SBLF controller switches back and forth between±90◦. This
is because the SBLF method requires a very large rolling

FIGURE 18. Roll angular rate error φe.

moment to achieve attitude control. When the sin(δlat ) is
reversely solved by the rolling momentMx , the control output
is switched between ±90◦ due to sin(δlat ) exceeding ± 1.
Moreover, the roll angular rate is not well controlled due to
the control output chattering. As can be seen from Fig. 17,
pe always has a chattering phenomenon during the conver-
gence process, which further causes the chattering of φe.
The constraints of the roll angle and the roll angular rate are

simultaneously satisfied by theAS-SMCmethod. At the same
time, the output of the AS-SMC controller is also smooth
enough. The HIL simulation tests indicate good results for
keeping balance of the UH even in the extreme initial values
under the control of AS-SMC by using PIS. The extension
of positive invariant set is not a simple extension of four
auxiliary surfaces, but the best choice to achieve satisfied
control effect for some of the extreme initial conditions and
constrained system states. The algorithm is an improvement
over previous algorithms.

By comparing these three control methods, it is not difficult
to find that when the PIS-SMC strategy is adopted, the system
states converge to the origin more slowly than the other two
control strategy. This is because AS-SMC’s control input is
much smaller than that of Normal’s control input. Future
work will be focused on how to speed up the state con-
vergence rate of the auxiliary surfaces sliding mode control
under the premise of satisfying the constraint conditions. This
may require a trade-off between the AS-SMC and Normal
SMC for the size of the control input.

VI. CONCLUSION
This paper presents a new control strategy named posi-
tive invariant set by using auxiliary surfaces sliding mode.
Compared to the previous auxiliary surfaces sliding mode
controller, this strategy adds one sliding surface and two
auxiliary surfaces. Although this design strategy increases the
complexity of the controller design, the area of the positive
invariant set is expanded. In this way, the sliding mode phase
starts from the boundary of the state constraints, so that
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the system is robust with respect to uncertainties. It has an
important theoretical significance and an application value,
and the control strategy is in line with the actual needs of
engineering.
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