IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 22, 2019, accepted May 16, 2019, date of publication May 24, 2019, date of current version June 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2918765

Multilevel Object Tracking in Wireless
Multimedia Sensor Networks for
Surveillance Applications Using

Graph-Based Big Data

CIHAN KUCUKKECECI ', (Member, IEEE), AND ADNAN YAZICI?, (Senior Member, IEEE)

! Department of Computer Engineering, Middle East Technical University, 06800 Ankara, Turkey

2Department of Computer Science, School of Science and Technology, Nazarbayev University, 010000 Astana, Kazakhstan

Corresponding author: Cihan Kiigiikkegeci (cihan.kucukkececi @ceng.metu.edu.tr)

ABSTRACT Wireless Multimedia Sensor Networks (WMSN), for object tracking, have been used as an
emerging technology in different application areas, such as health care, surveillance, and traffic control.
In surveillance applications, sensor nodes produce data almost in real-time while tracking the objects in a
critical area or monitoring border activities. The generated data is generally treated as big data and stored
in NoSQL databases. In this paper, we present a new object tracking approach for surveillance applications
developed using a big data model based on graphs and a multilevel fusion. Our approach consists of three
main steps: intra-node fusion, inter-node fusion, and object trajectory construction. Intra-node fusion exploits
the detection and tracking of objects in each sensor, while inter-node fusion uses spatio-temporal data and
neighboring sensors. Then, the fused data of all sensor nodes are combined to construct global trajectories of
the detected objects in the monitored area on the WMSN. We implemented a prototype system and evaluated
the performance of the proposed approach with both a real dataset and a synthetic dataset. The results of our
experiments on the two datasets show that the use of third-level fusion in addition to inter-node and intra-node
fusions provides significantly better performance for object tracking in the WMSN applications.

INDEX TERMS Big data, graph model, multilevel fusion, object tracking, wireless multimedia sensor

networks.

I. INTRODUCTION

Wireless Multimedia Sensor Network (WMSN) is a very
effective technology commonly used to monitor the real
world and collect data for analysis. With growing interest in
emerging technologies such as the Internet of Things, Indus-
try 4.0 and intelligent solutions, WMSNSs have begun to be
widely used in various application domains, such as health-
care [1], military [2], defense [3] and industry [4]. Numerous
studies on target detection, object tracking, enemy intrusion,
environmental detection and border surveillance have been
conducted over the last decade. One of the most difficult
tasks is tracking objects, be they humans, animals, vehicles
or other moving objects, in a guarded area. [5], [6]. Object
tracking is crucial for a surveillance system with dozens
of cameras recording 7/24 with [7] or a border monitoring

The associate editor coordinating the review of this manuscript and
approving it for publication was Takahiro Hara.

system [8], but also various Quad-copters to identify and track
objects [9].

In the literature, some of the research studies focus on
human tracking using audio and video to fuse multimodal
features [10], [11]. Luo et al. [12] develop an indoor localiza-
tion and tracking algorithm using network signals (WSN and
WiFi) and predict the trajectory of moving objects. Others
focus on animals to analyze their movements [13], [14].
Colceriu et al. [15] use mobile sensors worn by people in
trains to display traces of railway maps. In general, using
GPS data and mobile phone data to track moving objects and
analyze performance is a common approach. Yuan et al. [16]
use taxi trajectories to model the traffic patterns and suggest
users the fastest route to their destination. Xu et al. [17] pro-
pose a method of detecting and tracking several humans based
on their heads as rigid parts of the body. Recently, online
footprints of users of social media activities are also used to
track people [18].

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

67818

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0220-7390

C. Kiiglikkegeci, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

IEEE Access

In addition, object tracking can also be performed by
different types of sensors, from passive infrared motion
sensors [19], [20] to cameras equipped with acoustic sen-
sors [21], or RF sensors [22] to acoustic sensors [23], [24].
But generally, the fusion of multiple modalities, such as audio
and video, is used to track objects to estimate their position.
Zhou and Aggarwal [25] present an object tracking approach
using multiple cameras with extracted features including
spatial position, shape, and color information. They use the
extended Kalman filter to improve the accuracy of their track-
ing method. The Kalman filter is widely used for multi-target
tracking if the number of targets is low [26], [27]. Another
research related to the use of multiple cameras is proposed by
Kang et al. [28] to track the crowded scenes. Their approach
is to integrate multiple views into a joint probabilistic data
association filter for monitoring overcrowded people.

Particle filter tracking for wireless sensor networks is pre-
sented in [29] and another approach using the Bayesian filter
is provided in [30]. Berclaz et al. [31] offer the shortest
path algorithm for solving the multi-target problem in track-
ing and Oh et al. [32] develop a multi-target hierarchical
tracking algorithm based on Markov chain Monte Carlo Data
Association (MCM-CDA).

Energy efficiency in object tracking, a major problem
in WMSNSs, has also been studied by many research-
ers [33], [34]. We assume that the network and sensor nodes
are selected and positioned in the most efficient way, as we
focus primarily on the big surveillance data and the tracking
of moving objects using this data.

To increase the tracking accuracy, a number of researchers
have suggested multilevel fusion [35], [36]. The first detects
the object using sensors and generates the local trajectories
for a limited area. The latter combines them to construct
the final trajectories. Fayyaz [37] provides a comprehensive
survey and categorizes tracking based on network architec-
ture, tracking algorithms, sensor types, the number of objects
tracked, and wireless communication technologies. In addi-
tion, Mazimpaka and Timpf [38] focus on tracking aspects
of trajectory extraction methods and applications. They point
out that coping with massive big data is a matter of open
research for tracking objects. Valsamis et al. [39] compare
several real-time big data predictive analytics for trajectory
prediction in the literature. They use a pre-trained model
based on traditional multi-scan machine learning algorithms
and focus solely on the trajectory of vessels by analyzing real-
time, surveillance and spatio-temporal time series.

In this paper, we present a new object tracking method for
surveillance applications developed using a big data model
and a multilevel fusion. Our approach is based on three main
algorithms: intra-node fusion, inter-node fusion, and object
trajectory construction. Intra-node fusion exploits the detec-
tion and tracking of objects in each sensor. The output of the
intra-node fusion is used with spatio-temporal data as well
as neighboring sensors to generate inter-node trajectories.
Then, the fused data from all the sensor nodes are combined
to construct global trajectories for the detected objects in the

VOLUME 7, 2019

monitored area on the WMSN. The proposed method tracks
moving objects, such as vehicles, animals and humans, using
wireless multimedia sensors for surveillance purposes.

We model the environment and WMSN data using a graph-
based model to manage various application domains [40].
We store and manage surveillance sensor data using a NoSQL
graph database system that contributes to the scalability of
our approach. In addition, an unsupervised machine learning
approach is used for tracking objects and there is no need
to pre-train with a large dataset. We implemented a proto-
type system and evaluated the performance of the proposed
approach with a real dataset, GeoLife Trajectories [41] and a
synthetic dataset generated from the simulator that we devel-
oped for this study. Our experimental results on both datasets
show that the use of third-level fusion in addition to inter-
node and intra-node fusions provide significantly better per-
formance for object tracking. The main difference between
our work and previous studies in the existing literature is
that they use the track identification created at the first level
and continue to use this track identification throughout the
process. But here we propose a more realistic approach that
uses no pre-identification. Our approach extracts all trajec-
tory information using spatio-temporal data, speed, direction,
and low-level features.

The rest of the paper is organized as follows: The following
section presents the formulation of the problem. Section III
gives an overview of the system architecture and Section IV
presents the proposed object tracking approach. Experimental
results based on real and simulated synthetic datasets, as well
as their evaluation, are presented in Section V. Finally, con-
clusions are drawn and future work is discussed in Section V1.

Il. PROBLEM FORMULATION

The surveillance area is deployed with a WMSN, which is
a wireless distributed sensor network consisting of a set of
multimedia sensor nodes. These nodes are connected to each
other or connected to the main gateways using a wireless
communication protocol. Our goal is to track moving objects
using only sensor nodes with a camera and scalar sensors such
as seismic, acoustic and PIR sensors.

Suppose that N represents the number of sensor nodes
deployed in a grid of the surveillance zone, where w is the
width and £ is the height of the zone. The grid approach
used in this study is also used in [42], [43] because it is
commonly applied to monitor the entire area without leaving
gaps between the sensor nodes. In addition, we also deploy
the sensor nodes randomly to see how the performance of the
proposed tracking method is performed.

Each sensor node has a fixed position (xg, ys) and it is
assumed that the sensor nodes are not moving. At some point,
an object enters the coverage area of a sensor node and is
detected by the sensor node. In each time slot, the sensor node
detects the object with different values based on its features
and the distance that separates it from the sensor node. We can
model the object detected by a sensor node with the following

67819

IEEE Access

C. Kugtikkececi, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

vector:

O =[(x,y),t,vx,vy,s,a,pl (1

where

o (x,y)is detected object’s location referenced to a sensor
node

o t is the discrete time

o vx is the velocity on the X axes of the object in
meter/seconds

o vy is the velocity on the Y axes of the object in
meter/seconds

« sis the object’s seismic vibration

« ais the object’s sound effect as an acoustic value in dB

o p is the PIR sensor value which represents motion
detected or not

We assume that the state evolves according to the constant
velocity model (CV):

Ovy = [x¢, yt, vxs, vyr] 2)
OVt+] = Ft.OV[(3)

where Ov; is the velocity model and

1 0 Ar 0
0 1 0 At

Fi = 0 0 1 0 “)
0 0 0 1

where At is the sampling time interval between two succes-
sive measurement times ¢ and ¢ + 1.

A. OBJECT LOCALIZATION

As mentioned above, sensor nodes are assumed to have fixed
positions and detect objects through its scalar sensors and
cameras. When an object enters the coverage area of a sensor
node, the sensor node camera takes a snapshot of the object
(image) and extracts a silhouette. The location of the object
in the field of view of the camera (Ls,y) is calculated by
our localization algorithm according to the local coordinate
system of the image and other parameters [44].

Ly = (xfov» onv) (5)

where 0 < x5, < imageyiqn and 0 < yp,, < imagepeigh; -

From the local coordinate system of the image to the
well-known WGS84 coordinate system (longitude, latitude),
object localization is done using our previous work [44].
The translated location information (L) is used for trajectory
fusions.

B. SIMILARITY

In classical mechanics, a trajectory is a series of coordinates.
Let T; and 7 be the two trajectories with size K and M as
shown below:

Ti = ((x1, y1), (02, ¥2), (13, ¥3), - .o, Ok, i) (6)
’Tj = ((-xlvyl)7 (x27y2)7(-x37y3)1"'7(-xmvym)) (7)

67820

Euclidean distance between two coordinates a and b is
calculated as below:

dp(a, b) = /(x — 5 + g —)2 ®)

Hausdorff’s distance [45] is a measure of similarity, using
coordinates in the metric space, of two nonempty trajectories.
It measures the relative position of each coordinate in a trajec-
tory with that of another. The Hausdorff distance is defined as

H(T;, Tj) = max(h(T;, Tj), (T}, T1)) ©)

where
I(T;, T)) = maxqer,minper,dg (a, b) (10)

and a is a coordinate in the trajectory 7; and b is a coordinate
in the trajectory 7;.

Dynamic Time Warping (DTW) compares the trajec-
tories of different lengths by finding time warping that
minimizes the total distance between the corresponding
coordinates [46].

To align two trajectories using DTW, we construct an
n-by-m matrix where the (x,y) element of the matrix con-
tains the Euclidean distance dg(x’, y') between the two points
x" € T;and y’ € Tj. A warping path W, is a contiguous set of
matrix elements that define a mapping between 7; and T;.

DTW(T;, Tj) = min (11)

y(x,y) = dp(x’,y) + min(y(x — 1,y — 1),
yx—1,y,yx,y—1) (12)

where wy, is the nth element of W and y (x, y) is the cumulative
distance which is calculated very efficiently using dynamic
programming to prevent construction of the whole matrix.

C. PROBLEM DEFINITION

We assume that there are N number of sensors capable of
detecting objects at any time and that all measurements are
collected at the collector node, which includes a database
of NoSQL graphs. Let M be a measurement with the same
timestamp ¢ from n sensor nodes that detect the moving
object.

M; = {my(t), ma(1), ..., my(1)} (13)

where m;(t) is a measure at the ith sensor node. The problem
is to extract the state of the object using measurements from
time O to #,,4, and to specify the global trajectory T using the
measurement history to detect anomalies if an object deviates
from usual global trajectories.

Ill. SYSTEM ARCHITECTURE

To manage the big data and high throughput of many wireless
multimedia sensors, we design a scalable system architecture
supported by NoSQL databases and messaging queues. Fig. 1
shows a visualization of our multilayer system architecture
composed of four layers; Detection Layer, Message Layer,

VOLUME 7, 2019

C. Kiiglikkegeci, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

IEEE Access

FIGURE 1. System architecture.

Data Layer, and Analysis Layer. Each layer is responsible for
different parts of the entire process of analyzing big data in
the proposed architecture.

The detection layer is composed of sensor nodes, gateways,
and a sink. The raw data generator, producing synthetic data
with position, PIR, seismic and acoustic information, simu-
lates the sensor nodes activated by a moving object. Raw data
is created for each sensor node with the sensor data calculated
as a function of the distance to the position of the moving
object. The detected data is collected at the sink using the
message brokers that are positioned in the message layer.
In order to cope with bottlenecks due to the high through-
put of streaming sensor data, we position message queues
between each process. The message data is orchestrated and
sent to the data layer for retention by the message brokers.

In the data layer, NoSQL databases built using the
OrientDB graph database system are clustered to process big
graph data. The graph structure better supports connectivity
analysis. Because object tracking is completely tied to the
connection between each piece of data that is detected, graph
models work better by analyzing the relationship between
different sensor nodes or by identifying anomalies in a tra-
jectory. Because the graph-based big data model allows you
to query based on node attributes and relationships between
them, a sophisticated prediction model can be developed and
integrated into different domain applications.

VOLUME 7, 2019

In order to choose the most appropriate graph-based
database system for our WMSN application, we use and
compare the two well-known graph database systems, Neo4j
and OrientDB [40]. OrientDB seems to be more convenient
and efficient than Neo4;j for our specific application. Because
the streaming data is distributed by the message layer, the data
layer must be aligned with the clustered big data architecture.

Finally, in the analysis layer, the data stored in the graph
database is used for data analytics by the data scientist,
the external system, or the mobile application for end-user
reports and live portals. The object tracking algorithms we
propose are executed in the analysis layer.

IV. OBJECT TRACKING

Our object tracking approach is developed specifically for the
surveillance requirements, but we believe that it can also be
easily adapted to other application areas. An object’s tracking
is mainly focused on detecting an object when it enters the
surveillance zone, from the moment it enters the zone until
it leaves it. The tracking begins when the object is detected
by a sensor node using its physical sensors. According to
the algorithm implemented on the sensor nodes, a camera
is activated if an object is detected or if it is a false alarm
caused by noise in the environment. Next, a snapshot of the
detected object is taken to ensure the possible presence of an
object. The snapshot of the connected camera is important
for accurately detecting and then tracking objects, as this
multimedia data is used to estimate the approximate position
of the detected object using object localization algorithms,
which use the position of the sensor node, including ground
height, camera lens specifications, and camera viewing
angle.

The challenge of tracking an object without an associated
identifier, such as GPS or RFID, is that each physical event
occurring on a sensor deployed on a node is completely
anonymous. Our goal is to look for relationships and corre-
lations between entire anonymous sensor data and to identify
not only the objects but also their movement over the time
passing through the surveillance zone.

The main idea of our proposed object tracking approach
is to make use of the position and time of the sensor node
in accordance with the fusion outputs, i.e., the concept types,
the features of the low-level, and speed of the object to solve
the problem of whether the object has already been detected
or whether it is a completely new object. The object tracking
algorithm that we developed solves this problem by using
the multilevel fusion approach with fuzzy rules. The first
level of the fusion is the intra-node fusion which processes
data for each sensor node and the second level is the fusion
between the neighbors of a sensor node. Finally, the third
level fusion is the construction of the object’s trajectory in
order to finalize the tracking and to extract the global trajec-
tories of the objects. In the following subsections, we explain
the algorithms as well as the fuzzy rule engine used in each
fusion level.

67821

IEEE Access

C. Kugtikkececi, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

A. INTRA-NODE FUSION

Intra-node fusion is the first level trajectory fusion that uses
the trajectories detected by a sensor node. The last object of
each trajectory is analyzed with the current object to check if
it corresponds to the existing trajectories, which are stored as
time-ordered trees.

During the analysis, the geodesic distance between the cur-
rent object and the last object of the trajectory is calculated.
The direction of movement and the elapsed time between two
objects are used during the analysis. The speed of the object is
referenced according to the object type, but the actual speed
is calculated using the elapsed time and distance.

Algorithm 1 Intra-Node Fusion Algorithm

1: procedure INTRANODEFUSION(n, TT'[])
> The trajectory tree-list (77'[])] is used to identify if the
sensed object (n) is already being tracked or a new object.

2 matchFound < false > Initialize variable

3 for each trajectory T in 77[] do

4: last < Last sensed item in the trajectory T'

5

6

score < ruleEngine(last, n)
if score > A then
> New data belongs to an existing trajectory

7: matchFound < true

8 insert n into T

9: exit loop
10: end if
11: end for

12: if matchFound = false then > New trajectory found
13: T < {}

14: insert n into T

15: insert T into TT]

16: end if

17: end procedure

B. INTER-NODE FUSION

Inter-node fusion is the second level trajectory fusion that
looks for trajectory correlations between different sensor
nodes. Each node is compared to its neighbor nodes. More-
over, only the nodes in the same direction of the compared
trajectory are considered to optimize the performances. The
inter-node fusion algorithm is presented in the Algorithm 2.

C. RULE ENGINE

We have designed and developed a generic rule engine for
intra-node and inter-node fusions. The rule engine applies
a list of rules on a given object for tracking purposes. Each
rule is classified in a category that has a positive or negative
effect on the score of the object being processed. Specifying
different rules for the rule engine enables the use of the rule
engine by different algorithms and fusion levels.

1) DEFINITIONS
A rule (R) is a representation of an object state written
in the form of a condition statement that gives a Boolean

67822

Algorithm 2 Inter-Node Fusion Algorithm

1: procedure INTERNODEFUSION(#, s)
> Merges the trajectories identified by the sensor node s
and its neighbor nodes using the new object (n).

2: NI[] < findNeighbors(s)

3: 0 <« findDirection(Ls, L)

4: for each sensor node sn in N[] do

5: 05 < findDirection(Ls, L)

6: if 6 in the same direction with 6 then
> Only related neighbor which can detect the object is
used

7: T[] < Trajectories of sensor node s

8: Tsu[] < Trajectories of sensor node sn

9: for each trajectory f in T[] and fg, in Ty,[]
do

> Trajectories from two sensor nodes are compared to
identify if they can be fused or not

10: M, < Merge trajectories fq, tg,

11: p<10

12: ¢ < Last sensed item in the trajectory M,

13: same <— true

14: while same = true do

15: p < Previous item of ¢ in the trajec-
tory M;

16: if p is null then

17: exit loop

18: end if

19: score < ruleEngine(p, c)

20: if score < A then

21: same < false

22: exit loop

23: end if

24: cC<p

25: end while

26: if same = true then

27: Apply merged trajectory M, in T[]
and Tp[]

28: end if

29: end for

30: end if

31: end for

32: end procedure

value (true/false). Each rule is associated with a rule category
and defined as follows:

R = [cond, cat] (14)

where

o cond is the rule condition
 cat is the rule category

A category of rules (RC) is an abstraction based on the
basic properties of objects moving along trajectories. Cate-
gories allow us to group rules and assign different priorities

VOLUME 7, 2019

C. Kiiglikkegeci, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

IEEE Access

between rules. A rule category is defined as follows:
RC = [e, p] (15)

where

« e is the identifier for positive or negative effect on the
score
« p is the weight of the rule category

The score (S) is the output of the rule engine that is
calculated by applying all the rules for the movement of
a detected object. The score value is an aggregation of all
category scores and calculated using the following equations:

i J
S =Y (O &R, RC,), RCy) (16)

n=1 m=1

where i is the number of rule categories, j is the number of
rules and,

0, ifR.cat #RC
g(R,RC) = 10, ifR.cat =RC, R.cond = false
1, ifR.cat =RC, R.cond = true

s x RC.p,
-s X RC.p,

£(5. RC) if RC.e = positive
s, =

if RC.e = negative

2) RULE GENERATION AND IMPLEMENTATION

We have developed a fuzzy logic rule generator that provides
fuzzy rules generated semi-automatically using trained tra-
jectories. The rules generated are then fine-tuned by experts.

FIGURE 2. Fuzzy logic system.

As shown in Fig.2, the fuzzy logic system has four basic
steps: fuzzification, rule evaluation, knowledge base, and
defuzzification. During the fuzzification stage, the actual
inputs are converted to fuzzy membership functions. The
knowledge base provides the list of rules in our application
domain. The big challenge is to design the correct list of rules
for the problem. We use experts to filter and organize the rules
generated automatically in the knowledge base. The fuzzy
logic system inputs are being processed by the rule evaluation
process, which uses the knowledge base to combine fuzzy
inputs and produce outputs mapped to fuzzy membership
functions. In the defuzzification stage, the fuzzy outputs of
the rule evaluation step are mapped to crisp outputs.

Input member functions are created for each rule category.
Fig.3 shows examples of fuzzy input member functions that

VOLUME 7, 2019

FIGURE 3. Sample fuzzy member functions.

are used to generate fuzzy rules. We can map crisp location
data in meters to fuzzy values, such as “‘no change”, “small
change” “‘medium change” or “‘big change”. Similar to the
change of location, we compare the time difference between
two sensor data and the map to fuzzy values.

After running the fuzzy rules generator on the training data,
we have a list of generated rules that is the input for our
domain experts. Manual filtering and a refinement process
are performed to obtain the final list of the rules for the
rule engine. The described semi-automatic rule generation
approach produced rules for intra-node and inter-node fusion.
Each rule is linked to one of the rule categories described
below:

o Direction: The direction of movement of the detected
object is used in the rules. (e.g., are they moving on the
same direction?)

o Time: The time-based rules are associated with this
category. (e.g., has the object been seen in last 2 hours?)

o Velocity: The speed of the object is used in the rules
to calculate its possible location and decide whether it
moves or waits in the same location. (e.g., how far this
object can go with this speed in that specific time?)

o Feature: The low-level SIFT [47] features of silhouette
image are used in the rules. (e.g., check the similarity of
silhouette images!)

o Concept Type: The type of object concept is used in
some rules. (e.g., check if the concept types are identical
or not?)

« Distance: The distance-based calculations are used to
create rules. (e.g., is it possible to move from previous
location to current location in that specific time?)

67823

IEEE Access

C. Kugtikkececi, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

3) SAMPLE SCENARIO EXECUTION

Suppose there are two sensor nodes SN; and SN positioned
in (2,0) and (2,4) in a grid-based area. Each sensor node
maintains a local track store for recognized trajectories used
in track fusion calculations.

Let the trajectory 77 is in the local track store of the sensor
node SN| while T, and T3 are in SN,. Three trajectories can
be defined as arrays of location and time pairs like below;

o T1 ={[(0,4)—12:00:001, [(4,4) — 12 : 00 : 02]}

o Th ={[(4,2)—12:00:01], [(3,0) — 12 : 00 : 07]}

o T3 ={[(0,2)—12:00:06], [(2,3) — 12 : 00 : 08]}

FIGURE 4. Rule engine execution on a sample scenario.

Fig.4 shows an example scenario area with sensor nodes
(SN1, SN») and recognized trajectories (T, T>, 73). The red
dashed line represents the trajectory of the moving object
(Topy) where (3,3) is the last location of the object at
12:00:09.

Suppose there are three categories of rules and for each rule
category, a rule is defined in the rule engine. The categories
of rules can be defined as follows:

o RC-1: Velocity

e: Positive(4), p: 0.4

o RC-2: Direction

e: Positive(+), p: 0.3
e RC-3: Time
e: Negative(—), p: 0.5

The rules can be defined as follows (refer to the

Algorithm 3 for the variable definitions in cond);

o R-1: Check if the distance between the previous location
and the location of the newly detected object is within
the maximum and minimum limits that can be moved
by the newly detected object
cond: d <= vVygy X At AND d >= vy, X At
cat: RC-1

e R-2: Check if the relative direction of the location of the
newly detected object from the previous location is in
the same direction as the trajectory
cond: 6 = p.direction
cat: RC-2

67824

Algorithm 3 Rule Engine Algorithm
1: procedure RULEENGINE(p, ¢)
> The last object in the trajectory, the previous object (p),
and the current object (¢) are compared to indicate
whether the current object belongs to the trajectory or

not.
2: L. < (c.x,c.y) > Location of the current object
3: L, < (p.x,p.y) > Location of the previous object
4: d < distanceOnGeoid (L., L)
5: 0 < findDirection(L., Lp)
6: v < (p.vx, p.vy)
7: At <~ p.t —c.t
8: R[] < List of semi-automatically generated rules
9: S < {} > Used for rule category scores
10: for each rule r in R[] do
11: valid < r.process(d, 0, v, At, €)
12: if valid = true then > Rule is accepted
13: i < Index of rule r’s category in S[]
14: STl + +
15: end if
16: end for
17: score < 0
18: for each rule category ct do
19: i < Index of rule category ct in S[]
20: if ct.e = Positive then
21: score < score + (ct.p x S[i])
22: else
23: score < score — (ct.p x S[i])
24: end if
25: end for
26: return score

27: end procedure

TABLE 1. Rule condition parameter values for each trajectory.

Parameter T T Tz
d 14 30 1.0
v 2 04 1.2
7] SW N E

¢ R-3: Check whether the previous detection time is obso-
lete, as if it is earlier than the detection time of the new
object movement
cond: At > 5 (5 minutes)
cat: RC-3

Table 1 shows the computed values of parameters which
are used in rule conditions. If we recap the parameters, d rep-
resents the distance between trajectory’s last object and mov-
ing object. v represents the velocity calculated by location
and time pairs of the trajectory. For this sample scenario,
Vmax and vy, are computed by using a fixed 30% upper
and lower bound on v. @ is the relative direction between
trajectory’s last object and moving object.

VOLUME 7, 2019

C. Kiiglikkegeci, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

IEEE Access

TABLE 2. Sample rule engine execution scores for each trajectory.

T T ;
R-1 04 0.0 04
R-2 0.0 0.0 03
R-3 -0.5 00 0.0
Score -0.1 0.0 0.7

Finally, if we run the rule engine for the scenario shown
in Fig.4, we have the scores in Table 2 for each trajectory.
According to the final scores, the new object belongs to the
trajectory 73, which has a higher probability for the trajectory
of the new object than the other possible trajectories.

D. OBJECT TRAJECTORY CONSTRUCTION

The third level of the fusion is to cluster and construct the
object trajectories generated at the inter-node fusion level
using the rule engine outputs. Some inter-node trajectories
may be fused into other trajectories because they may overlap
or be complementary to one another. The purpose of this
last level of fusion is to detect the final global trajectories
in the monitored area. Global object trajectories can be used
as input for intra-node and inter-node fusion. Another use
is to detect anomalies if a newly detected object trajectory
does not correspond to any learned global trajectory. Our
clustering algorithm is an unsupervised learning algorithm in
which relationships are discovered from an unlabeled dataset.
We use the results of previous detections as input parameters
for future calculations.

The construction of the trajectory of the object is shown in
Algorithm 4. The basic logic of the algorithm is based on the
calculation of Hausdorff Similarity [48] between trajectories
with similar lengths. The calculated value is normalized in the
interval [0, 1]. Higher measures indicate a high degree of sim-
ilarity and we can identify that they can be grouped together in
a global candidate trajectory. If several candidate trajectories
are detected, they can construct a global trajectory. We use
the Dynamic Time Warping (DTW) distance to compute the
centroids of the global trajectory, which is supposed to be the
center of the trajectories grouped in the actual K-Means way.

Fig.5 shows how to detect a step by step trajectory using
our multilevel fusion approach. Suppose there are 12 sensor
nodes that monitor an area and an object passes through the
surveillance zone (a). In order to describe the detection of a
trajectory of an object, we can use a metaphor of the puzzle
game. The inter-node fusion algorithm detects many pieces
that are connected, but they belong to different parts of the
puzzle. Therefore, the algorithm is not aware of the situation
as a whole (b). Each sensor node detects and fuses its local
data, a range limited to a single node. Intra-node fusion is
a phase in which you begin to merge different groups and
form shapes or images in the puzzle, but the entire image is
still missing (c). The sensor data from many sensor nodes
are fused in the last step and finally the construction of the
overall object trajectory is performed. Thus, with this last

VOLUME 7, 2019

Algorithm 4 Object Trajectory Construction Algorithm
1: procedure OBJECTTRAJECTORYCONSTRUCTION(T'[])
> Global object trajectories are constructed using the
inter-node fusion generated trajectories.

2 for each trajectory ¢ in T[] do

3 if ¢ is a short trajectory then

4 Merge ¢ with other trajectories

5 end if

6: end for

7 GLB[] < {} > Global trajectories list
8 for each trajectory ¢ in T[] do

9: id < t.id
10 glbTraj < GLBJid]
11: if glbTraj is null then

12: glbTraj < createNewGlobalTrajectory(t)
13: insert glbTraj into GLBI[] with id
14: end if
15: end for

16: for each global trajectory gt in GLB[] do
17: ML[] < {}

18: T[] < similarLengthTraj(GLBI], gt.length)
19: for each trajectory ¢ in T[] do

20: m < hausdorfSimilarity(gt, t)

21: if m > SimilarityThreshold then

22: Mark as candidate trajectory

23: insert ¢ into MLL[]

24: end if

25: end for

26: if ML[].size > GlobalTrajectoryThreshold then
27: glbTraj < kmeansDTWCluster(ML[])
28: insert glbTraj into GLBI]

29: end if

30: end for

31: end procedure

step, all the pieces of the puzzle are connected to each other
and a certain number of trajectories are determined. These
trajectories detected by many sensor nodes are then fused to
identify the overall trajectory.

V. EXPERIMENTAL EVALUATION

We have prepared a test environment to test our proposed
object trajectory approach. We have developed a simula-
tor that uses the WGS84 geodetic datum to support real
world scenarios. Our experiences are realized in two different
aspects.

The first aspect was to visualize the performance of our
algorithm for different types of scenarios using the Scenario
Builder component of our simulator. In parallel with this,
we also compared our test results with the Kalman filter
tracking approach [49], [50]. With the second aspect of our
experience, we evaluated the performance of our method
with a real world data set. Because there are many public
datasets, most tracking applications are just video data sets

67825

IEEE Access

C. Kugtikkececi, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

._\

)

foo
<
.

(o)

a0 @D \ @2

() (d)

FIGURE 5. Multilevel fusion step-by-step trajectory detection. (a) Actual
trajectory. (b) Intra-node fusion. (c) Inter-node fusion. (d) Trajectory
construction.

such as Multi-Object Tracking [51] or dataset with device tag,
such as GPS or RFID, that do not conform to our problem
area. In addition, some data sets have focused on intercon-
nected roads designed for wheeled vehicles and pedestrian
traffic [52] but we are monitoring the rural area which has no
information on roads. Therefore, to evaluate our algorithm
with real data, we adopted the dataset in our application
domain. We used the GeoLife trajectory data set because it
has different types of transport modes and a wide variety of
trajectory lengths.

Test environment’s specifications are as follows;

o Intel i7-4710HQ Quad Core CPU

« 16 GB DDR3 RAM

« 240 GB SSD Storage

« 4 GB NVIDIA 860GTX GPU

A. SIMULATOR AND SYNTHETIC DATA

Our simulator [53] is extended and improved to generate
more realistic trajectory data for advanced analytics. The
current version of the simulator consists of three main com-
ponents; Network topology generator, sensor data generator,
and scenario generator. The network topology generator is
used to create a simulation for a WMSN infrastructure.

67826

We assume that our WMSN is distributed with a grid layout
in a simulation area. Since we have already evaluated the
architecture of the system presented in Section III from the
big data point of our previous study, [53], we focus on object
tracking and reduce the time needed to perform hundreds of
iterations for each experiment. We selected a testbed that is
part of the territory of our university. Fig.6b shows a map
view of the monitored area with 96 sensor nodes, composed
of 4 different clusters with a gateway node and a sink node
in the center. The distance between the two sensor nodes is
estimated at about 60 meters.

(b)

FIGURE 6. Simulated wireless sensor network. (a) Grid-based
deployment. (b) Random deployment.

Since we have developed our method specifically for
network-based wireless sensor networks, we are also measur-
ing the performance of our method for randomly distributed
wireless sensor networks. That is, we have upgraded our
simulator to randomly deploy the sensor nodes and generate
synthetic data accordingly (Fig.6a). To make it more realistic
and well distributed, we position 10% of the nodes from
each other and distribute the rest of the nodes without any
limitation, except that two sensor nodes cannot be closer than
2 meters.

Sensor Data Generator produces synthetic data with posi-
tion, PIR, seismic and acoustic data. The data flow is simu-
lated as if the data were detected by sensor nodes, close to
the position of the data generated. Raw sensor data is created
for each sensor node with the scalar data calculated as a
function of the distance to the position of the raw data. From
a sensor node to a gateway and from a gateway to a sink node,

VOLUME 7, 2019

C. Kiiglikkegeci, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

IEEE Access

(© (d)

FIGURE 7. Scenario samples generated using developed simulator.
(a) Straight trajectories. (b) Circular trajectories. (c) Zig zag trajectories.
(d) Wavy trajectories.

the data stream comprising the multilevel data fusion process
is simulated to generate more realistic data.

Fig.7 shows example scenarios created using Scenario
Builder, one of the main components of our simulator. We cre-
ated 21 different scenarios using different trajectory mod-
els and concept types to evaluate the performance of our
method. We used the following formulas to calculate the
precision/recall values and the F-measure.

. TP
Precision = —— (17
TP + FP
TP
Recall = —— (18)
TP 4+ FN

where TP is the number of true positives, F/P is the number of
false positives, and FN is the number of false negatives. For a
better evaluation, we use F-measure or balanced F-score that
combines precision and recall values in a metric.

Feo Pre.citvion.Recall (19)
Precision + Recall

Fig.8 represents the result of experiments by calculating
the F-measure scores of each scenario group for both grid-
based and random deployment of sensors. Our method detects

VOLUME 7, 2019

FIGURE 8. F-measure scores for both grid-based and randomly deployed
nodes.

straight trajectories because they are easy to track with respect
to more complex trajectories. The detection performance of
the circular and zigzag trajectories are slightly lower than
those of the other types. The zigzag pattern has sharp turns
and is not expected and treated as new objects. For circular
patterns, the behavior is not expected to move back and forth
at the same point. However, the overall performance looks
promising. From the point of distribution of the nodes, if we
deploy the sensor nodes randomly, the scores decrease. The
loss of performance in random positioning has two main
causes. First, there are undetected areas and if the trajectory of
the object falls in this area, it causes disconnection. Second,
some densely positioned areas create multiple possible trajec-
tories for a single trajectory and make inter-node fusion more
difficult to manage. To summarize, randomly deployed nodes
are not as good as grid positioning, but this is an expected
result.

Since Kalman filters and particle filters are widely used
in object tracking [54], [55], we compare the performance of
our method with these two filters. The Kalman filter tries to
balance the motion model and the measurements to provide
a better estimate of trajectories. It uses linear projections
with Gaussian noise to increase efficiency while the particle
filter uses a sequential Monte Carlo method. Both algorithms
recursively update the state estimate. Kalman filter uses the
system model and the sensor observations to estimate the
current state from the previous states. Particle filter uses
random sampling to generate different system states, then
assigns high weights to the states supported by the sensor
data.

The results of performance comparisons and error rates are
given in Fig.9 and 10. The results show that our proposed
method better detects the trajectory of the object, with error
rates lower than those of Kalman and particles filters. In addi-
tion, it appears from the experimental results that even object
maneuvers, our object tracking algorithm can continue to
track objects with a relatively low error rate. Kalman filter and
particle filter algorithms need early recovery time to produce
optimized predictions. For this reason, some of the initial
values of the particle filter are ignored.

67827

IEEE Access

C. Kugtikkececi, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

(b)

FIGURE 9. Comparison with Kalman filter and particle filter. (a) Straight
trajectory. (b) Wavy trajectory.

B. REAL WORLD DATASET

To test our algorithm with a real dataset, we use GeoLife
Trajectory Dataset [41], a GPS trajectory dataset from the
Microsoft Research GeoLife project, collected by 182 users
from April 2007 to August 2012. This set of data contains
17,621 trajectories, with a total distance of 1,251,654 kilome-
ters and a total duration of 48,203 hours. The trajectories are
recorded in a dense representation that is every 1-20 seconds
per point.

The GeoLife Trajectory dataset is not exploited by mul-
tiple sensors. Instead, each trajectory corresponds to a single
object carrying a GPS device. To make it usable for our exper-
iments, we transform the original trajectories into sensor data
that can be detected by several sensors via our simulator. The
simulator reads GeoLife’s actual trajectory as an input and
generates motion at the exact location of the actual trajectory
based on the type of object. Then, the sensor nodes that can
detect motion at that location are triggered as if there is an
object.

In order to evaluate the performance of our proposed object
tracking algorithm, we use a confusion matrix. The selection
of the ¢ and NodeBuffer parameters affects the sensitivity

67828

(b)

FIGURE 10. Error rates comparison with Kalman filter and particle filter.
(a) Straight trajectory. (b) Wavy trajectory.

TABLE 3. Algorithm scores with various parameters.

€ NodeBuffer=5 NodeBuffer=10

0.35 0.322058681 0.483088022
0.40 0.999631145 0.999631145
0.45 0.999631145 0.481668622
0.50 0.499815572 0.321112415

of the algorithm. ¢ is the threshold of the distance between
the actual distance and the calculated distance using speed
and time. NodeBuffer is the parameter to specify the number
of historical sensor data used to identify new sensor data.
that is, whether these data correlate with previous detections
or not.

The scores of the parameters are calculated by normalizing
the Hausdorff Distance between real trajectory and extracted
trajectory with the number of tracks found. Table 3 illustrates
the computed scores for different parameter values of ¢ and
NodeBuffer. The results show that our tracking algorithm
works the best with ¢ = 0.40. NodeBuffer depends on the
& parameter as a pivot. For bigger ¢ values NodeBuffer is
negatively correlated and with lower ¢ values NodeBuffer is
positively correlated.

Therefore, we use parameters ¢ = 0.40 and NodeBuffer =
5 as default values to monitor the performance of our algo-
rithm in GeoLife Trajectories dataset.

The measurement scores F are given in Fig.11a for differ-
ent sizes of datasets. The algorithm duplicates small pieces

VOLUME 7, 2019

C. Kiiglikkegeci, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

IEEE Access

(b)

FIGURE 11. Object trajectory construction. (a) F-Scores. (b) Precision
comparison with inter-node fusion.

of longer tracks as different tracks. As a result, tracks are
correctly detected with smaller, noisy tracks. This provides
lower accuracy performance, but the effect of noisy data
decreases as more sensor data is processed.

To show the positive effect of multilevel tracking, espe-
cially that of constructing the trajectory of the object,
we measure the results for fusion with and without third level
trajectory fusions. Improvement of the performance of inter-
node fusion over intra-node fusion has very little effect since
it is impossible to continuously track an object without inter-
node fusion. Indeed, this is because intra-node tracking is
simply limited by the detection capability of the sensor nodes.
The result of our experiments relating to the effect of the con-
struction of the trajectory of the object is presented in Fig.11a.
From the experimental results, it has been observed that the
construction of the object’s trajectory significantly improves
the overall performance of our object tracking approach.

In order to see the improved performance of our object
tracking method with different types of concepts, we map
the transport mode labels in the dataset to our concept types.
Table 4 shows the mapping of the concept types ““Vehicle”
and ““Human” because there is no label associated with the
type of concept “‘Animal’ in the dataset.

Table 5 displays the F-measure scores for a selected set
of datasets based on the scenarios chosen for validating

VOLUME 7, 2019

TABLE 4. Mapping from transportation mode to concept type.

Transportation Mode Concept Type
Walk Human
Car Vehicle
Taxi Vehicle
Bus Vehicle
Train Vehicle

TABLE 5. F-measure comparison for concept types.

Dataset ID Vehicle Human
062 0.89 0.91
085 0.87 0.87
128 0.89 0.91
153 0.91 0.93

our method. These datasets have trajectories of the concept
types “Vehicle” and “Human”. Depending on the results
obtained, the trajectories belonging to the human type are
well detected with respect to the type of vehicle. The best
performance of human objects is the difference in speed
between moving objects. Since a human typically moves
more slowly than a vehicle, a sensor node can track humans
more easily and more accurately than a vehicle. In other
words, the vehicle sensor data collected by the sensors is
much more scarce than the human sensor data.

C. TRAJECTORY ANALYSIS
Extracted global trajectories are used to form well-known
classification algorithms for the purpose of advanced analysis
such as trajectory prediction and anomaly detection in real-
time streaming data. The referenced classification algorithms
are Random Forest [56], Decision Table [57], Sequential
Minimal Optimization (SMO) [58], Naive Bayes [59], Logis-
tic Regression [60], and Multilayer Perceptron (MLP) [61].
Fig.12a shows the trajectories trained for the analytics.
We created three global trajectories that are similar at the
beginning and then differentiate. Therefore, it is easier to see
if the algorithm can correctly identify trajectory transitions
or not.

1) PREDICTION

Classification algorithms are used for prediction in many
studies [62], [63]. We train the well-known classification
algorithms using the global trajectories extracted by our pro-
posed algorithm. Once the learning phase is over, we classify
the new sensor data to predict the possible trajectory of the
object.

In addition, we tune the parameters of the classification
algorithms to increase the success rates of the predictions
of the trajectories. Fig.13 shows the performance of each
classification algorithm with and without tuned parameters.
The success rate is calculated using the number of correct
identifications of the trajectories. The SMO algorithm is more

67829

IEEE Access

C. Kugtikkececi, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

(b)

FIGURE 12. (a) Trained trajectories for analytics. (b) A sample anomaly in
which the object leaves suddenly while moving on Trajectory-3.

FIGURE 13. Success rates of classification algorithms in prediction
with/without parameter tuning.

efficient than the other machine learning algorithms used
in our experiments and which have been very successful.
Moreover, it is important to emphasize that only the SMO
algorithm can identify an equal possibility of overlapping
trajectories, which is an important case for the prediction.
Executing algorithms with optimized parameters gives better
results than expected, but optimizing logistic regression is one
of the most affected by overall success.

2) ANOMALY DETECTION

Another big data analytics that we study and evaluate exper-
imentally is anomaly detection in real-time streaming data.
By monitoring forecasts and actual data, we can determine
whether an object is lined up on a path or not [64]. If the

67830

TABLE 6. Anomaly detection in streaming data ([A]:Anomaly,
[+]:Detected, [-]:Not detected).

Algorithm A-1 A2 A3
Random Forest + + +
Decision Table + + +
SMO - - -

Naive Bayes
Logistic Regression
Multilayer Perceptron - -

+
+

1
+ + +

object deviates from the trajectory, we can suppose that there
is an anomaly sign (Fig.12b).

Table 6 shows the success rates of anomaly detection
for different movements. The Decision Table and Random
Forest algorithms respond better to abnormal movements
and sudden changes in anomaly classification results. SMO
never notices the change of movement and does not detect
any anomalies. The multilayer perceptron and the logistic
regression do not perform well against the success of their
predictions.

VI. CONCLUSION

In this study, we propose a new unsupervised object tracking
approach, developed using the big graph-based data model.
We focus on tracking objects for surveillance applications.
The object tracking approach includes three main algorithms:
intra-node fusion, inter-node fusion, and object trajectory
construction. To validate our algorithms, we performed sev-
eral experiments on different scenarios using a real dataset,
namely GeoLife Trajectories Dataset, and a dataset created
synthetically using the simulator developed for this study.
The results of our experiments on both datasets show that our
object tracking approach is working well and is robust for
use in other application domains. From the experiences we
have observed, our multi-level fusion approach improves the
performance of object tracking.

Trajectory analyzes, such as prediction and anomaly detec-
tion, are applied using extracted global trajectories. Well-
known classification algorithms are compared for different
trajectories and the experimental results show that the best
algorithm for predicting all possible trajectories does not exist
in all cases. When one algorithm works better in one case,
it may not work better in another.

A future research topic that we plan to investigate is to
automatically calculate the ¢ and NodeBuffer parameters
based on the dataset. In addition, as another possible research
topic, the use of FastDTW instead of DTW can be studied
to increase the performance of the construction of global
trajectories.

REFERENCES

[1] G. Hernindez-Pefnaloza, A. Belmonte-Hernindez, M. Quintana, and
F. Alvarez, “A multi-sensor fusion scheme to increase life autonomy
of elderly people with cognitive problems,” IEEE Access, vol. 6,
pp. 12775-12789, 2017.

VOLUME 7, 2019

C. Kiiglikkegeci, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

IEEE Access

[2]

[3]

[4

[5]

[6]

[71

[8

[9

[t

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Bjorkbom, J. Timonen, H. Yigitler, O. Kaltiokallio, J. M. V. Garcia,
M. Myrsky, J. Saarinen, M. Korkalainen, C. Cuhac, R. Jintti,
R. Virrankoski, J. Vankka, and H. N. Koivo, ‘“Localization services
for online common operational picture and situation awareness,” [EEE
Access, vol. 1, pp. 742-757, 2013.

Z.Zhang, H. Zhu, S. Luo, Y. Xin, and X. Liu, “Intrusion detection based
on state context and hierarchical trust in wireless sensor networks,” IEEE
Access, vol. 5, pp. 12088-12102, 2017.

L. Shu, Y. Chen, Z. Huo, N. Bergmann, and L. Wang, ““When mobile crowd
sensing meets traditional industry,” IEEE Access, vol. 5, pp. 15300-15307,
2017.

H. T. Kung and D. Vlah, “Efficient location tracking using sensor net-
works,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), vol. 3.
Mar. 2003, pp. 1954-1961.

C.-Y. Lin, W.-C. Peng, and Y.-C. Tseng, “Efficient in-network moving
object tracking in wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 5, no. 8, pp. 1044-1056, Aug. 2006.

A. Prati, R. Vezzani, L. Benini, E. Farella, and P. Zappi, “An integrated
multi-modal sensor network for video surveillance,” in Proc. 3rd ACM Int.
Workshop Video Surveill. Sensor Netw., Nov. 2005, pp. 95-102.

N. Boudriga, “A WSN-based system for country border surveillance and
target tracking,” Adv. Remote Sens., vol. 5, no. 1, pp. 51-72, 2016.

S. Berrahal, J.-H. Kim, S. Rekhis, N. Boudriga, D. Wilkins, and J. Acevedo,
“Border surveillance monitoring using quadcopter UAV-aided wireless
sensor networks,” J. Commun. Softw. Syst., vol. 12, no. 1, pp. 67-82,
Mar. 2016.

F. Talantzis, A. Pnevmatikakis, and L. C. Polymenakos, ‘“Real time audio-
visual person tracking,” in Proc. IEEE Workshop Multimedia Signal Pro-
cess., Oct. 2006, pp. 243-247.

X. Zou and B. Bhanu, “Tracking humans using multi-modal fusion,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Sep. 2005, p. 4.

J. Luo, Z. Zhang, C. Liu, and H. Luo, “Reliable and cooperative target
tracking based on WSN and WiFi in indoor wireless networks,” IEEE
Access, vol. 6, pp. 24846-24855, 2018.

P. Laube and R. S. Purves, “How fast is a cow? Cross-scale analysis of
movement data,” Trans. GIS, vol. 15, no. 3, pp. 401-418, Jul. 2011.

R. Gallotti, R. Louf, J.-M. Luck, and M. Barthelemy, ‘“Tracking ran-
dom walks,” J. Roy. Soc. Interface, vol. 15, no. 139, Feb. 2018,
Art. no. 20170776.

V. D. Colceriu, T. Stefanut, V. Bacu, and D. Gorgan, “Low grade sensor
data based annotation of topological railway maps,” in Proc. 21st Int. Conf.
Control Syst. Comput. Sci., May 2017, pp. 167-174.

J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: Enhancing driving
directions with taxi drivers’ Intelligence,” IEEE Trans. Knowl. Data Eng.,
vol. 25, no. 1, pp. 220-232, Jan. 2013.

R. Xu, Y. Guan, and Y. Huang, “Multiple human detection and tracking
based on head detection for real-time video surveillance,” Multimedia
Tools Appl., vol. 74, no. 3, pp. 729-742, Feb. 2015.

Q. Huang, “Mining online footprints to predict user’s next location,” Int.
J. Geograph. Inf. Sci., vol. 31, no. 3, pp. 523-541, 2017.

K. Mechitov, S. Sundresh, Y. Kwon, and G. Agha, “Cooperative tracking
with binary-detection sensor networks,” in Proc. Ist Int. Conf. Embedded
Netw. Sensor Syst., Nov. 2003, pp. 332-333.

B. Song, H. Choi, and H. S. Lee, “Surveillance tracking system using
passive infrared motion sensors in wireless sensor network,” in Proc. Int.
Conf. Inf. Netw., Jan. 2008, pp. 1-5.

S. Xiao, W. Li, H. Jiang, Z. Xu, and Z. Hu, “Trajectroy prediction for target
tracking using acoustic and image hybrid wireless multimedia sensors
networks,” Multimedia Tools Appl., vol. 77, no. 10, pp. 12003-12022,
May 2018.

M. Bocca, O. Kaltiokallio, N. Patwari, and S. Venkatasubramanian, ‘“Mul-
tiple target tracking with RF sensor networks,” IEEE Trans. Mobile Com-
put., vol. 13, no. 8, pp. 1787-1800, Aug. 2014.

W.-P. Chen, J. C. Hou, and L. Sha, “‘Dynamic clustering for acoustic target
tracking in wireless sensor networks,”” IEEE Trans. Mobile Comput., vol. 3,
no. 3, pp. 258-271, Jul./Aug. 2004.

V. Cevher, A. C. Sankaranarayanan, J. H. McClellan, and R. Chellappa,
“Target tracking using a joint acoustic video system,” IEEE Trans. Multi-
media, vol. 9, no. 4, pp. 715727, Jun. 2007.

Q. Zhou and J. Aggarwal, “Object tracking in an outdoor environment
using fusion of features and cameras,” Image Vis. Comput., vol. 24, no. 11,
pp. 1244-1255, Nov. 2006.

VOLUME 7, 2019

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

(50]

R. Olfati-Saber and P. Jalalkamali, “Collaborative target tracking using
distributed Kalman filtering on mobile sensor networks,” in Proc. Amer.
Control Conf., Jun./Jul. 2011, pp. 1100-1105.

X. Wang, M. Fu, and H. Zhang, ‘“Target tracking in wireless sen-
sor networks based on the combination of KF and MLE using dis-
tance measurements,” IEEE Trans. Mobile Comput., vol. 11, no. 4,
pp. 567-576, Apr. 2012.

J. Kang, I. Cohen, and G Medioni, ‘“Tracking people in crowded scenes
across multiple cameras,” in Proc. Asian Conf. Comput. Vis., vol. 7,
Jan. 2004, pp. 1-6.

N. Ahmed, M. Rutten, T. Bessell, S. S. Kanhere, N. Gordon, and S. Jha,
“Detection and tracking using particle-filter-based wireless sensor net-
works,” IEEE Trans. Mobile Comput., vol. 9, no. 9, pp. 1332-1345,
Sep. 2010.

S. Oh, “A scalable multi-target tracking algorithm for wireless sen-
sor networks,” Int. J. Distrib. Sensor Netw., vol. 8, no. 9, Sep. 2012,
Art. no. 938521.

J. Berclaz, F. Fleuret, E. Tiiretken, and P. Fua, “Multiple object tracking
using k-shortest paths optimization,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 9, pp. 1806-1819, Sep. 2011.

S. Oh, S. Sastry, and L. Schenato, ““A hierarchical multiple-target tracking
algorithm for sensor networks,” in Proc. IEEE Int. Conf. Robot. Automat.,
Apr. 2005, pp. 2197-2202.

Y. A. U. Rehman, M. Tariq, and T. Sato, “’A novel energy efficient object
detection and image transmission approach for wireless multimedia sensor
networks,” IEEE Sensors J., vol. 16, no. 15, pp. 5942-5949, Aug. 2016.
X. Wang, J. Ma, S. Wang, and D. Bi, “Distributed energy optimization for
target tracking in wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 9, no. 1, pp. 73-86, Jan. 2010.

N. Anjum and A. Cavallaro, “Trajectory association and fusion across
partially overlapping cameras,” in Proc. 6th IEEE Int. Conf. Adv. Video
Signal Based Surveill., Sep. 2009, pp. 201-206.

D. Cheng, Y. Gong, J. Wang, Q. Hou, and N. Zheng, “Part-aware trajec-
tories association across non-overlapping uncalibrated cameras,” Neuro-
computing, vol. 230, pp. 30-39, Mar. 2017.

M. Fayyaz, “Classification of object tracking techniques in wireless sensor
networks,” Wireless Sensor Netw., vol. 3, no. 4, pp. 121-124, Apr. 2011.
J. D. Mazimpaka and S. Timpf, “Trajectory data mining: A review of
methods and applications,” J. Spatial Inf. Sci., no. 13, pp. 61-99, 2016.
A. Valsamis, K. Tserpes, D. Zissis, D. Anagnostopoulos, and
T. Varvarigou, “Employing traditional machine learning algorithms
for big data streams analysis: The case of object trajectory prediction,”
J. Syst. Softw., vol. 127, pp. 249-257, May 2017.

C. Kiigiikkegeci and A. Yazici, “A graph-based big data model for wireless
multimedia sensor networks,” in Proc. INNS Conf. Big Data, Thessaloniki,
Greece, Oct. 2016, pp. 205-215.

Y. Zheng, X. Xie, and W.-Y. Ma, “GeoLife: A collaborative social network-
ing service among user, location and trajectory,” IEEE Data Eng. Bull.,
vol. 33, no. 2, pp. 32-39, Jun. 2010.

E. Masazade, R. Niu, and P. K. Varshney, ‘“Dynamic bit allocation for
object tracking in wireless sensor networks,” IEEE Trans. Signal Process.,
vol. 60, no. 10, pp. 5048-5063, Oct. 2012.

0. Ozdemir, R. Niu, and P. K. Varshney, “Dynamic bit allocation for target
tracking in sensor networks with quantized measurements,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., Mar. 2010, pp. 2906-2909.

H. Oztarak, K. Akkaya, and A. Yazici, “Lightweight object localization
with a single camera in wireless multimedia sensor networks,” in Proc.
IEEE Global Telecommun. Conf., Nov./Dec. 2009, pp. 1-6.

S. B. Nadler, Jr., Hyperspaces of Sets (Monographs and Textbooks in Pure
and Applied Mathematics), vol. 49. New York, NY, USA: Marcel Dekker
Inc., 1978.

E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for
datamining applications,” in Proc. 6th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2000, pp. 285-289.

D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. 7th IEEE Int. Conf. Comput. Vis. (ICCV), vol. 2, Sep. 1999,
pp. 1150-1157. doi: 10.1109/ICCV.1999.790410.

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing
images using the Hausdorff distance,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 15, no. 9, pp. 850-863, Sep. 1993.

S. Vasuhi and V. Vaidehi, ““Target tracking using interactive multiple model
for wireless sensor network,” Inf. Fusion, vol. 27, pp. 41-53, Jan. 2016.
K. Hirpara and K. Rana, “Energy-efficient constant gain Kalman filter
based tracking in wireless sensor network,” Wireless Commun. Mobile
Comput., vol. 2017, Apr. 2017, Art. no. 1390847.

67831

http://dx.doi.org/10.1109/ICCV.1999.790410

IEEE Access

C. Kugtikkececi, A. Yazici: Multilevel Object Tracking in WMSNs for Surveillance Applications

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

A. Milan, L. Leal-Taixe, I. Reid, S. Roth, and K. Schindler, “MOT16:
A benchmark for multi-object tracking,” Mar. 2016, arXiv:1603.00831.
[Online]. Available: https://arxiv.org/abs/1603.00831

M. A. Brovelli, M. Minghini, M. Molinari, and P. Mooney, “Towards an
automated comparison of openstreetmap with authoritative road datasets,”
Trans. GIS, vol. 21, no. 2, pp. 191-206, Apr. 2017.

C. KiiCiikkeCeci and A. Yazici, “Big data model simulation on a graph
database for surveillance in wireless multimedia sensor networks,” Big
Data Res., vol. 11, pp. 33-43, Mar. 2018.

T. Zhang, S. Liu, C. Xu, B. Liu, and M.-H. Yang, “Correlation particle
filter for visual tracking,” IEEE Trans. Image Process., vol. 27, no. 6,
pp. 26762687, Jun. 2018.

P. Prasad and A. Gupta, “Moving object tracking and detection based on
Kalman filter and saliency mapping,” in Data Engineering and Intelligent
Computing (Advances in Intelligent Systems and Computing), vol. 542.
Singapore: Springer, 2018, pp. 639-646.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
Oct. 2001.

R. Kohavi, “The power of decision tables,” in Proc. 8th Eur. Conf. Mach.
Learn. Berlin, Germany: Springer-Verlag, Apr. 1995, pp. 174-189. doi: 10.
1007/3-540-59286-5_57.

T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” in Proc.
Adv. Neural Inf. Process. Syst., 1998, pp. 507-513.

G. H. John and P. Langley, “Estimating continuous distributions in
Bayesian classifiers,” in Proc. 11th Conf. Uncertainty Artif. Intell. San
Mateo, CA, USA: Morgan Kaufmann, Aug. 1995, pp. 338-345.

S. Le Cessie and J. C. van Houwelingen, ‘“‘Ridge estimators in logistic
regression,” Appl. Statist., vol. 41, no. 1, pp. 191-201, 1992.

S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and classifica-
tion,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 683—697, Sep. 1992.

P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based
approach for online lane change intention prediction,” in Proc. IEEE Intell.
Vehicles Symp., Gold Coast, QLD, Australia, Jun. 2013, pp. 797-802.

B. T. Morris and M. M. Trivedi, ‘“Learning and classification of trajectories
in dynamic scenes: A general framework for live video analysis,” in
Proc. IEEE 5th Int. Conf. Adv. Video Signal Based Surveill., Sep. 2008,
pp. 154-161.

S. Agrawal and J. Agrawal, ““Survey on anomaly detection using data min-
ing techniques,” Procedia Comput. Sci., vol. 60, pp. 708-713, Jan. 2015.

67832

CIHAN KUCUKKEGECI received the B.S. degree
in computer engineering from Hacettepe Uni-
versity, Ankara, Turkey, in 2005, and the M.S.
degree in computer engineering from Bilkent Uni-
versity, Ankara, in 2007. He is currently pur-
suing the Ph.D. degree in computer engineering
with Middle East Technical University, Ankara.
He is currently with Luciad-Hexagon Geospatial,
Leuven, Belgium, as a Senior Software Engineer.
His research interests include spatio-temporal data
mining, big data analytics, the Internet of Things, and graph databases.

ADNAN YAZICI received the Ph.D. degree in
computer science from the EECS Department,
Tulane University, USA, in 1991. He is cur-
rently with the Computer Science Department,
Nazarbayev University, Astana, Kazakhstan.
He has published more than 200 international
technical articles and coauthored three books. His
current research interests include data science,
multimedia databases and information retrieval,
wireless multimedia sensor networks, and fuzzy
data modeling. He received the IBM Faculty Award, in 2011, and the
Parlar Foundation Young Investigator Award, in 2001. He was a co-chair
of the 23rd IEEE International Conference on Data Engineering, in 2007,
the 38th Very Large Data Base (VLDB), in 2012, and the 23rd IEEE
International Conference on Fuzzy Systems, in 2015. He is currently an
Associate Editor of the IEEE TraNsacTIONS oN Fuzzy Systems and a member
of the ACM, the IEEE Computational Intelligence Society, and the Fuzzy
Systems Technical Committee.

VOLUME 7, 2019

http://dx.doi.org/10.1007/3-540-59286-5_57
http://dx.doi.org/10.1007/3-540-59286-5_57

	INTRODUCTION
	PROBLEM FORMULATION
	OBJECT LOCALIZATION
	SIMILARITY
	PROBLEM DEFINITION

	SYSTEM ARCHITECTURE
	OBJECT TRACKING
	INTRA-NODE FUSION
	INTER-NODE FUSION
	RULE ENGINE
	DEFINITIONS
	RULE GENERATION AND IMPLEMENTATION
	SAMPLE SCENARIO EXECUTION

	OBJECT TRAJECTORY CONSTRUCTION

	EXPERIMENTAL EVALUATION
	SIMULATOR AND SYNTHETIC DATA
	REAL WORLD DATASET
	TRAJECTORY ANALYSIS
	PREDICTION
	ANOMALY DETECTION

	CONCLUSION
	REFERENCES
	Biographies
	CIHAN KÜÇÜKKEÇECI
	ADNAN YAZICI

