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ABSTRACT Time-varying formation control and velocity tracking problems for second-order discrete-time
multi-agent systems with switching jointly-connected topologies and nonuniform communication delays
are investigated. A local information-based distributed protocol is designed by utilizing the instantaneous
states of the agent itself and the delayed states of its neighbors. Through model transformation and stability
analysis, an explicit mathematical description of a feasible time-varying formation set is proposed. Necessary
and sufficient conditions for the systems with switching topologies and nonuniform communication delays
to achieve the feasible time-varying formation are obtained. The coupling constraints on the gain parameters
and sampling period are proposed, so as to guide the design of parameters in the protocol. We include the
effects of velocity tracking error damping gain in the protocol and derive milder conditions which allow for
not only bounded nonuniform communication delays but also for dynamically switching directed graphs that
are jointly connected. The numerical examples are further presented to illustrate the validity and effectiveness
of the obtained results.

INDEX TERMS Multi-agent systems, consensus control, time-varying formation, switching directed
topology, velocity tracking, communication delay.

I. INTRODUCTION
Multi-agent system is composed of many inexpensive simple
individuals and can emerge much better performance and
even new abilities through efficient coordination. Formation
control, as one of the most fundamental distributed cooper-
ative control problems for multi-agent systems, is a critical
step of cooperation among agents [1], [2]. Therefore, cooper-
ative formation control for multi-agent systems has become a
research hotspot and accurate maintenance of geometric for-
mation between agents has been studied extensively [3]–[5].
In general, the formation control problems for multi-agent
systems are to design distributed coordination protocols for
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networks of agents such that they would approach and main-
tain some desired, possibly time-varying formation. Themain
challenge in cooperative formation control is that each agent
has to use local information to achieve the desired forma-
tion, rather than rely on centralized coordination. It is more
difficult when there are constraints such as time delay and
switching topologies.

Recently, consensus control for multi-agent systems has
attracted great attention from various domains and fruit-
ful results have been achieved already [6]–[9]. Following
the boom in the research of consensus control problems,
consensus-based formation control approaches are devel-
oped, which provides the benefits of improving the flexibility,
robustness and scalability of the formation. It has been proved
in [10] that the classical leader-follower, behavior and virtual
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structure based approaches can be regarded as special cases
of consensus-based ones, and the weaknesses of the previous
approaches can be overcame to some extent.

Consensus based time-invariant formation control prob-
lems for first-, second- and high-order multi-agent sys-
tems have been studied extensively [11]–[16]. When the
time-invariant formation is achieved, velocity components of
all agents must be identical. This is not satisfactory because
in many practical applications, such as target surveillance
and formation reconfiguration, the desired formation requires
the velocity components of agents to be different and time-
varying. Besides, the formation of agents cannot remain
stationary if certain tasks are to be executed, such as tracking
amoving target with unmanned aerial vehicles (UAV) swarm.
In these applications, not only the time-varying formation,
but also reference velocity tracking are needed. In [17],
a decentralized controller was proposed based on virtual
leader structure to achieve predefined time-varying formation
with fixed topology. In [18], a controller-observer approach
for time-varying centroid tracking and formation control of
multi-agent systems with switching topologies was proposed,
provided that in each time instant the interaction graph was
balanced and strongly connected (in the case of directed
topology) or simply connected (in the case of undirected
topology). Reference [19] dealt with the cooperative control
problem for nonlinear multi-agent systems with undirected
topology, whose objective was to stabilize a group of agents
to time-varying formation and track a time-varying center.
Time-varying formation tracking analysis and design prob-
lems for second-order multi-agent systems with switching
interaction topologies were studied in [20], with the assump-
tion that each of the possible interaction topologies had a
spanning tree. The time-varying formation problems were
studied in [21] and an adaptive approach was utilized to
develop a fully distributed formation controller for general
linear multi-agent systems with fixed topology. Reference
[22] studied the time-varying formation tracking problems
for multiple manipulator systems under fixed and switching
directed graphswith a dynamic leader. Reference [23] consid-
ered the time-varying formation control problems for a class
of networked systems with non-identical nonlinear dynamics
and fixed topology. Time-varying formation analysis and
design problems for general high-order swarm systems with
communication constraints and fixed undirected topology
were investigated in [24].

Considering the fact that time delay often exists in practical
systems due to the limitation of bandwidth, abundant data
transmission and asymmetry of communication links, for-
mation control problems with time delay have been investi-
gated in [25]–[27]. Reference [28] researched the distributed
formation control problems for multi-agent systems with
randomly switching undirected topologies and uniform time
delay. Reference [29] considered the problems on formation
tracking control of second-order multi-agent systems with
communication delay and fixed topology. In [30], the con-
tainment control problems were considered for nonlinear

multi-agent systems with fixed topology and uniform time-
delay. Reference [31] investigated the leader-follower forma-
tion control problems for a group of networked robots that
were subject to bounded time-varying communication delays
and asynchronous clock.

It should be pointed out that in most recent literatures,
the systems were described by continuous-time dynamics,
such as theworksmentioned above. However, in practical for-
mation control applications via interaction networks, continu-
ous states of agents (such as position and velocity) are always
represented and updated by their sampled values at a cer-
tain interval, which results in discrete-time or sampled-data
formulation. The conclusions obtained in continuous-time
systems cannot be used to solve such problems directly. Thus,
the formation control protocol design and analysis problems
for multi-agent systems with discrete-time dynamics are nec-
essary and of practical significance. In [32], the formation
control problems without time delay were investigated for
discrete-timemulti-agent systems subject to unknown nonlin-
ear dynamics by means of iterative learning approach. Refer-
ence [33] presented a distributed control law based on output
regulation control framework to solve the formation control
problems of first-order discrete-time nonlinear multi-agent
systems without time delay. Reference [34] used a fault tol-
erant approach to control a group of wheeled mobile robots
in a formation without time delay. In [35], the time-invariant
formation control for high-order discrete-time multi-agent
systems was achieved in the absence of time delay. The
time-invariant formation control problems of second-order
discrete-time systems with time delay and undirected topol-
ogy were investigated in [36]. Reference [37] established the
necessary and sufficient conditions for designing formation
of discrete-time second-order multi-agent systems with only
one sampling period delay and the desired formation cannot
be time-varying. The asynchronous time-invariant formation
control problems of second-order discrete-time multi-agent
systems with time-varying delays were investigated in [38].
Time-varying formation control protocol design and analysis
problems for second-order discrete-time multi-agent systems
with directed interaction topology and communication delay
were investigated in [39], but the topology was fixed and the
communication delay was uniform.

Although some important results and approaches have
been established in a few references, research on for-
mation control for discrete-time systems is not as suffi-
cient as for continuous systems, especially the time-varying
formation control under conditions with time delay and
switching topologies. This paper mainly focuses on the
time-varying formation and velocity tracking control prob-
lems for second-order discrete-time multi-agent systems
with nonuniform communication delays and switching
jointly-connected topologies, which is meaningful yet still
unresolved. The multi-agent systems in this paper are
described by second-order discrete-time dynamics, where
agents are governed by both position and velocity states.
Many practical systems can be described by this model, such
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as UAV swarm and multi-robot system. It is more compli-
cated and conforms to reality as the sampling period and
gain parameters can be considered simultaneously. A dis-
tributed protocol is designed by utilizing the delayed states
of neighbors and the instantaneous states of agent itself.
In order to achieve reference velocity tracking, we include
the effects of velocity tracking error damping gain in the
protocol. Furthermore, both the desired formation and refer-
ence velocity can be time-varying and the switching inter-
action topologies are jointly-connected. Compared with the
previous results, this paper aims to solve the following four
problems: (i) How to design the control protocol to achieve
desired time-varying formation and reference velocity track-
ing simultaneously; (ii) what are the conditions that guar-
antee the time-varying formation and velocity tracking can
be achieved with switching jointly-connected topologies and
nonuniform communication delays; (iii) how to design fea-
sible desired time-varying formation in mission planning;
(iv) how to design the parameters in the protocol to achieve
the feasible time-varying formation and velocity tracking.

The remainder of this paper is organized as follows.
In section II, some necessary preliminary results and lemmas
are described together with problem description. Section III
considers the time-varying formation control analysis and
protocol design problems. Numerical examples are provided
in section IV to illustrate the validity of the algorithm and
section V summarizes this paper.
Notations: Throughout the paper, let 0 (1) denotes the

column vector of all 0 (1) with appropriate dimension.
IN denotes an identity matrix of dimension N .

II. PRELIMINARY AND PROBLEM DESCRIPTION
In this section, some necessary concepts and results on graph
and matrix theory are introduced firstly, and then a detailed
description of the problem is presented.

A. GRAPH AND MATRIX THEORY
Consider a multi-agent system with N nodes labelled
1 through N , denote IN = {1, 2, . . . ,N }. The interaction
topology among the agents can be modelled as a weighted
directed graph G = (W ,Q,A), with W = {$1, . . . ,$N },
Q ⊆ {($i,$j) : $i,$j ∈ W } and A = [aij]N×N being
the vertices set, edges set and weighted adjacency matrix,
respectively. If agent $j can send its information to $i, then
there exists a directed edge ($j,$i) ∈ Q from vertex $j
to $i, and $j is called a neighbour of $i. Ni = {$j|$j ∈

W : ($j,$i) ∈ Q} represents the neighbours set of $i. The
adjacency matrix A satisfies aij > 0 if and only if $j ∈ Ni,
otherwise aij = 0. If aii > 0, we say that agent $i has self-
loop. Laplacian matrix L = [lij]N×N plays an important role
in description of the interaction relationship of agents in a
graph and it is defined as L = 1−A, where1 = [1ij]N×N is
a diagonal matrix with1ii =

∑N
k=1 aik . An useful property of

L is that all of its row sums are zero and 1N is an eigenvector
of L associated with the zero eigenvalue, that is L1N = 0.
The directed graph ofA, denoted asG(A), is a digraph withN

vertices and satisfies there is an edge in G(A) from vertex$j
to $i if and only if aij 6= 0. A directed path is a sequence of
ordered edges ($j1 ,$j2 ), ($j2 ,$j3 ), . . ., ($jm−1 ,$jm ) with
$j1 , . . . ,$jm ∈ W . A directed graph G is said to have a
spanning tree if there is at least one vertex having directed
paths to all the other vertices. A directed graph is said to be
strongly connected if there is a directed path from every node
to every other node. For a collection of graphs, its union is
defined as a new graph whose nodes and edges are the union
of nodes and edges of all the graphs in the collection.

Note that the interaction topology among agents in this
paper can be switching. Let finite set S denotes all the possible
graphs with an index set IG ⊂ N, where N represents the set
of natural numbers. Let σ (t) : [0,+∞)→ IG be a switching
signal whose value is the index of the topology at t , G(t),
A(t) and L(t) stand for the corresponding graph, adjacency
matrix and Laplacian matrix, respectively.

Given a matrixM ∈ Rm×m,M is nonnegative (positive) if
all its elements are nonnegative (positive), denoted asM ≥ 0
(M > 0). If a nonnegative matrix M satisfies M1N = 1N ,
then it is a stochastic matrix. A stochastic matrix is said to
be indecomposable and aperiodic (SIA) if lim

k→∞
Mk
= 1cT ,

where c ∈ Rm is constant column vector. Let
∏k

i=1 Ai =
AkAk−1 . . .A1 denote the left product of matrices with com-
patible dimensions.
Lemma 1 [40]: LetM be a stochastic matrix. If G(M) has

a spanning tree with the property that the root vertex has self-
loop, thenM is SIA.

B. PROBLEM FORMULATION
Consider a multi-agent system with N nodes, the purpose
of this paper is to design a protocol to steer the agents to
form predefined time-varying formation and track desired
velocity with switching directed topologies and nonuniform
communication delays. In the discrete-time case, using the
forward difference approximation as that employed in [41],
the dynamics of each agent is described by{

xi(t + δ) = xi(t)+ δvi(t)
vi(t + δ) = vi(t)+ δui(t),

(1)

where xi(t) ∈ Rn, vi(t) ∈ Rn and ui(t) ∈ Rn are the position,
velocity and control input vectors of agent$i, i = 1, . . . ,N .
δ > 0 is analogous to the sampling period, in the following
we will refer to it as such. The update time instants t ≥ 0 will
be the form t = t0 + qδ, t0 ≥ 0 is the initial moment, q =
1, 2, . . .. n ≥ 1 is the dimension of the states. In the following,
for the sake of convenience in description, let n =1 if not
otherwise specified. However, all the conclusions hereafter
can be extended to higher dimensional cases directly by using
Kronecker product.

The time-varying formation to be achieved is described by
a set of bounded functions hx(t) = [h1x(t), . . . ,hTNx(t)]

T ,
hv(t) = [h1v(t), . . . ,hTNv(t)]

T and ha(t) = [h1a(t), . . . ,
hTNa(t)]

T . hx(t), hv(t) and ha(t) are so called formation offset
functions with hix(t), hiv(t) and hia(t) being the components
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of position, velocity and acceleration for agent $i, respec-
tively. The formation cannot remain stationary if certain tasks
are to be executed, such as tracking moving military targets
with UAV swarm. The introduction of translational velocity
(possibly time-varying) rectifies this and enables the pro-
posed method to adapt to more practical applications. This
can be accomplished by letting hiv(t) = h̃iv(t) + vd (t),
where h̃iv(t) is the velocity component of the desired for-
mation shape and vd (t) is the desired translational velocity
to be tracked. Define hi(t) = [hix(t),hiv(t)]T , ξ i(t) =
[xi(t), vi(t)]T , h(t) = [hT1 (t), . . . ,h

T
N (t)]

T and ξ (t) =
[ξT1 (t), . . . , ξ

T
N (t)]

T .
Definition 1: Multi-agent system (1) is said to achieve

consensus if and only if for any given bounded initial states
and i ∈ IN , there exists a vector-valued function ξ̄ (t) such
that

lim
t→∞

(
ξ i(t)− ξ̄ (t)

)
= 0, (2)

where ξ̄ (t) = [x̄(t), v̄(t)]T is called the consensus states func-
tion. Obviously, (2) is equivalent to limt→∞

(
ξ i(t)− ξ j(t)

)
=

0 for any i, j ∈ IN , i 6= j.
Definition 2: Multi-agent system (1) is said to achieve the

time-varying formation specified by h(t) if and only if for
any given bounded initial states and i ∈ IN , there exists a
vector-valued function r(t)= [rx(t), rv(t)]T such that lim

t→∞
(xi(t)− hix(t)− rx(t)) = 0

lim
t→∞

(vi(t)− hiv(t)− rv(t)) = 0,
(3)

where r(t) is the formation reference point.
On this foundation, the formation is said to achieve velocity

tracking if lim
t→∞

rv(t) = 0, that is lim
t→∞

(vi(t) − hi(t)) = 0 for
any i ∈ IN .
Remark 1: Although the agents will eventually achieve

the desired time-varying formation shape relative to r(t),
the reference point is unknown to all agents, which is dif-
ferent from traditional centralized formation control method.
Furthermore, it can be easily verified that (3) is equivalent
to lim

t→∞

{(
ξ i(t)− hi(t)

)
−
(
ξ j(t)− hj(t)

)}
= 0 for any i,

j ∈ IN , i 6= j.
Remark 2: Note that hi(t) is the desired time-varying for-

mation rather than the reference trajectory for each agent to
follow, that is hi(t) depicts the relative offset vector of ξ i(t).
In the case hix(t) = hiv(t) = 0, Definition 2 becomes a
consensus problem for discrete-time multi-agent systems.

Due to the limitation of bandwidth, abundant data trans-
mission and congestion of network links, communication
delay often exists in practical communication networks.
Assume that the communication delay only exists in the actu-
ally transmitted information and every agent can use its own
instantaneous states information (Fig. 1(a)). The packet loss
is also ignored for convenience in description and analysis.
In discrete-time systems, agents will only update their con-
troller at certain time instants, hence the received data cannot

FIGURE 1. A distributed communication delay processing scheme and
communication delay in discrete-time systems. (a) A distributed scheme
to deal with the communication delay. (b) Communication delay in
discrete-time systems.

be used immediately. A data buffer is introduced to temporar-
ily store the latest received data packets from neighbouring
agents and these data will be used at the next controller update
time instant. The communication delay from agent$j to$i is
denoted by τij and it is reasonable to set the value of τij = τδ
in discrete-time systems, τ ∈ {0, 1, . . . , h̄}, where h̄ is the
smallest integer greater than or equal to τmax/δ, τmax is the
upper bound of communication delay. It should be noted that
for discrete-time systems, there exists at least one sampling
period delay when the states are exchanged among agents,
as shown in Fig. 1(b).

To solve the time-varying formation control and velocity
tracking problems with switching topologies and nonuniform
communication delays, the control protocol using the instan-
taneous states information of agent itself and the delayed
states information of its neighbours is designed as follows,

ui(t) = −p0 (vi(t)− hiv(t))

+K
N∑
j=1

aij(t)
{(
ξ j(t − τij)− hj(t − τij)

)
−
(
ξ i(t)− hi(t)

)}
+ hia(t), (4)

where K = [p1, p2], p0 > 0 is velocity tracking error
damping gain, p1, p2 > 0 are formation control related gain
parameters.
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Remark 3: Equation (4) solves the problem (i) raised in
the Introduction and the control protocol to achieve desired
time-varying formation and reference velocity tracking is
given. The design of parameters in the protocol will be further
discussed in the next section.

III. TIME-VARYING FORMATION ANALYSIS AND
CONTROL PROTOCOL DESIGN
In this section, we will address the time-varying forma-
tion control and velocity tracking problems for second-order
discrete-time multi-agent systems with switching topologies
and nonuniform communication delays.

Denote E =
[
1 δ

0 1

]
,F0 =

[
0 0
0 −δp0

]
,F1 =

[
0T

δK

]
.

Under protocol (4), the closed-loop dynamics of multi-agent
system (1) can be written in a compact form as

ξ (t + δ) = (IN ⊗ E) ξ (t)+ (IN ⊗ F0) (ξ (t)− h(t))

− (LD(t)⊗ F1) (ξ (t)− h(t))

+ (A0(t)⊗ F1) (ξ (t)− h(t))+ . . .

+
(
Ah̄(t)⊗ F1

)
(ξ (t − τmax)− h(t − τmax))

+

(
IN ⊗ [0, δ]T

)
ha(t), (5)

where LD(t) is a diagonal matrix consists of the diagonal
elements of matrix L(t), Aτ (t) = [aτ,ij(t)]N×N , element
aτ,ij(t) = aij(t) if τij = τδ, otherwise aτ,ij(t) = 0, τ =
0, . . . , h̄. It is clear that L(t) = LD(t)−

∑h̄
τ=0 Aτ (t).

Let ψ ix(t) = xi(t)−hix(t),ψ iv(t) = vi(t)−hiv(t),ψ i(t) =
[ψ ix(t),ψ iv(t)]

T ,ψ(t) = [ψT
1 (t), ...,ψ

T
N (t)]

T , then one has

ψ i(t) = ξ i(t)− hi(t), (6)

that is

ψ(t) = ξ (t)− h(t). (7)

Then it follows that

ξ (t) = ψ(t)+ h(t). (8)

Substitute (8)into (5), it follows that

ψ(t + δ) = (IN ⊗ E)ψ(t)+ (IN ⊗ F0)ψ(t)

− (LD(t)⊗ F1) ψ(t)+(A0(t)⊗ F1) ψ(t)

+ . . .+
(
Ah̄(t)⊗ F1

)
(ψ(t − τmax)

−h(t + δ)+(IN⊗E)h(t)+
(
IN⊗[0, δ]T

)
ha(t).

(9)

Theorem 1: System (1) achieves the desired time-varying
formation if and only if system (9) achieves consensus as t →
∞, that is lim

t→∞

(
ψ i(t)− ψ j(t)

)
= 0 for any i, j ∈ IN , i 6= j.

Proof: (Sufficiency) If system (9) achieves consensus,
by substituting (6) into lim

t→∞

(
ψ i(t)− ψ j(t)

)
= 0, it can be

obtained that lim
t→∞
{(ξ i(t) − hi(t)) − (ξ j(t) − hj(t))} = 0 for

any i, j ∈ IN , i 6= j. Then, based on Definition 2, one can
find that the time-varying formation is achieved.

(Necessity) If the time-varying formation is achieved by
system (1), that is lim

t→∞
{(ξ i(t)− hi(t))− (ξ j(t)− hj(t))} = 0.

Taking account of (6), it follows that lim
t→∞

(ψ i(t) − ψ j(t)) =
0 for any i, j ∈ IN , i 6= j, that is the consensus of (9) is
achieved. Thus the conclusion is obtained. �

FIGURE 2. Illustration of the consensus-based and centralized formation
control schemes. (a) The consensus-based formation control scheme.
(b) Centralized formation control scheme.

Remark 4: Theorem 1 solves the problem (ii) raised in the
Introduction and the time-varying formation control prob-
lem is transformed into a consensus problem. Fig.2(a) fur-
ther illustrates the architecture of consensus-based formation
control scheme. Under this scheme, each agent executes a
simple motion and maintains desired offset relative to its
respective reference pointψ i(t) = ξ i(t)−hi(t). The condition
for determining the multi-agent system has approached the
desired formation is lim

t→∞

(
ψ i(t)− ψ j(t)

)
= 0, that is the

reference point of each agent has achieved consensus. From a
geometric point of view, the formation is achieved if and only
if the corresponding reference points of all agents coincide
with each other. From Fig. 2(a), one can also find that the
consensus-based formation control scheme depends only on
the states of agent itself and the measurement of its neigh-
bours’ states. Fig.2(b) shows the architecture of traditional
centralized formation control scheme, where r(t) and ξ i(t)
are formation reference point and the actual states of agent i,
respectively. f i(t) depicts the desired offset of agent i relative
to r(t), then the desired states rdi (t) of agent i can be calculate
by rdi (t) = r(t) + f i(t). If every agent approaches its desired
states accurately, that is ξ i(t) = rdi (t) for all i ∈ IN , then
the desired formation is achieved accurately. This scheme
relies on the assumption that each agent has the information
of r(t), which is rather restrictive and may be unrealistic for
many applications due to the limitations of communication
bandwidth and range.

VOLUME 7, 2019 65383



L. He et al.: Time-Varying Formation Control For Second-Order Discrete-Time Multi-Agent Systems

Because of the existing of communication delay and for-
mation offset vector related items, it is difficult to analyse the
stability of system (9) directly. Therefore, we first introduce
the following proposition to simplify the problem.
Proposition 1: The predefined time-varying formation

satisfies the following formation feasibility conditions for all
i ∈ IN , {

hix(t + δ) = hix(t)+ δhiv(t)
hiv(t + δ) = hiv(t)+ δhia(t)

. (10)

Remark 5: Proposition 1 gives answer to the problem
(iii) raised in the Introduction. It proposes an explicit math-
ematical description of feasible time-varying formation set,
which is not only important for deriving the conclusions of
this paper, but also gives explicit criterions to design feasible
formation in mission planning. Proposition 1 indicates that
the desired formation has the same dynamics characteristic
as system (1). The feasibility conditions are reasonable and
intuitive, as it is obvious that a group of agents cannot accom-
plish all the formation due to their dynamics limitations.
The formation that can be accomplished must meet some
constraints such that the components of position, velocity
and acceleration are compatible without any conflict or sharp
change. Let δ→ 0, (10) is equivalents to{

ḣix(t) = hiv(t)
ḣiv(t) = hia(t)

, (11)

which means that the formation offset functions are coordi-
nated and second-order differentiable. In fact, (11) is similar
to the formation feasibility constraints that given in [20] for
continuous-time systems. On the other hand, (10) has the
same form as system (1) and can be obtained by the forward
difference approximation through (11).

Under the constraints of Proposition 1, the following theo-
rem holds directly.
Theorem 2: Under Proposition 1, system (9) achieves con-

sensus if and only if the consensus of system (12) is achieved
as t →∞.

ψ(t + δ) = (IN ⊗ E)ψ(t)+ (IN ⊗ F0)ψ(t)

− (LD(t)⊗ F1) ψ(t)+ (A0(t)⊗ F1) ψ(t)

+ . . .+
(
Ah̄(t)⊗ F1

)
(ψ(t − τmax). (12)

This transformation simplifies the mathematical analysis by
eliminating the formation offset vector related items with
Proposition 1. However, due to the existence of nonuniform

communication delays, it is still difficult to analyse the sta-
bility of system (12). In this kind of situation, we continue to
perform a model transformation. It is easy to verify that (12)
can be decomposed into (13) for any i ∈ IN ,

ψ ix(t + δ) = ψ ix(t)+ δψ iv(t),

ψ iv(t + δ) = ψ iv(t)− p0δψ iv(t)

+ δ
∑
j∈Ni

aij(t)
{
p1
(
ψ jx(t − τij)− ψ ix(t)

)
+ p2

(
ψ jv(t − τij)− ψ iv(t)

)
}. (13)

Let ψ̄ iv(t) = ψ ix(t)+ γψ iv(t), where γ = p2
/
p1. Then one

can obtain that

ψ ix(t + δ) = ψ ix(t)+ δ

(
ψ̄ iv(t)− ψ ix(t)

)
γ

,

ψ iv(t + δ) = δ
ψ̄ iv(t)− ψ̄ ix(t)

γ

+ ψ̄ iv(t)− p0δ
(
ψ̄ iv(t)− ψ ix(t)

)
+ p2δ

∑
j∈Ni

aij(t)
(
ψ̄ jv(t−τij)−ψ̄ iv(t)

)
. (14)

Denote
ηi(t) = [ψ ix(t), ψ̄ iv(t)]

T , η(t) = [ηT1 (t), . . . , η
T
N (t)]

T , 3 =[
1− δ

/
γ

δ
/
γ

p0δ − δ
/
γ 1+ δ

/
γ − p0δ

]
, B =

[
0 0
0 p2δ

]
. Then (12) is

turned into an equivalent system as follows

η(t + δ) = 0(t)η(t)+ (A0(t)⊗ B) η(t)

+ . . .+
(
Ah̄(t)⊗ B

)
η(t − τmax), (15)

where 0(t) = IN ⊗3− LD(t)⊗ B.
By holding the position-related variable ψ ix(t) and

velocity-related variable ψ iv(t) together as a new variable
ψ̄ iv(t), the transformed input term p2δ

∑
j∈Ni

aij(t)(ψ̄ jv(t−τij)−

ψ̄ iv(t)) only contains the variables ψ̄ iv(t), i ∈ IN . By defin-
ing a new states variable ς (t) = [ηT (t), ηT (t−1), . . . , ηT (t−
τmax)]T , system (15) can be equivalently represented by the
following augmented system

ς (t + δ) = 4(t)ς (t), (16)

where 4σ (t) is given as (17), as shown at the bottom of this
page.

It has been known that L(t) = LD(t) −
∑h̄
τ=0 Aτ (t), and

L(t)1 = 0, then it can be verified that 4(t)1 = 1 by

4(t) =



0(t)+ A0(t)⊗ B A1(t)⊗ B . . . Ah̄−1(t)⊗ B Ah̄(t)⊗ B
I 0 . . . . . . 0
0 I 0 . . . 0
... 0

. . .
. . . 0

0 0
. . . I 0

 (17)
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substitute 3 and B into (17). In order to introduce the main
result of this subsection, we need the following proposition.
Proposition 2: The gain parameters p0, p1, p2 and sam-

pling period δ satisfy the following constraints
1− δγ γ > 0
1+ δγ γ − p0δ > p2δdmax

p0 − 1γ γ > 0,

(18)

where dmax denotes the largest diagonal element of all
possible L(t).
Remark 6: Proposition 2 solves the problem (iv) raised in

the Introduction. Coupling constraints on the gain parameters
and interaction period are proposed, so as to guide the design
of parameters in the protocol.
Lemma 2: If all the possible interaction topologies have

spanning trees and the gain parameters p0, p1, p2 and sam-
pling period δ satisfy Proposition 2, then G (4(t)) also has a
spanning tree. Furthermore, 4(t) is SIA.

Proof: It is obvious that all elements of 4(t) are non-
negative under Proposition 2. Also note that 4(t)1 = 1,
then 4(t) is a stochastic matrix. Now, we are going to
prove the graph associate with 4(t) has a spanning tree.
Let 2(t) = 0(t) +

∑h̄
τ=0 Aτ (t)⊗ B. Denote the vertices

in G (2(t)) as υ1, . . . , υ2N and the vertices in G (4(t)) as
ω1, . . . , ω2N (h̄+1). Since 0(t) ≥ 0 and based on the assump-
tion that all the possible interaction topologies have spanning
trees (that isG(

∑h̄
τ=0 A

τ (t)) has spanning trees) andB22 > 0,
it can be obtained that the there exists a spanning tree among
vertices υ2, υ4..., υ2(N−1), υ2N . Further consider the form of
0(t) and Proposition 2, it can be derived that vertices υ2i
and υ2i−1 are strongly connected since 0(2i−1),2i(t) > 0 and
02i,(2i−1)(t) > 0, thus the graph G (2(t)) has a panning tree.

If their exists a directed edge (υi, υj) in G (2(t)), then
there exists an edge (ωi+2Nlij , ωj) in G (4(t)), where lij =
τij/δ denotes the number of periods of communication delay
from υi to υj. Recall the fact that G (2(t)) has a span-
ning tree and denote the root vertex as υi, then there must
exist directed paths (υi, υj1 ), (υj1 , υj2 ), . . . , (υjm , υj) for any
j ∈ {1, . . . , 2N }, j 6= i, thus there must exist directed
edges (ωi+2Nlij1 , ωj1 ), (ωj1+2Nlij2 , ωj2 ), . . . , (ωjm+2Nljmj , ωj).
It is not difficult to see that there exist directed paths
(ωi, ωi+2N ), (ωi+2N , ωi+4N ), . . . , (ωi+2N (h̄−1), ωi+2Nh̄) for
any i ∈ {1, .., 2N }. Therefore, G (4(t)) has a spanning tree
rooted at ωi. Furthermore, for any i ∈ {1, .., 2N }, it can be
obtained that the diagonal element 4ii(t) > 0, that is the
root vertex ωi has self-loop. Then based on Lemma 1, 4(t)
is SIA. �
Lemma 3: Let G(t) ∈ S be the interaction graph at

time t. If the union of the graphs G(t1), . . . ,G(t2) for finite
discrete time instants t1, . . . , t2, (t2 > t1) has a spanning
tree and parameters p0, p1, p2, δ satisfy Proposition 2, then∏t2

t=t1 4(t) is SIA.
Proof: Let 2(t) = 0(t) +

∑h̄
τ=0 Aτ (t)⊗ B. We are

going to prove the graph G(
∑t2

t=t1 2(t)) has a spanning
tree. Denote the vertices of G(

∑t2
t=t1 2(t)) as υ1, . . . , υ2N .

Since 0(t) ≥ 0, based on the assumption that the union
of graphs G(t1), . . . ,G(t2) has a spanning tree (that is
G(
∑t2

t=t1

∑h̄
τ=0 Aτ (t)) has a spanning tree) and B22 > 0,

it can be obtained that the there exists a spanning tree
among vertices υ2, υ4, . . . , υ2(N−1), υ2N . Further consider
the form of 0(t) and Proposition 2, it can be derived that
0(2i−1),2i(t) > 0 and 02i,(2i−1)(t) > 0, that is the 2ith

and (2i− 1)th vertices of graph G(
∑t2

t=t1 2(t)) are strongly
connected, thus the graph G(

∑t2
t=t1 2(t)) has a panning

tree. Furthermore, if parameters p0, p1, p2, δ satisfy Propo-
sition 2, there must exist positive constant µ such that∑t2

t=t1

(
0(t)+ A0(t)⊗ B

)
≥ 0(t) ≥ µI . Then based on

lemma 7 in [40], this lemma can be proved. �
Theorem 3: Under the Proposition 2, if all the possible

interaction topologies G(t) ∈ S have spanning trees, then sys-
tem (1) achieves time-varying formation and velocity tracking
as t →∞ with protocol (4).

Proof: By Lemma 2 and the definition of SIA matrix,
it follows that

+∞∏
t=0

4(t) = 1cT , (19)

where c ∈ R2N (h̄+1) is a constant vector. On the basis of (16),
it can be obtained that

lim
t→∞

ς (t + δ) =
+∞∏
t=0

4(t)ς (0) = 1cTς (0), (20)

that is

lim
t→∞

ψ ix(t) = lim
t→∞

ψ̄ iv(t) = cTς (0), (i ∈ IN ). (21)

Further considering the fact ψ̄ iv(t) = ψ ix(t)+γψ iv(t), it can
be obtained that lim

t→∞
ψ iv(t) = lim

t→∞
ψ jv(t) = 0 for all

i, j ∈ IN . That is the consensus of system (12) is achieved
and thus the time-varying formation is accomplished based
on Theorem 1 and Theorem 2. When the consensus of
system (12) is achieved, it follows that lim

t→∞
ψ iv(t) =

lim
t→∞

(vi(t)−hiv(t)) = 0 (i ∈ IN ), that is the velocity tracking
is also achieved. �
Theorem 4: Under the Proposition 2, if there exists an

infinite sequence of bounded time interval t0, t1, . . . , tk , . . .
with 0 < tk+1− tk ≤ T̄ , k ∈ N, such that the union of graphs
G(tk ), . . . ,G(tk+1 − 1) has a spanning tree for any k ∈ N,
then system (1) achieves time-varying formation and velocity
tracking as t →∞ with protocol (4).

Proof: For any t > 0, denote tk the largest integer
satisfies tk ≤ t . Then it follows that

ς (t + δ) = 4(t)4(t − 1 . . .)4(tk )
k−1∏
m=0

4(m)ς (0), (22)

where 4(m) =
∏tm+1−1

t=tm 4(t). Since 0 < tm+1 − tm ≤ T̄ and
the union of graphs G(tm), . . . ,G(tm+1 − 1) has a spanning

tree, 4(m) is SIA based on Lemma 3, that is
+∞∏
k=0

4(m) =

1cT . Note that 4(t)1 = 1, then lim
t→∞

ς (t + δ) = 1cT ,
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thus the conclusion can be obtained similar to the proof of
Theorem 3. �
Remark 7: The above theorems give us sufficient con-

ditions for achieving formation and velocity tracking of
system (1). Theorem 3 shows that system (1) can achieve
time-varying formation and velocity tracking under the con-
dition that all the possible topologies have spanning trees.
Theorem 4 indicates that even though the interaction topol-
ogy between agents is dynamically changing and the corre-
sponding directed graphs may not have spanning trees all the
time, the desired formation and velocity tracking can still be
achieved if the union graph has a spanning tree.

IV. SIMULATION STUDY
In this section, two numerical simulations, namely Exam-
ple 1 and Example 2, are presented to illustrate the effective-
ness and validity of Theorem 3 and Theorem 4, respectively.
In both of the examples, the multi-agent system consists of
eight agents and the dynamics of each agent is described
by system (1). The collections of all the possible topolo-
gies in Example 1 and Example 2 are respectively denoted
as S1 and S2, and each contains four graphs, as shown
in Fig. 3 and Fig. 4. It can be seen that all the graphs in S1
have spanning trees. Although each individual graph in S2 is
disconnected, the union of the four graphs has a spanning tree.
Fig. 5 shows the time-dependent switching topologies index
σ (t) and it changes randomly every 5 seconds. These eight
agents are supposed to perform a combination of circular
formation and translational motion, as shown in Fig. 6. On the
basis of Proposition 1, the desired time-varying formation for
agent i is described as follows

hix(0) =
[
10 cos(

2π (i− 1)
8

), 10 sin(
2π (i− 1)

8
)
]T
,

hiv(t) =
[
−
π

3
sin (ϕi) ,

π

3
cos (ϕi)

]T
+ vd (t),

FIGURE 3. Interaction topologies in S1.

where ϕi = 2π t
60 +

2π (i−1)
8 , vd =

[
1, π3 cos

(
2π t
120

)]T
, thus

hix(t) and hia(t) for all t > 0 and i ∈ {1, . . . , 8} can be
calculated by simple iteration. If the time-varying formation
specified by hi(t) is achieved, the eight agents will locate

FIGURE 4. Interaction topologies in S2.

FIGURE 5. Time-dependent switching topologies index.

FIGURE 6. Desired formation.

on the vertices of an octagon respectively and keep rotation
with a period of 60s. At the same time, the formation will
also perform a translational motion as a whole with desired
time-varying velocity vd (t). For convenience in description,
the initial positions and velocities of all the agents are set as

ξ i(t) =
[
12 cos(ϕi), 12 sin(ϕi),−

2π
5

sin(ϕi),
2π
5

cos(ϕi)
]T
,

where t ∈ [t0 − h̄δ, t0].
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Let t0 = h̄δ, p0 = 0.25, p1 = 0.20, p2 = 1.0 and δ = 0.1 s,
after some calculation, we know that these parameters satisfy
Proposition 2. Simulations were carried out with τmax = 0.5 s
and the nonuniform communication delays are set as

[τij] = 0.1∗



0 1 2 3 4 5 4 3
2 0 1 2 3 4 5 4
3 2 0 1 2 3 4 5
4 3 2 0 1 2 3 4
5 4 3 2 0 1 2 3
4 5 4 3 2 0 1 2
3 4 5 4 3 2 0 1
2 3 4 5 4 3 2 0


.

FIGURE 7. Simulation results of Example 1. (a) Snapshot of the formation
at t = 120 s. (b) Velocities of agents.

The snapshots of the formation at t = 120 s and veloc-
ities of all the agents in Example 1 and Example 2 are
shown in Fig. 7 and Fig. 8, respectively. Fig. 9 depicts
the curves of the total formation error (F_error(t) =∑8

i=2
(
(ψ i(t)− ψ1(t))

T (ψ i(t)− ψ1(t))
)
) and velocity track-

ing error (Vel_error(t) =
∑8

i=1
(
ψT
iv(t)ψ iv(t)

)
) in Exam-

ple 1 and Example 2. From Figs. 7-9, one sees that both

FIGURE 8. Simulation results of Example 2. (a) Snapshot of the formation
at t = 120 s. (b) Velocities of agents.

the time-varying formation and velocity tracking are accom-
plished under the influence of nonuniform communication
delays and switching directed topologies using the proto-
col proposed in the current paper. Through comparison and
analysis of Fig. 7(b), Fig. 8(b) and Fig. 9, we can find that
the formation is accomplished within about 20 s and 50 s,
respectively. This indicates that although the connectivity of
the interaction topologies may affect the convergence rate of
the system, the multi-agent system can achieve the desired
time-varying formation as long as the union of the interaction
graphs has a spanning tree. Further analysis of Fig. 7(b),
Fig. 8(b) and Fig. 9(b) shows that the whole formation can
track desired time-varying translational velocity. It is also
important to note that the translational velocity is that of the
coincident reference points of agents, the absolute velocity
of each agent is the combination of the velocity components
of the desired formation and desired translational velocity,
as shown in Fig. 7(b) and Fig. 8(b).

Compared with existing technology, we include the
effects of velocity error damping gain in the protocol and
derive milder conditions which allow for not only bounded
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FIGURE 9. Curves of the total formation error and velocity tracking error.
(a) Formation error. (b) Velocity tracking error.

nonuniform communication delays but also for dynamically
switching directed graphs that may not have a spanning tree.

V. CONCLUSIONS
Time-varying formation control and velocity tracking prob-
lems for second-order discrete-time multi-agent systems with
directed topology and communication delay are investigated,
where the interaction topology can be switching and commu-
nication delays are nonuniform. A local information based
distributed control protocol is proposed by utilizing the
delayed states of neighbours and instantaneous states of agent
itself. An explicit mathematical description of the feasible
time-varying formation set is given. Constraints on the gain
parameters and sampling period are proposed as guidance
to the design of parameters in the protocol. Numerical sim-
ulations show that nonuniform communication delays can
be safely tolerated, even though the interaction topologies
between agents are dynamically switching over time and the
corresponding directed graphs may not have spanning trees.

There are still a number of issues need to be further inves-
tigated and extensions to heterogeneous multi-agent systems
with asynchronous updates are currently under investigation.
Another thing needs to be discussed in the future is that other

constraints such as measurement error, external disturbance
and input saturation should be taken into account.

ACKNOWLEDGEMENT
The authors would like to thank the editors and reviewers
for their suggestions, which are of great value to for revising
and improving our paper, as well as the important guiding
significance to our researches.

REFERENCES
[1] R. R. Nair, L. Behera, V. Kumar, and M. Jamshidi, ‘‘Multisatellite for-

mation control for remote sensing applications using artificial potential
field and adaptive fuzzy sliding mode control,’’ IEEE Syst. J., vol. 9, no. 2,
pp. 508–518, Jun. 2015.

[2] L. He, P. Bai, X. Liang, J. Zhang, andW.Wang, ‘‘Feedback formation con-
trol of UAV swarm with multiple implicit leaders,’’ Aerosp. Sci. Technol.,
vol. 72, pp. 327–334, Jan. 2018.

[3] K. K. Oh, M. C. Park, and H. S. Ahn, ‘‘A survey of multi-agent formation
control,’’ Automatica, vol. 53, pp. 424–440, Mar. 2015.

[4] R. Tron, J. Thomas, G. Loianno, K. Daniilidis, and V. Kumar, ‘‘A dis-
tributed optimization framework for localization and formation control:
Applications to vision-based measurements,’’ IEEE Control Syst., vol. 36,
no. 4, pp. 22–44, Aug. 2016.

[5] J.-H. Wang, Y.-L. Xu, J. Zhang, and D.-D. Yang, ‘‘Time-varying forma-
tion for general linear multi-agent systems via distributed event-triggered
control under switching topologies,’’ Chin. Phys. B, vol. 27, no. 4, 2018,
Art. no. 040504.

[6] L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, ‘‘An overview of recent
advances in event-triggered consensus of multiagent systems,’’ IEEE
Trans. Cybern., vol. 48, no. 4, pp. 1110–1123, Apr. 2018.

[7] X. Ge, Q.-L. Han, D. Ding, X.-M. Zhang, and B. Ning, ‘‘A survey on recent
advances in distributed sampled-data cooperative control of multi-agent
systems,’’ Neurocomputing, vol. 275, pp. 1684–1701, Jan. 2017.

[8] B. Wang, W. Chen, J. Wang, B. Zhang, Z. Zhang, and X. Qiu, ‘‘Accurate
cooperative control for multiple leaders multiagent uncertain systems:
A two-layer node-to-node communication framework,’’ IEEE Trans. Ind.
Informat., vol. 14, no. 6, pp. 2395–2405, Jun. 2017.

[9] P. Lin and Y. Jia, ‘‘Consensus of second-order discrete-time multi-agent
systems with nonuniform time-delays and dynamically changing topolo-
gies,’’ Automatica, vol. 45, no. 9, pp. 2154–2158, 2009.

[10] W. Ren, ‘‘Consensus strategies for cooperative control of vehicle forma-
tions,’’ IET Control Theory Appl., vol. 1, no. 2, pp. 505–512, Mar. 2007.

[11] Y. Dong and X. Hu, ‘‘Distributed control of periodic formations for
multiple under-actuated autonomous vehicles,’’ IET Control Theory Appl.,
vol. 11, no. 1, pp. 66–72, Jun. 2017.

[12] M. I. El-Hawwary, ‘‘Three-dimensional circular formations via set stabi-
lization,’’ Automatica, vol. 54, no. 2, pp. 374–381, Apr. 2015.

[13] Y. Kim and A. Mahmood, ‘‘Collision-free second-order vehicle formation
control under time-varying network topology,’’ J. Franklin Inst., vol. 352,
no. 10, pp. 4595–4609, Oct. 2015.

[14] M.Guo,M.M. Zavlanos, andD. V. Dimarogonas, ‘‘Controlling the relative
agent motion in multi-agent formation stabilization,’’ IEEE Trans. Autom.
Control, vol. 59, no. 3, pp. 820–826, Mar. 2014.

[15] H. Du, S. Li, and X. Lin, ‘‘Finite-time formation control of multiagent
systems via dynamic output feedback,’’ Int. J. Robust Nonlinear Control,
vol. 23, no. 14, pp. 1609–1628, Jun. 2012.

[16] Z. Li, W. Ren, X. Liu, and M. Fu, ‘‘Distributed containment control
of multi-agent systems with general linear dynamics in the presence
of multiple leaders,’’ Int. J. Robust Nonlinear Control, vol. 23, no. 5,
pp. 534–547, 2013.

[17] R. Rahimi, F. Abdollahi, and K. Naqshi, ‘‘Time-varying formation control
of a collaborative heterogeneous multi agent system,’’ Robot. Auton. Syst.,
vol. 62, no. 12, pp. 1799–1805, Dec. 2014.

[18] G. Antonelli, F. Arrichiello, F. Caccavale, and A. Marino, ‘‘Decentralized
time-varying formation control for multi-robot systems,’’ Int. J. Robot.
Res., vol. 33, no. 7, pp. 1029–1043, 2014.

[19] L. Briñón-Arranz, A. Seuret, and C. Canudas-de-Wit, ‘‘Cooperative con-
trol design for time-varying formations of multi-agent systems,’’ IEEE
Trans. Autom. Control, vol. 59, no. 8, pp. 2283–2288, Aug. 2014.

65388 VOLUME 7, 2019



L. He et al.: Time-Varying Formation Control For Second-Order Discrete-Time Multi-Agent Systems

[20] X. Dong, Y. Zhou, Z. Ren, and Y. Zhong, ‘‘Time-varying formation track-
ing for second-order multi-agent systems subjected to switching topologies
with application to quadrotor formation flying,’’ IEEE Trans. Ind. Elec-
tron., vol. 64, no. 6, pp. 5014–5024, Jun. 2017.

[21] Y. Zhao, Q. Duan, G. Wen, D. Zhang, and B. Wang, ‘‘Time-varying
formation for general linear multiagent systems over directed topologies:
A fully distributed adaptive technique,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., to be published.

[22] M.-F. Ge, Z.-H. Guan, C. Yang, T. Li, and Y.-W. Wang, ‘‘Time-varying
formation tracking of multiple manipulators via distributed finite-time
control,’’ Neurocomputing, vol. 202, pp. 20–26, Aug. 2016.

[23] L. He, X. Sun, and Y. Lin, ‘‘Distributed adaptive control for time-varying
formation tracking of a class of networked nonlinear systems,’’ Int. J.
Control, vol. 90, no. 7, pp. 1319–1326, Jul. 2017.

[24] L. Wang, J. Xi, M. Yuan, and G. Liu, ‘‘Guaranteed-performance time-
varying formation control for swarm systems subjected to communication
constraints,’’ IEEE Access, vol. 6, pp. 45384–45393, 2018.

[25] L. Han, X. W. Dong, Q. Li, and Z. Ren, ‘‘Formation tracking control
for time-delayed multi-agent systems with second-order dynamics,’’ Chin.
J. Aeronaut., vol. 30, no. 1, pp. 348–357, Feb. 2017.

[26] H. Xia, T.-Z. Huang, J.-L. Shao, and J.-Y. Yu, ‘‘Leader-following formation
control for second-order multi-agent systems with time-varying delays,’’
Trans. Inst. Meas. Control, vol. 36, no. 5, pp. 627–636, Jul. 2014.

[27] R. Cepeda-Gomez and N. Olgac, ‘‘Stability of formation control using a
consensus protocol under directed communications with two time delays
and delay scheduling,’’ Int. J. Syst. Sci., vol. 47, no. 2, pp. 433–449,
Mar. 2016.

[28] D. Xue, J. Yao, J. Wang, Y. Guo, and X. Han, ‘‘Formation control
of multi-agent systems with stochastic switching topology and time-
varying communication delays,’’ IET Control Theory Appl., vol. 7, no. 13,
pp. 1689–1698, Sep. 2013.

[29] T. Li, Z. Li, H. Zhang, and S. Fei, ‘‘Formation tracking control of second-
order multi-agent systems with time-varying delay,’’ J. Dyn. Syst. Meas.
Control, vol. 140, no. 11, pp. 111015-1–111015-11, 2018.

[30] J. Hu, J. Yu, and J. Cao, ‘‘Distributed containment control for nonlinear
multi-agent systemswith time-delayed protocol,’’Asian J. Control, vol. 18,
no. 2, pp. 747–756, Mar. 2016.

[31] L. Peng, F. Guan, L. Perneel, H. Fayyad-Kazan, and M. Timmerman,
‘‘Decentralized multi-robot formation control with communication delay
and asynchronous clock,’’ J. Intell. Robot. Syst., vol. 89, nos. 3–4,
pp. 465–484, Mar. 2018.

[32] Y. Liu and Y. Jia, ‘‘Formation control of discrete-time multi-agent systems
by iterative learning approach,’’ Int. J. Control, Automat. Syst., vol. 10,
no. 5, pp. 913–919, Oct. 2012.

[33] S. Li, J. Zhang, X. Li, F. Wang, X. Luo, and X. Guan, ‘‘Formation
control of heterogeneous discrete-time nonlinear multi-agent systems with
uncertainties,’’ IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4730–4740,
Jun. 2017.

[34] M. E. Nakai, R. S. Inoue, M. H. Terra, and V. Grassi, Jr., ‘‘Robust discrete-
time Markovian control for wheeled mobile robot formation: A fault
tolerant approach,’’ J. Intell. Robot. Syst., vol. 91, no. 2, pp. 233–247,
Aug. 2018.

[35] W. Zhang, J. Liu, and H. Wang, ‘‘Ultra-fast formation control of high-
order discrete-time multi-agent systems based on multi-step predictive
mechanism,’’ ISA Trans., vol. 58, pp. 165–172, Sep. 2015.

[36] J. Xu, G. Zhang, J. Zeng, and W. Tang, ‘‘Consensus based second order
discrete-time multi-agent systems formation control with time-delays,’’ in
Proc. IEEE Int. Conf. Inf. Automat., Aug. 2015, pp. 2626–2631.

[37] G. Xu, C. Huang, and G. Zhai, ‘‘A necessary and sufficient condition
for designing formation of discrete-time multi-agent systems with delay,’’
Neurocomputing, vol. 315, pp. 48–58, Nov. 2018.

[38] L. Shi, J. Shao, W. X. Zheng, and T.-Z. Huang, ‘‘Asynchronous con-
tainment control for discrete-time second-order multi-agent systems with
time-varying delays,’’ J. Franklin Inst., vol. 354, no. 18, pp. 8552–8569,
Dec. 2017.

[39] L. He, J. Zhang, Y. Hou, X. Liang, and P. Bai, ‘‘Time-varying for-
mation control for second-order discrete-time multi-agent systems with
directed topology and communication delay,’’ IEEE Access, vol. 7,
pp. 33517–33527, 2019.

[40] F. Xiao and L. Wang, ‘‘State consensus for multi-agent systems with
switching topologies and time-varying delays,’’ Int. J. Control, vol. 79,
no. 10, pp. 1277–1284, 2006.

[41] J. Qin, H. Gao, and X. Z. Wei, ‘‘Consensus strategy for a class of multi-
agents with discrete second-order dynamics,’’ Int. J. Robust Nonlinear
Control, vol. 22, no. 4, pp. 437–452, Mar. 2012.

LYULONG HE was born in 1990. He received the
B.S. degree from the Nanjing University of Aero-
nautics and Astronautics, Nanjing, China, in 2013,
and the M.S. degree from Air Force Engineering
University, Xi’an, China, in 2015, where he is
currently pursuing the Ph.D. degree. He is also
an Assistant Engineer with the Shaanxi Province
Laboratory of Meta-Synthesis for Electronic and
Information Systems. His current research inter-
est includes consensus and formation control of

multi-agent systems with applications to aircraft swarm formation flying.

JIAQIANG ZHANGwas born in 1984. He received
the M.S. degree in weapon system and applica-
tion engineering and the Ph.D. degree in arma-
ment science and technology from the School of
Aeronautics and Astronautics Engineering, Air
Force Engineering University, in 2009 and 2012,
respectively, where he is currently a Lecturer with
the School of Air Traffic Control and Navigation
College. He has published over 20 journal papers
and has finished over ten projects. His research

interests include aviation cluster technology and airspace management
intelligence.

YUEQI HOU was born in 1995. He received the
B.S. degree with the School of Air Traffic Control
and Navigation College, Air Force Engineering
University, in 2017, where he is currently pursuing
theM.S. degree in control science and engineering.
His research interests are intelligent air combat of
aircraft swarm and electronic warfare applications.

XIAOLONG LIANGwas born in 1981. He received
the master’s degree in operational research and
cybernetics, and the Ph.D. degree in armament
science and technology from the Air Force Engi-
neering University, where he is currently a Ph.D.
Supervisor and a Professor with the School of Air
Traffic Control and Navigation College. He has
published over 50 journal papers and finished over
20 projects. He is a major of several national sci-
entific research projects. His research interests are

aircraft swarm technology, airspace management intelligence, and intelligent
aviation systems.

PENG BAI was born in 1961. He received the
bachelor’s degree in radar engineering from the
School of Aeronautics and Astronautics Engineer-
ing, Air Force Engineering University, in 1983,
and the master’s degree in information and com-
munication engineering from the School of North-
western Polytechnical University, in 1989. He is
currently the Chief Scientist of the Shaanxi
Province Laboratory of Meta-Synthesis for Elec-
tronic and Information System. He has published

over 120 journal papers as the major author; among them, 30 articles were
retrieved by SCI and 37 by EI. He is the Chief Expert and the main person
responsible for a number of national key scientific research projects. His cur-
rent research interests include advanced electronic science and technology in
the future, and science and technology of network information system in the
future. He received the National Science and Technology Progress Award
several times. He was commended by the President of China.

VOLUME 7, 2019 65389


	INTRODUCTION
	PRELIMINARY AND PROBLEM DESCRIPTION
	GRAPH AND MATRIX THEORY
	PROBLEM FORMULATION

	TIME-VARYING FORMATION ANALYSIS AND CONTROL PROTOCOL DESIGN
	SIMULATION STUDY
	CONCLUSIONS
	REFERENCES
	Biographies
	LYULONG HE
	JIAQIANG ZHANG
	YUEQI HOU
	XIAOLONG LIANG
	PENG BAI


