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ABSTRACT Spatial modulation (SM) for the multiple-input-multiple-output (MIMO) system has attracted
research interests due to its high energy and spectral efficiency. SM creates a new modulation dimension by
activating a single transmit antenna according to the data bits. In this paper, we propose spatial permutation
modulation (SPM) that modulates data bits to a permutation vector and activates the transmit antenna at
successive time instants accordingly. The SPM achieves higher diversity and thus lower error rate since
the permutation vector disperses data along the time coordinate. The theoretical model of diversity and
error rate are derived in both the slow-fading channel and fast-fading channel, leading to systematic and
the fast SPM design exploration. Additionally, to show that the SPM can be easily combined with other
SM-based techniques, space-time block coded spatial permutation modulation (STBC-SPM) and quadrature
spatial permutation modulation (QSPM) is exemplarily designed based on space-time block coded spatial
modulation (STBC-SM) and quadrature spatial modulation (QSM), respectively. The numerical results
demonstrate the accuracy of our theoretical analyses and the superior SPM/STBC-SPM/QSPMperformances
to SM/STBC-SM/QSM, respectively, especially under the severe environments like low receive diversity or
spatially-correlated channel, where SM fails to provide satisfactory performance. Under the environments
where systems are allowed to operate with high throughputs, SPM also achieves lower error rate performance
than SM. Last but not least, inspired by SM, numerous index modulation (IM) have been invented by activat-
ing various transmission entities, e.g., subcarrier in the orthogonal frequency division multiplexing (OFDM)
system. The generalization from the SM to SPM can be easily applied to another IM system for the design
of index permutation modulation (IPM).

INDEX TERMS Error rate analysis, index modulation (IM), index permutation modulation (IPM),
multiple-input-multiple-output (MIMO), permutation, spatial modulation (SM), spatial permutation mod-
ulation (SPM), space-time code (STC), space-time block coded spatial modulation (STBC-SM), space-
time block coded spatial permutation modulation (STBC-SPM), sphere decoder, quadrature spatial
modulation (QSM), quadrature spatial permutation modulation (QSPM).

I. INTRODUCTION
Multiple-input multiple-output (MIMO) technique is consid-
ered a key technology for many current wireless communica-
tion standards and the emerging 5G communication. Multiple
antennas are exploited at both the transmitting and receiving
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ends to enhance the signal reliability and throughput, like
spatial multiplexing and space–time code (STC) [1], [2].
Among various MIMO techniques, spatial modulation (SM)
has gained increasing attention due to its high transmission
efficiency [3]–[8].

Conventionally, the data is modulated by changing the
parameters of the sinusoidal carrier wave such as the ampli-
tude or phase. SM creates a new dimension for modulation
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by exploiting the activity status of the transmit antennas.
Specifically, SM modulates bits into two kinds of symbols:
the conventional constellation symbols like quadrature ampli-
tude modulation (QAM), and the spatial symbols generated
by activating different transmit antennas. Taking a transmitter
with 2 antennas as an example, to decide which transmit
antenna is used for QAM symbol transmission, the SM mod-
ulator activates the first antenna when the spatial symbol
conveys bit value ‘0’. Likewise, the second transmit antenna
is selected when the spatial symbol conveys bit value ‘1’.
Since different transmit antennas are used, QAM symbols
are propagated through various channel fading gains. The SM
receiver can thus detect the data symbols by identifying the
most-likely combination of the fading gain andQAMsymbol.

SM strikes a good balance among the error rate per-
formance, throughput, and complexity. In contrast to STC
and spatial multiplexing, SM only requires single radio fre-
quency (RF) chain constituted of mixers, filters, power ampli-
fiers, etc., resulting in huge saving of circuit complexity and
power consumption. This implies that, SM can utilize the
inactive transmit antennas to increase the throughput. There-
fore, SM is considered as a competitive candidate for the
5G communications, especially in the context of the massive
MIMO system [4], [7].

After SM has been proposed, the idea of modulating
data by activating different transmission antennas has been
quickly extended to various transmission entities like pre-
coding matrices [9], transmit light emitting diodes (LEDs)
for visible light communication [10], and subcarriers for
the orthogonal frequency division multiplexing (OFDM)
system [11], [12]. A general terminology index modula-
tion (IM) is proposed to refer these techniques. These exten-
sions show the value and applicability of SM for the future
communications.

Nevertheless, since the spatial symbol is detected by com-
paring the channel fading gains of different transmit anten-
nas, the error rate performance of SM system deteriorates
in spatially-correlated channels where the fingerprints of the
wireless channels in the spatial coordinate become similar.
The other disadvantage of SM is the small transmit diversity
due to the single transmitted stream, resulting in poor error
rate performance if the receive antennas (receive diversity)
are few [8], [13]. Several techniques like precoding or space–
time shift keying (STSK) are proposed [9], [14]–[17] to gain
the transmit diversity. Nevertheless, the coding matrix design
is generally complicated and sometimes resort to extensive
numerical simulations for optimization.

In this work, we exploit the permutation to propose a
simple but yet effective technique named spatial permutation
modulation (SPM). Specifically, SPM disperses the spatial
symbol in the time coordinate by using the permutation vector
that indicates the active transmit antennas at successive time
instants. Take a toy example using two transmit antennas and
two time instants. In addition to the bits conveyed by the
QAM symbols, the SPM transmitter modulates another bit
with a permutation set {[1, 2]>, [2, 1]>}, where (·)> denotes

the transpose operation. For bit ‘0’, the permutation vec-
tor [1, 2]> is selected, and then the first and second transmit
antennas are activated at the first and second time instants,
respectively. Similarly, when [2, 1]> is selected to represent
bit ‘1’, the second and first transmit antennas are successively
activated at the first and second time instants. SPM can be
interpreted as a general case of SM, since the active transmit
antenna index in SM is generalized to the permutation vector
in SPM.

Such generalization enhances the transmission efficiency
and can be easily integrated with different advanced SM
techniques, e.g., space–time block coded spatial modula-
tion (STBC-SM) [18], generalized SM (GSM) [19], [20],
STSK [9], [14]–[17], and quadrature spatial modulation
(QSM) [21]. To demonstrate that SPM is highly compatible
with advanced SM techniques, we exemplarily design two
transmission schemes integrating SPM with STBC-SM and
QSM, respectively. In particular, the proposed space–time
block coded spatial permutation modulation (STBC-SPM)
system applies the permutation vector to select the codeword
of STBC-SM at successive time instants, while the proposed
quadrature spatial permutation modulation (QSPM) system
utilizes two permutation vectors to convey the in-phase
and quadrature signal constellations, respectively. Numerical
simulations demonstrate that, by exploiting the permutations,
all the SPM, STBC-SPM, and QSPM techniques achieve
superior error rate performance to their counterparts, i.e., SM,
STBC-SM, and QSM, respectively. It should be emphasized
that the generalization from SM to SPM can be easily applied
to other IM systems so as to design the index permuta-
tion modulation (IPM), which increases the impact of this
work.

We analytically derive the diversity and error rate perfor-
mance of SPM so as to providing theoretical understanding
about the SPM system, which can be used to improve the
system efficiency [22] and to optimize the transmission in
a systematic way. For example, by using numerical simula-
tions, one can discover that SPM system performs better in
fast-fading channel than in slow-fading channel. Our analysis
not only finds the reason behind this phenomenon, but also
calculates the transmit diversity and bit error rate (BER) in
both kinds of the fading channels. The analysis results reveal
the design guidelines, e.g., the number of QAM repetitions
should be equal to the minimum Hamming distance of per-
mutation set so that the diversities of the QAM symbols
and the permutation vectors are balanced. Moreover, the per-
mutation has been thoroughly investigated in combinatorics,
an area of discrete math [23]. Many well-known properties
can be leveraged to facilitate the design of SPM [24]–[27].
Shortly summarized, the advantages of SPM are enumerated
as follows:

1) High compatibility: SPMprovides a new design direc-
tion orthogonal to most advanced SM/IM techniques,
and thus can be easily integrated with them to yield
a more efficient MIMO system, e.g., the proposed
STBC-SPM and QSPM techniques.
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2) Systematic and fast design exploration: The per-
formance of SPM can be theoretically analyzed, and
the fruitful research results of the permutation can be
leveraged.

3) High transmission reliability: Because of higher
transmit diversity, SPM yields better error rate perfor-
mance than SM, especially under the severe environ-
ments like low receive diversity (few receive antennas)
or spatially-correlated channel.

4) Low complexity: SPM activates one transmit antenna
at a time, thus enjoying the low complexity advantage
as SM, e.g., single RF chain and simple decoding
algorithm.

The rest of this paper is organized as follows. Section II
revisits the SM-MIMO system. Section III elaborates on the
design of the SPM-MIMO transceiver. The SPM theoreti-
cal analyses including the diversity and BER are conducted
in Section IV for both the slow-fading channel and fast-fading
channel. STBC-SPM and QSPM are proposed in Section V
as examples to show the compatibility of SPM. Section VI
provides the numerical results to validate our theoretical
analyses and demonstrate the superior performances of SPM,
STBC-SPM, and QSPM to their counterparts, respectively.
The conclusions and future works are drawn in Section VII.

II. SM-MIMO SYSTEM MODEL
We consider an Nr × Nt MIMO system, where Nr and Nt are
the numbers of receive and transmit antennas, respectively.
For the SM transmission, one transmit antenna is activated at
a time so as to modulate the bits by using the QAM symbol
and the index of the active transmit antenna, i.e., the spatial
symbol. Let the QAM symbol s ∈ χ be selected from the
QAM constellation set χ , the SM transmission model takes
the form of

y = hqs+ n, (1)

where y ∈ CNr is the received signal, and hq ∈ CNr is
the MIMO channel vector associated with the qth transmit
antenna. This activated transmit antenna index q is the spatial
symbol selected by blog2 Ntc bits where b·c is the floor opera-
tion. Consequently, an SM symbol (s, q) conveys blog2 Ntc+

log2 |χ | bits, where | · | denotes the cardinality of the set. The
additive white Gaussian noise n ∈ CNr is assumed to be zero
mean and its covariance matrix is given by E

[
nnH

]
= N0INt ,

where E [·] is the expectation and INt is an identity matrix
with dimension Nt. The parameter N0 is denoted as the noise
power spectral density.

At the receiver side, the maximum likelihood (ML) detec-
tion of the SM signal is formulated as below:(

s?, q?
)
= argmin

s∈χ,q∈[1,...,N1]

∥∥y− hqs
∥∥2 , (2)

where ‖ · ‖ is the Euclidean norm. Low-complexity SM
detection algorithms have been proposed, e.g., [28], [29].
Although SM is shown to be a promising communication
technique, its performance is deteriorated for the case of

few receive antennas or high spatial correlations [8], [13].
Consequently, we propose SPM that exploits the transmit
diversity to enhance the error rate performance.

III. SPM-MIMO SYSTEM MODEL
In this section, we sequentially introduce the permutation,
the way of using the permutation vectors for SPM trans-
mission, and the SPM detection. Let C̃Nt,T be the set of
Nt-permutations of T , i.e., all different ordered arrangements
of a T -element vector of an Nt-set. For example, the permu-
tation sets C̃3,3 and C̃3,2 are given by

C̃3,3 =


 1
2
3

 ,
 1
3
2

 ,
 2
1
3

 ,
 2
3
1

 ,
 3
1
2

 ,
 3
2
1

 ,
C̃3,2 =

{[
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
3

]
,

[
3
1

]
,

[
3
2

]}
. (3)

To characterize the permutation set, we define the Hamming
distance matrix D whose the (i, j)th entry di,j represents the
Hamming distance between the ith and jth permutation vec-
tors. For example, the Hamming distance matrix of a permu-
tation subset {[1, 3, 2]>, [2, 1, 3]>, [2, 3, 1]>, [3, 1, 2]>} ⊂
C̃3,3 is computed as follows:

D =


0 3 2 2
3 0 2 2
2 2 0 3
2 2 3 0

 , (4)

where we further define the minimum Hamming distance of
a permutation set as the smallest off-diagonal component in
the matrix D, i.e.,

dmin = min
i,j, i 6=j

di,j. (5)

To modulate the bits by the permutation vectors, we denote
the subset CNt,T (K , dmin) ⊆ C̃Nt,T which selects K per-
mutation vectors with the minimum Hamming distance dmin
from C̃Nt,T . The SPM spatial symbol is thus generated by
choosing a specific permutation vector in CNt,T (K , dmin)
according to the data bits. Several mapping rules are inves-
tigated in [26], i.e., distance conserving mapping (DCM),
distance-increasing mapping (DIM), and distance-reducing
mapping (DRM). For DCM, the Hamming distances between
any permutation vector pairs are equal to or larger than those
of the associated encoded binary data bits. An example of a
2-bits DCM is given as follows:

00 → [1, 3, 2]>,

01 → [2, 1, 3]>,

11 → [2, 3, 1]>,

10 → [3, 1, 2]>, (6)

where the associated Hamming distance matrix of these per-
mutation vectors is provided in (4). As can be seen, the
Hamming distances between arbitrary permutation pairs are
equal to or larger than those of their associated binary data.
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For the other mapping rules, the DIM guarantees the
Hamming distances between any permutation vector pairs are
larger than those of the associated binary data bits. Com-
pared with DCM, DIM has fewer permutation vectors (K )
and larger Hamming distance (dmin). In contrast to these
two mapping rules, the system using DRM has at least one
permutation vector pair whose Hamming distance is less than
that of the encoded binary data bits. Thus, DRMgenerally has
highest K but smallest dmin.

TABLE 1. Examples of permutation sets with various K and dmin. These
permutation sets are adopted in the numerical simulations of SPM,
STBC-SPM, and QSPM in Section VI.

Table 1 lists different permutation sets. Similar to the
SM spatial symbol conveying blog2 Ntc bits, the number of
modulated bits of the SPM spatial symbol is logarithmi-
cally proportional to the size of the adopted permutation,
i.e., blog2 Kc. The more permutation vectors are included
in CNt,T (K , dmin), the more bits can be modulated at the
expense of decreased Hamming distance. Therefore, one
can flexibly adjust the parameters K and dmin to achieve
the desired balance between the error rate performance and
throughput. Note that when the transmitter is equipped with
more antennas, the number of usable permutation vectors
increases. The design of permutation set can be formulated as
an optimization which selects K permutation vectors out of
all Nt!

(Nt−T )!
candidates to maximize the minimum Hamming

distance, where (·)! is the factorial operation. Although this
optimization can be solved off-line and thus the computa-
tional efficiency is less significant, we propose a greedy algo-
rithm to show that SPM is easily scalable to the systems like
massive MIMO. Specifically, define all the usable permuta-
tion vectors as the candidate pool. For a permutation vector in
the pool, define its neighbors as those vectors whose associ-
ated Hamming distance are shorter than dmin. At each step of
the greedy algorithm, the permutation vector with minimal
number of neighbors is selected to the desired permutation
set, and all its neighbors are removed from the candidate pool.
If the resulting permutation set includes more than K vectors,
we increase dmin = dmin + 1, denote the current permutation
set as the candidate pool, and repeat the greedy algorithm
again. In this way, least permutation vectors are removed from
the candidate pool at each step, and the minimum Hamming
distance dmin can be guaranteed. As demonstrated later in

Sec. VI, this greedy algorithm generates satisfactory permu-
tation set for the SPM systemwhich performs better error rate
performance than the SM system.

For the SPM transmission, according to the scenarios
and user requirements, CNt,T (K , dmin) is pre-determined and
available at both the transmitter and receiver. SPM modu-
lates log2 K bits to a permutation vector p = [p1, . . . , pT ]> ∈
CNt,T (K , dmin) such that the pt th transmit antenna is activated
at the tth time instant. The received symbol vector yt ∈ CNr

is given by

yt = hpt sd tM e + nt , (7)

where hpt is the pt th column of the channel matrix H. The
parameter M indicates the number of repetitive transmission
of the QAM symbol, and d·e is the ceiling operation. This
means that, for one SPM transmission, we transmit the QAM
vector

s = [s1, . . . , s1︸ ︷︷ ︸
M

, s2, . . . , s2︸ ︷︷ ︸
M

, . . . , s T
M
, . . . , s T

M︸ ︷︷ ︸
M

]>. (8)

By cascading yt at different time instants t = 1, . . . ,T into
a received matrix Y = [y1, . . . , yT ] ∈ CNr×T , the SPM
transmission model takes the form of

Y = H(p)diag(s)+ V, (9)

where H(p) = [hp1 , . . . ,hpT ] ∈ CNr×T represents the
permuted channel matrix. The matrix diag(s) is denoted as
a diagonal matrix with diagonal entries being [s1 . . . , s T

M
],

and V = [n1 . . . ,nT ] is the noise matrix.

FIGURE 1. The illustration of SPM transmission with
(Nt,Nr, T ,M) = (4,1,4,4), i.e., the same QAM symbol is repetitively
transmitted at four time instants as the system model in (10). The
permutation vector p = [1,3,2,4]> is used for modulation.

As mentioned previously, the trade-off between the error
rate and the throughput of the spatial symbol can be adjusted
by changing the permutation set CNt,T (K , dmin). Likewise,
we can design the value of M to balance the error rate and
the throughput of the QAM symbol. In the extreme case
of M = T , we have s = [s, . . . , s]>1 so that (9) is simpli-
fied as

Y = sH(p)+ V, (10)

indicating that all T time instants are used to repetitively
transmit the same QAM symbol as illustrated in Fig. 1

1For simplicity, we omit the subscript so that s1 is represented as s.
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with parameters (Nt,Nr,T ,M ) = (4, 1, 4, 4). As can be
seen, the same QAM symbol is transmitted through the first,
third, second, and fourth transmit antennas at successive
four time instants, respectively, according to the permutation
vector p = [1, 3, 2, 4]>. Since the diversity of the QAM
symbol equals the number of repetitions M , the repetitive
transmission reduces the error rate with the cost of lower
throughput. For the opposite extreme case, we have M = 1
such that s = [s1, . . . , sT ]>, that is, different QAM symbols
are sent at T time instants, resulting in the highest throughput
but the worst error rate performance due to the lack of the
QAM diversity.

Note that based on these cases, we can interpret the SPM
system with 1 < M as coded SPM using repetition code,
one of the simplest coding technique. The SPM system with
M = 1 means uncoded SPM. One can easily find that the
SPM performance will be further improved by imposing
advanced coding technique on the QAM vector s.
For the SPM detection, the ML criterion that delivers the

optimal solution (s?,p?) can be implemented by exhaustively
searching the space with KχM elements:

(s?,p?) = argmin s∈χM ,
p∈CNt,T (K ,dmin)

T∑
t=1

‖yt − hpt sd tM e‖
2, (11)

which is similar to the SM detection (2). Consequently,
the low-complexity techniques invented for the SM can
be extended for the efficient SPM detection. For example,
we have exploited the sphere decoder to reduce the detection
complexity in the preliminary SPM work [30].

The aforementioned discussion shows that SM can be con-
sidered as a special case of SPM with T = 1 whose permu-
tation vector reduces to a scalar. Compared with SM, SPM
inherits its low-complexity advantages with better error rate
performance, especially in the cases of few receive antennas
or spatially-correlated channel, which will be demonstrated
later in Section VI. Nevertheless, since SPM can flexibly
adjust its parameters to achieve various trade-offs between
the error rate performance and throughput, its performance
optimization is time-consuming if resorting to the numerical
Monte Carlo simulations. In the following section, we show
that the SPM performance can be theoretically analyzed,
which provides systematic and fast design exploration.

IV. THEORETICAL DIVERSITY AND ERROR
RATE ANALYSIS OF SPM
In this section, we analyze the diversity and the error rate per-
formance of SPM in both slow-fading channel and fast-fading
channel, starting with the pair-wise error probability (PEP)

f (s,p→, s̃, p̃) , P(3(s,p, s̃, p̃) < 0), (12)

which represents the probability that given the transmitted
signals (s,p), the receiver discovers that (s̃, p̃) has a larger
likelihood. 3(s,p, s̃, p̃) is the log-likelihood ratio (LLR)

of P(Y|s,p,H) to P(Y|s̃, p̃,H):

3(s,p,s̃,p̃), logP(Y|s,p,H)−logP(Y|s̃, p̃,H). (13)

Due to the AWGN assumption, P(Y|s,p,H) can be
written as

P(Y|s,p,H)= (N0π )−TNr

T∏
t=1

e
−

||yt−hpt sd tM e
||
2

N0 . (14)

By inserting (14) to (13), we have

3(s,p,s̃,p̃) =
T∑
t=1

||hpt sd tM e−hp̃t s̃d tM e||
2
+2Re

{
(hpt sd tM e−hp̃t s̃d tM e)

Hnt
}

N0
,

(15)

where (·)H is the Hermitian operation and Re {·} is the real
part. Conditioned on H, 3 is a Gaussian random variable
whose mean 3̄ takes the forms of

3̄ =

T∑
t=1

µt (16)

with

µt =
1
N0
||hpt sd tM e−hp̃t s̃d tM e||

2. (17)

The variance of 3 is derived accordingly

σ 2
3 = 23̄ = 2

T∑
t=1

µt . (18)

Now, we are able to derive the conditional moment-
generating function (MGF) of the Gaussian random
variable 3

M3(z|H) = e(z+z
2)3̄
=

T∏
t=1

e(z+z
2)µt . (19)

To further remove the channel conditions, we have to charac-
terize the distribution of µt in slow-fading channel and fast-
fading channel, respectively.

A. DISTRIBUTION OF µT IN SLOW-FADING CHANNEL
The distribution ofµt depends on the relationship between pt
and p̃t . When pt = p̃t , µt in (17) can be simplified to

µt =
1
N0
||hpt ||

2
|sd tM e − s̃d

t
M e
|
2, pt = p̃t , (20)

which is a Gamma distribution 0 with the shape parameterNr

and the scale parameter
σ 2h
N0
(|sd tM e − s̃d tM e|

2). The random
variables µt1 and µt2 for t1 6= t2 are independent, since hpt1
and hpt2 are the channel gains associated with the pt1 th and
the pt2 th transmit antennas, respectively.
Nevertheless, when pt 6= p̃t ,µt1 andµt2 for t1 6= t2 may be

dependent since they may comprise the same channel fading
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gains. Taking p = [1, 2, 3, 4]> and p̃ = [1, 2, 4, 3]> as an
example, we have dependentµ3 andµ4 at the third and fourth
time instants

µ3 =
1
N0
‖h3sd 3

M e
− h4s̃d 3

M e
‖
2,

µ4 =
1
N0
‖h4sd 4

M e
− h3s̃d 4

M e
‖
2, (21)

since they are both the functions of h3 and h4.
Consequently, when taking the expectation over H to

remove the channel condition in (19) for the slow-fading
channel, we have

M3(z) = EH {M3(z|H)} = EH

{
T∏
t=1

e(z+z
2)µt

}

=

∏
t

pt=p̃t

EH
{
e(z+z

2)µt
}
EH


∏
t

pt 6=p̃t

e(z+z
2)µt

 , (22)

where the last equation factorizes the MGF into two product
sequences in the right-hand side (RHS), because (hpt ,hp̃t )
for pt = p̃t and pt 6= p̃t are associated with different transmit
antennas and thus independent. Due to the time dependency
explained previously, the expectation of the second product
series (pt 6= p̃t ) cannot be directly computed by individually
taking the expectation of each e(z+z

2)µt and computing their
product. Nevertheless, we have observed the empirical distri-
bution of the term

∑
t

pt 6=p̃t
µt and used Gamma distribution

for approximation ∑
t

pt 6=p̃t

µt ∼ 0(k, θ), (23)

where (k, θ) is obtained by resorting to the machine learn-
ing algorithm. In particular, the full connected neural net-
work was adopted with the activation function tanh, back
propagation algorithm and least square objective function to
learn (k, θ) through the empirical distributions [31]. With this
approximation, (22) is computed as follows:

M3(z) =∏
t

pt=p̃t

(
1−

σ 2
h

N0
|sd tM e−s̃d

t
M e
|
2(z2+z)

)−Nr(
1−θ (z2+z)

)−kNr

.

(24)

B. DISTRIBUTION OF µT IN FAST-FADING CHANNEL
In fast-fading channel, since the fading gain varies over
time, µt1 and µt2 are independent random variables for
t1 6= t2, regardless of the relationship between pt and p̃t .
Therefore, once the distribution of µt is known, the uncon-
ditional MGF M3(z) can be computed easily. Similar to the
case in slow-fading channel, µt is a Gamma random variable
when pt = p̃t by observing the formulation (20).

When pt 6= p̃t , the random variable µt is the summation
of Nr independent and identically distributed (i.i.d.) squared
norms, i.e., |hr,pt sd tM e− hr,p̃t s̃d tM e|

2 for r = 1, . . . ,Nr. Since
both hr,pt and hr,p̃t are complex Gaussian random variables,
the magnitude of their summation |hr,pt sd tM e − hr,p̃t s̃d tM e| is
a Rayleigh random variable

|hr,pt sd tM e − hr,p̃t s̃d
t
M e
| ∼ R(σh

√
|sd tM e|

2 + |s̃d tM e|
2). (25)

Constituted by the summation of Nr i.i.d. squared Rayleigh
random variables,µt is a Gamma random variable for pt 6= p̃t
as well. Therefore, the Gamma random variable µt can be
represented with different scale parameters depending on the
relationship between pt and p̃t :

µt ∼


0(Nr,

σ 2h
N0
(|sd tM e − s̃d tM e|

2)), pt = p̃t

0(Nr,
σ 2h
N0
(|sd tM e|

2
+ |s̃d tM e|

2)), pt 6= p̃t

. (26)

By using this result and (19), the channel conditions of the
MGF of 3 is removed

M3(z) =
T∏
t=1

(
1−

σ 2
h

N0
βt (z2 + z)

)−Nr

, (27)

with

βt =

{
|sd tM e − s̃d

t
M e
|
2, if pt = p̃t ,

|sd tM e|
2
+ |s̃d tM e|

2, if pt 6= p̃t .
. (28)

C. DIVERSITY AND BER CALCULATION
It is known that the diversity λ determines the speed of the
error rate performance improvement as the signal-to-noise
ratio (SNR) increases with the definition of

λ(s,p→ s̃, p̃) = − lim
σ2h σ

2
s

N0
→∞

log f (s,p→ s̃, p̃)

log
σ 2h σ

2
s

N0

, (29)

where σ 2
s is the signal power. To analyze the diversity,

we apply the Chernoff bound of the PEP by using M3(z):

fCB(s,p→ s̃, p̃) = Mλ(ẑ), (30)

where ẑ = 1
2 by calculating (logM3(ẑ))′ = 0. Let

fCB,s(s,p → s̃, p̃) and fCB,f(s,p → s̃, p̃) be the PEP bound
in slow-fading channel and fast-fading channel, respectively.
By using the results in (24) and (27), we have

fCB,s(s,p→ s̃, p̃)

=

∏
t

pt=p̃t

(
1+

σ 2
h

4N0
|sd tM e−s̃d

t
M e
|
2

)
−Nr

(1+ σ 2
h

4N0
θ

)−kNr

(31)

and

fCB,f(s,p→ s̃, p̃) =
T∏
t=1

(
1+

σ 2
h

4N0
βt

)−Nr

. (32)
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Inserting these Chernoff bounds to (29), the diversity in slow-
fading channel can be computed

λs(s,p→ s̃, p̃)=− lim
σ2h σ

2
s

N0
→∞(∏

tpt=p̃t

(
1+

σ 2h
4N0
|sd tM e−s̃d

t
M e
|
2
)
−Nr

)(
1+

σ 2h
4N0
θ

)−kNr

log
σ 2h σ

2
s

N0

= Nr lim
σ2h σ

2
s

N0
→∞

log
∑

tpt=p̃t

(
1+

σ 2h
4N0
|sd tM e−s̃d

t
M e
|
2
)

log
σ 2h σ

2
s

N0

+kNr lim
σ2h σ

2
s

N0
→∞

log
(
1+

σ 2h
4N0
θ

)
log

σ 2h σ
2
s

N0

(a)
=

( ∑
t

pt=p̃t

1s
d
t
M e
6=s̃
d
t
M e
+ k

)
Nr, (33)

where 1s
d
t
M e
6=s̃
d
t
M e

is the indicator function that outputs 1

when sd tM e 6= s̃d tM e and 0 otherwise. The equality (a) is due
to the fact that

lim
x→∞

log(1+ax)
log x

= lim
x→∞

log(ax)
log x

= lim
x→∞

log a+log x
log x

=1 (34)

Likewise, the diversity in fast-fading channel is calculated as
follows:

λf(s,p→ s̃, p̃)0

= − lim
σ2h σ

2
s

N0
→∞

(
1+

σ 2h
4N0
βt

)−Nr

log
σ 2h σ

2
s

N0

= Nr lim
σ2h σ

2
s

N0
→∞

∑
pt=p̃t

(
1+ 1

4N0
σ 2
h |sd tM e − s̃d

t
M e
|
2
)

log
σ 2h σ

2
s

N0

+Nr lim
σ2h σ

2
s

N0
→∞

∑
pt 6=p̃t

(
1+ 1

4N0
σ 2
h

(
|sd tM e|

2
+ |s̃d tM e|

2
))

log
σ 2h σ

2
s

N0

=

( ∑
t

pt=p̃t

1s
d
t
M e
6=s̃
d
t
M e
+ d(p, p̃)

)
Nr

(a)
≥

( ∑
t

pt=p̃t

1s
d
t
M e
6=s̃
d
t
M e
+ dmin

)
Nr, (35)

where d(p, p̃) ≥ dmin is the Hamming distance between the
permutation vector p and p̃. Such Hamming distance equals
the number of time instants with pt 6= p̃t . Considering the
system transmitting single QAM symbol (M = T ), the PEP
with s 6= s̃ shows that its QAM diversity can be up to TNr in
fast-fading channel, since all the T −dmin indicator functions
equal 1. Thus, when M ≤ T , the diversity of each QAM
symbol is MNr, independent to the permutation.

Meanwhile, the diversity of the spatial symbol is com-
puted by considering the error pairs with s = s̃, which
equals kNr and dminNr in slow-fading channel and fast-fading
channel, respectively. With the diversity analyses, we can
have the systematic and fast design of the SPM parameters.
For example, under a certain error rate constraint, one can
start by first deciding the permutation set with dmin and
then M ≥ dmin to make sure that that the system diversity
is bounded by dminNr or kNr in fast-fading channel or slow-
fading channel, respectively.

TABLE 2. Comparison of the SPM diversity in fast-fading channel and the
slow-fading channel, i.e., dmin and k . For a given transmitted (p, s),
we select the error pair with s̃ = s and p̃ with minimum Hamming
distance dmin. The value of k is obtained by the approximation in (23)
and the full connected neural network.

Table 2 shows the diversity of the SPM in fast-fading
channel and slow-fading channel by using the error pair
with s = s̃ and the Hamming distance between (p, p̃) equals
the minimum Hamming distance dmin. The diversity in slow-
fading channel is less than that in fast-fading channel, since
the summation of dmin dependent random variables is approx-
imated by a Gamma random variable with shape parame-
ter k (23). In fast-fading channel, these random variables are
independent and their summation is exactly a Gamma random
variable with shape parameter dmin. In other words, signals
may experience the same channel fading gain at different
time instants in slow-fading channel, resulting in the time
dependency that degrades the SPM diversity. Nevertheless,
by adding more transmit antennas, this dependency can be
reduced and thus the SPM diversity in slow-fading channel
can approach to that in fast-fading channel [31]. Compared
with SM which is a special case of SPM with dmin = 1
and T = 1 as mentioned previously, the SM diversity is fixed
to Nr. Meanwhile, SPM can flexibly and multiplicatively
increase the diversity by dmin or k times to provide different
trade-offs between the reliability and throughput.

Note that for the purpose of consistency and compari-
son, same SPM system model (9) and analysis procedure
are adopted for both the slow-fading channel and fast-
fading channel. Alternatively, the transmit signal in slow-
fading channel can be formulated as a matrix S ∈ χT×Nt ,
e.g., with M = T = 4 and permutation vector [1, 2, 3, 4]>,
we have

S



1
2
3
4


 =


s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 s

 . (36)

Based on this formulation, the minimum coding gain dis-
tance (CGD) approach can be applied to analyze the transmit
diversity [18]. Using the parameters in Table 2 as examples,
the diversity of the pair (p, p̃) = ([1, 2, 3, 4]>, [1, 2, 4, 3]>)
and s = s̃ equals the number of nonzero eigenvalues ofD·DH ,
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whereD is the difference between the transmit symbol matrix
with p and its erroneous symbol matrix with p̃

D=S



1
2
3
4


−S



1
2
4
3


=


0 0 0 0
0 0 0 0
0 0 s −s
0 0 −s s

. (37)

After some computations, single diversity is reported in this
case. The diversities associated with other two erroneous
permutation vectors p̃ = [1, 3, 4, 2]> and p̃ = [2, 3, 4, 1]>

can be computed as well, which are 2 and 3, respectively.
Compared with the value of k learned by the neural network
in Table 2, we can see that the proposed analysis approach
accurately estimates the diversity as the standard CGD pro-
cedure for slow-fading channel, while the error rate analysis
result will be validated by numerical simulations later in
Sec. VI.

With the unconditional MGF at hand, the PEP can be
computed by integration

f (s,p→ s̃, p̃) =
1
2π j

∫ ẑ+j∞

ẑ−j∞
M3(z)

dz
z
, (38)

which can be tightly approximated by numerical methods,
e.g., saddlepoint approximation [32, eq. (12)]

fSA(s,p→ s̃, p̃) =
1

ŝ
√
2π log(M (ẑ))′′

elog(M (ẑ)), (39)

where ẑ = 1
2 as used in (30). The BER Pb is computed by

applying the union bound

Pb≤

∑
∀(s,p)

∑
∀(s̃,p̃) d

(b)
s,p,s̃,p̃fSA(s,p→ s̃, p̃)

|χ |K log2(|χ |K )
, (40)

where d (b)s,p,s̃,p̃ is the number of different bits between the
demapped bits of (s,p) and (s̃, p̃). Since the BER analysis
involves the computations of all error pairs, the permuta-
tion set with same dmin may have different Hamming dis-
tance matrix (4), leading to different BERs. Nevertheless,
as the error rate is dominated by the minimum Hamming
distance dmin, such performance differences are generally
negligible.

V. STBC-SPM AND QSPM
To show that SPM is highly compatible to other SM/IM
techniques, the STBC-SPM and QSPM systems are proposed
in this section. In both subsections, we first review STBC-SM
and QSM, and then introduce the integration with permuta-
tion vectors for better reliability.

A. STBC-SPM
In [18], STBC-SM was proposed to improve the error rate
performance of SM by combining with STBC. Specifically,
by using the Alamouti code [33],[

s1 −s∗2
s2 s∗1

]
, (41)

four transmitted STBC-SM codewords Ãi, i = 1, . . . , 4 are
designed for a MIMO system with Nt = 4 by simultaneously
activating two transmit antennas during two time instants

Ã1(s1, s2)=


s1 −s∗2
s2 s∗1
0 0
0 0

 , Ã2(s1, s2)=


0 0
0 0
s1 −s∗2
s2 s∗1

 ,

Ã3(s1,s2)=


0 0
s1 −s∗2
s2 s∗1
0 0

ejθ1, Ã4(s1,s2)=


s2 s∗1
0 0
0 0
s1 −s∗2

ejθ1,
(42)

where the rotation angle θ1 depends on the modulation alpha-
bet and is used tomaximize the coding gain and diversity [18].
For each transmission, STBC-SM transmits two QAM sym-
bols (s1, s2) and additional two bits by using the indices
of the selected codewords Ãi. For instance, bits ‘00’ and
‘01’ are modulated by selecting the codedwords Ã1 and Ã2,
respectively.

For the proposed STBC-SPM, since the permutation in
SPM is used to disperse the spatial symbols in time coor-
dinate, the STBC-SPM further increases the transmission
period T times larger than that of STBC-SM. Specifically,
the data bits are first used to select a permutation vector from
the set CNt,T (K , dmin). Entries in the adopted permutation
vector are then used as the codeword indices to cascade
the codewords in (42), forming an STBC-SPM codeword.
Taking T = 2 as an example, an STBC-SPM codeword is
constituted by two STBC-SM codewords Ãi and Ãj

A(s1, s2, s3, s4) =
[
Ãi(s1, s2) Ãj,j 6=i(s3, s4)

]
, (43)

where each codeword conveys different QAM symbols.
In fact, for STBC-SM with Nt = 4, we have another two
codewords in addition to those in (42)

Ã5(s1,s2)=


s1 −s∗2
0 0
s2 s∗1
0 0

ejθ2, Ã6(s1,s2)=


0 0
s1 −s∗2
0 0
s2 s∗1

ejθ2,
(44)

where θ2 is another rotation angle imposed for performance
optimization. The codewords multiplied by the same rota-
tion angles are orthogonal to each other, i.e., (Ã1, Ã2),
(Ã3, Ã4), and (Ã5, Ã6). Since two bits are transmitted by
either using 4 or 6 codewords, Ã5 and Ã6 are generally
ignored in the STBC-SM system. Nevertheless, STBC-SPM
benefits from these two codewords. Following the exam-
ple that cascades two STBC-SM codewords, STBC-SPM
can only use 4 · 3 = 12 combinations, indicating that three
bits are transmitted. The number of codeword combinations
increases to 6·5 = 30when 6 codewords are used. Thismeans
that, one can select 16 combinations to transmit 4 bits. In this
case, the throughputs of the spatial symbol of STBC-SM and
STBC-SPM are identical, i.e., 1 bps/Hz, while STBC-SPM
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achieves lower error rate due to the permutation that further
exploits the diversity.

Like STBC-SM applying the rotation angles to codewords
tomaximize the coding gain and diversity, we split the permu-
tation vectors into groups and impose different rotation angles
on the transmitted codewords when different groups of the
permutation vectors are adopted. In this way, the minimum
Hamming distance of the permutation set can be maximized
by rotation. For example, when two STBC-SM codewords are
cascaded, we can group the permutation vectors as follows

P1 =

{[
6
1

]
,

[
1
4

]
,

[
2
5

]
,

[
3
6

]}
,

P2 =

{[
4
1

]
,

[
5
2

]
,

[
6
3

]
,

[
1
6

]}
,

P3 =

{[
2
1

]
,

[
3
2

]
,

[
5
4

]
,

[
6
5

]}
,

P4 =

{[
1
2

]
,

[
2
3

]
,

[
4
5

]
,

[
5
6

]}
, (45)

where the Hamming distance d(pa,pb) = 2 for the per-
mutation vectors in the same group pa,pb ∈ Pi, while we
have d(pa,pb) ≤ 2 for the permutation vectors in different
groups pa ∈ Pi and pb ∈ Pj with i 6= j. Then, depending on
the group index i, in additional to θi in (42) and (44), another
rotation angle

φi =
(i− 1)π

8
(46)

is imposed on the codewords using QSPK and 16QAMmod-
ulations as stated in [18]. Following (43), the transmitted
codeword of STBC-SPM is given by

A(s1, s2, s3, s4)=
[
Ãpk,1 (s1, s2)e

jφi Ãpk,2 (s3, s4)e
jφi
]

(47)

with pk ∈ Pi and pk,j = 1, . . . , 6.
The extension from STBC-SM to STBC-SPM can

be applied to other advanced SM techniques such as
DT-SM [34], [35]. In particular, the transmit signal of DT-SM
includes the double space-time transmit diversity (DSTTD)
codeword [36] and the spatial constellation (SC) code-
word [37], [38]. Since up to 16

( Nt
Nt−4

)
SC codewords can be

generated and 4 QAM symbols are conveyed by the DSTTD
codeword, the DT-SM system achieves higher spectral effi-
ciency compared with other SM systems. By utilizing the
permutation vectors to cascade the DT-SM codewords and
conduct in-depth performance analysis, one can design the
DT-SPM that further elevates the transmission reliability.

B. QSPM
Since SM transmits one QAM symbol at a time with the
spatial symbol whose number of bits is logarithmically pro-
portional to the transmit antenna number, SM has lower
spectral efficiency than the spatial multiplexing technique.
By expanding the spatial symbol into the in-phase and
quadrature components, QSM is proposed to enhance the SM
throughput [21]. Specifically, compared with SM, the QSM
transmitter comprises an additional spatial demultiplexer

which assigns the real and imaginary parts of the QAM
symbol to various transmit antennas. Thus, we can have
two sets of blog2 Ntc bits to select the active antennas. The
transmission model of QSM takes the form of:

y = hqRsR + jhqIsI + n, (48)

where sR and sI are the real and imaginary parts of the
QAM symbol, respectively. The two indices qR and qI are
the in-phase and quadrature spatial symbols, respectively,
which are used to indicate the active antenna for the trans-
mission of sR and sI. For example, given (qR, qI) =
(2, 4) and s = (1 + 3j)/

√
10, the transmit signal is repre-

sented as [0, 1/
√
10, 0, 3j/

√
10]>. Although multiple trans-

mit antennas are activated, the interference between signals
from different transmit antennas is avoided. This is because
that, the real part and imaginary part of the QAM symbol are
orthogonal to each other due to the cosine and sine carriers.

By integrating the permutation vectors with QSM, we pro-
pose the QSPMwith the system model based on (9) and (48):

Y = H(pR)diag(sR)+H(pI)diag(sI)+ V, (49)

where sR and sI are the real part and imaginary part of
the vector s defined in (8) which may comprise same or
different QAM symbols depending on the parameterM . The
permutation vector pR is used to activate various transmit
antennas at successive time instants for the transmission
of sR. Likewise, pI controls the active transmit antennas to
successively transmit the imaginary part signal sI. In this
way, the signals are dispersed along the time coordinate and
the diversity gains are achieved. With this setting, the number
of bits transmitted by QSPM is 2blog2 Kc +

T
M log2 |χ |.

Alternatively, one can apply the permutation vector to
jointly select the active transmit antennas for the real and
imaginary parts transmissions at the same time instant.
In other words, the permutation vector includes qR and qI
in (48). For example, the permutation vector [1, 4]> indicates
that the first antenna is activated to transmit the real part
of the QAM symbol, and the fourth antenna is used for
the transmission of the imaginary part. Compared with the
system in (49), the latency can be reduced to half. However,
like SPM in slow-fading channel, when two elements of the
permutation vector are used at each time instant, the diversity
may be lower than that of (49). Therefore, in the following
simulations, we still adopt the system model in (49) for our
QSPM simulation.

VI. SIMULATION RESULTS
In this section, we first validate our theoretical analysis results
and then demonstrate the superior performances of SPM and
STBC-SPM by means of Monte Carlos simulations. The
optimal ML decoder is adopted at the receiver side for all the
simulations and analyses.

The numerical and analytical BER comparisons of SPM
are depicted in Fig. 2 for various minimum Hamming dis-
tances dmin and QAM modulations with (Nt,Nr,T ,M ) =
(4, 1, 4, 4). Both the slow-fading channel and fast-fading
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FIGURE 2. Comparison of the numerical and analytical BERs of SPM with
(Nt,Nr, T ,M) = (4,1,4,4). Both the slow-fading channel and fast-fading
channel are considered.

FIGURE 3. BER comparisons of the SM-MIMO and SPM-MIMO systems
with (Nt,Nr) = (4,1) in slow-fading channel and fast fading channel,
under 3 bps/Hz rate constraint. Both the channels with and without
spatial correlation are considered.

channel are considered. The solid lines represent the empir-
ical results, while the dashed lines denote theoretical analy-
ses. The tight overlaps between the analytical and numerical
BERs confirm the accuracy of our analyses for different trans-
mission parameters and fading channels. We simulated two
systems with (|χ |, dmin) being (16, 4) and (4, 2), respectively.
Since M = 4, the system diversity is bounded by dmin
as discussed in Section IV. Therefore, Although the former
adopts higher modulation (16QAM), its larger diversity leads
to better error rate improvement as SNR increases.

Fig. 3 aims at comparing the performances of SM and
SPM in different fading channels with (Nt,Nr = (4, 1). Note
that the SM system yields the same error rate performance
in either slow-fading channel or fast-fading channel due to
the transmission of the single time instant. The SM system
adopts BPSK modulation so that its throughput is 3 bps/Hz.
The SPM parameters are (T ,M , dmin,K ) = (2, 2, 2, 4)
and 16QAM modulation, resulting in throughput 3 bps/Hz

as well. Both the channels with and without spatial correla-
tions are considered. For the uncorrelated channel with target
BER 10−3, the SPM system in slow-fading channel and fast-
fading channel achieve 6 and 12 dB SNR gains over the SM
system, respectively.

For the correlated channels, the exponential correlation
matrix model is adopted [18]

Hsc = R1/2
T HR1/2

R , (50)

where R1/2
T ∈ CNt×Nt and R1/2

R ∈ CNr×Nr with RTi,j =
RRi,j = ρ−|i−j| are the correlation matrices used to model the
correlation at the transmitter and receiver sides, respectively.
We set ρ = 0.9 to simulate the highly-correlated scenario
where SM fails to achieve BER 10−3 even at high SNR.
Nevertheless, SPM in slow-fading channel and fast-
fading channel can provide this error rate performance at
around 32 dB and 27 dB, respectively.

FIGURE 4. BER comparisons of the SPM-MIMO system in slow-fading
channel and SM-MIMO system with and without spatial correlation,
under 3 bps/Hz rate constraint. Nt = 4 and both Nr = 1 and Nr = 2 are
considered.

Fig. 4 compares SM and SPM in slow-fading channel with
Nt = 4 and different numbers of receive antennas.We see that
for all the scenarios, i.e., Nr = 1 and 2; spatially-uncorrelated
and spatially-correlated channels. SPM shows better error
performance than SM. Note that this channel is assumed to be
slow-fading, which can be regarded as a performance lower
bound since in many cases, the time correlation of the channel
fading gains is smaller and thus less time dependency that
degrades the SPM performance.

While previous simulations focus on the severe environ-
ments where only 3 bps/Hz can be supported, Fig. 5 compares
SM and SPM with higher throughputs. We increase the num-
ber of transmit antennas to 6 to allow systems operating with
higher throughputs. With more transmit antennas, SM can
activate the antennas with less correlations e.g., first and sixth
antennas, and SPM can utilize more permutation vectors.
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FIGURE 5. BER comparisons of the SPM-MIMO and SM-MIMO system
with (Nt,Nr) = (6,2) in spatially-correlated fast-fading channel, under
various rate constraints.

FIGURE 6. Spectral efficiency comparisons of the SPM-MIMO and
SM-MIMO system with (Nt,Nr) = (6,2) in spatially-correlated fast-fading
channel, under BER constraint 10−3.

The numerical results demonstrate that SPM stills provide
better error rate performance than SM. Nevertheless, the error
rate improvement of SPM decreases when the throughput
increases, since SM can be interpreted as a special case of
SPM with T = 1 such that (dmin,M ) = (1, 1) as mentioned
previously. The setting of this special SPM seeks for the
throughput maximization. Therefore, to meet high through-
put requirement, the reliability of SPM should be reduced
and thus the resulting SPM system becomes more similar
to the SM system. Also, when higher QAM modulations are
adopted to achieve the high throughputs, the system perfor-
mance is dominated by the error rate of the QAM symbols,
rather than the spatial symbols.

To further compare the performance between SM and
SPM, Fig. 6 demonstrates their achievable throughputs with
the BER constraint 10−3, under the same environment and
parameter settings as the simulation in Fig. 5. With this spec-
tral efficiency comparison, we can see that when spectral effi-
ciency increases from 4 bps/Hz to 8 bps/Hz, the improvement

FIGURE 7. BER comparisons of MIMO systems using STBC-SM and
STBC-SPM with Nt = 4 and various Nr in spatially-correlated channel,
under 3 bps/Hz rate constraint.

FIGURE 8. BER comparisons of MIMO systems using QSM and QSPM
with Nt = 4 and various Nr in spatially-correlated channel, under 6
bps/Hz rate constraint.

of SPM becomes less significant, i.e., from 2.2 dB to 1.6 dB.
The reason is that, as mentioned in Fig. 5, when one adjusts
the parameters of SPM to pursue high throughput, the result-
ing SPM system resembles the SM system. Note that in
some cases the maximum throughput of SPM may be larger
than that of SM. For example, with NT = 7, SM transmits
2 bits by the spatial symbol at each time instant. However,
with T = 2, the number of permutation vectors that SPM
can utilize is 7 · 6 = 42 > 25, implying that up to 2.5 bits
can be transmitted by the spatial symbol per time instant.
The reason behind is that, when the number of transmit
antennas is not power of two, some of them cannot be used
to improve the throughput. With the permutation, the number
of usable permutations becomes N !

(N−T )! so that more bits may
be transmitted. For the techniques like STBC-SM or DT-SM
where the transmit entities used by SM are codewords, since
the number of codewords are generally not power of two, this
advantage is more pronounced.

Last, Fig. 7 and Fig. 8 show the numerical comparisons of
the advanced SM techniques with and without the integration
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of SPM, i.e., STBC-SM versus STBC-SPM and QSM versus
QSPM, respectively. We set Nt = 4 and various Nr. From
the numerical results, we discover that compared with the
improvement of STBC-SPM (with respect to STBC-SM),
the improvement of QSPM (with respect to QSM) is more
significant. This is because that, QSM is proposed to provide
higher spectral efficiency, while STBC-SMaims at enhancing
the reliability of SM, whose design goal is similar to that
of SPM. Thus, the combination of QSM and SPM leads to
larger enhancement, up to 5 dB SNR gain at BER 10−3

and Nr = 2. Nevertheless, STBC-SPM still achieves 2 dB
improvement at the same setting and BER requirement. The
improvement further increases when Nr = 1 such that diver-
sity introduced by SPM is essential. Around 5 dB SNR gain
is obtained by STBC-SPM compared with STBC-SM. The
superior performances of STBC-SPM and QSPM demon-
strate that the application of permutation vectors benefits the
SM-based MIMO systems.

VII. CONCLUSIONS AND FUTURE WORKS
In this work, we proposed and theoretically analyzed the
SPM technique for the MIMO system. By utilizing a per-
mutation vector to sequentially select the transmit antennas
or STBC-SM codewords at successive time instants, both
SPM and STBC-SPM deliver superior performance. The the-
oretical analyses established the BER model and explained
the reason why SPM performs better in fast-fading chan-
nel than in slow-fading channel by calculating the diversity.
Numerical simulations demonstrate that SPM provides trans-
mit diversity and thus can operate in the severe environments
like low receive diversity or spatially-correlated channels.

We hope that the framework of SPM reported here serves
as a starting point for future research that exploits the per-
mutations to the SM/IM systems. Several interesting research
directions are as follows: First, the concept of imposing rota-
tion angles on the transmit data corresponding to different
permutation vectors can be directly applied to SPM so as
to improve the diversity and coding gains. Advanced coding
technique can be applied for the transmitted QAM symbols as
mentioned in Section III. Second, when multiple active trans-
mit antennas are allowed, i.e., GSM [19], [20], the general-
ized spatial permutationmodulation (GSPM) can be expected
to further enhance the transmission efficiency. At the receiver
side, a low-complexity SPM detector is another practical
research topic like our previous work [30], which is omitted
here. The theoretical analyses of the spectral efficiency of
SPM and other permutation-based SM systems like QSPM
and STBC-SPM are also of interest. Last but not least, the per-
mutation can be easily extended and applied to other IM
techniques. For example, the IM-OFDM system partitions the
subcarriers into small groups where only one subcarrier is
used for transmission [11], [12]. By using the permutation
vectors to select the subcarrier indices for various groups,
we have the index permutation modulation (IPM)-OFDM
system that disperses the signals in the frequency coordinate
to gain the diversity.
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